This source file includes following definitions.
- calcLut
- transform
- lutScale_
- tilesY_
- tilesY_
- apply
- setClipLimit
- getClipLimit
- setTilesGridSize
- getTilesGridSize
- collectGarbage
- createCLAHE
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#ifdef HAVE_OPENCL
namespace clahe
{
static bool calcLut(cv::InputArray _src, cv::OutputArray _dst,
const int tilesX, const int tilesY, const cv::Size tileSize,
const int clipLimit, const float lutScale)
{
cv::ocl::Kernel _k("calcLut", cv::ocl::imgproc::clahe_oclsrc);
bool is_cpu = cv::ocl::Device::getDefault().type() == cv::ocl::Device::TYPE_CPU;
cv::String opts;
if(is_cpu)
opts = "-D CPU ";
else
opts = cv::format("-D WAVE_SIZE=%d", _k.preferedWorkGroupSizeMultiple());
cv::ocl::Kernel k("calcLut", cv::ocl::imgproc::clahe_oclsrc, opts);
if(k.empty())
return false;
cv::UMat src = _src.getUMat();
_dst.create(tilesX * tilesY, 256, CV_8UC1);
cv::UMat dst = _dst.getUMat();
int tile_size[2];
tile_size[0] = tileSize.width;
tile_size[1] = tileSize.height;
size_t localThreads[3] = { 32, 8, 1 };
size_t globalThreads[3] = { tilesX * localThreads[0], tilesY * localThreads[1], 1 };
int idx = 0;
idx = k.set(idx, cv::ocl::KernelArg::ReadOnlyNoSize(src));
idx = k.set(idx, cv::ocl::KernelArg::WriteOnlyNoSize(dst));
idx = k.set(idx, tile_size);
idx = k.set(idx, tilesX);
idx = k.set(idx, clipLimit);
k.set(idx, lutScale);
return k.run(2, globalThreads, localThreads, false);
}
static bool transform(cv::InputArray _src, cv::OutputArray _dst, cv::InputArray _lut,
const int tilesX, const int tilesY, const cv::Size & tileSize)
{
cv::ocl::Kernel k("transform", cv::ocl::imgproc::clahe_oclsrc);
if(k.empty())
return false;
int tile_size[2];
tile_size[0] = tileSize.width;
tile_size[1] = tileSize.height;
cv::UMat src = _src.getUMat();
_dst.create(src.size(), src.type());
cv::UMat dst = _dst.getUMat();
cv::UMat lut = _lut.getUMat();
size_t localThreads[3] = { 32, 8, 1 };
size_t globalThreads[3] = { src.cols, src.rows, 1 };
int idx = 0;
idx = k.set(idx, cv::ocl::KernelArg::ReadOnlyNoSize(src));
idx = k.set(idx, cv::ocl::KernelArg::WriteOnlyNoSize(dst));
idx = k.set(idx, cv::ocl::KernelArg::ReadOnlyNoSize(lut));
idx = k.set(idx, src.cols);
idx = k.set(idx, src.rows);
idx = k.set(idx, tile_size);
idx = k.set(idx, tilesX);
k.set(idx, tilesY);
return k.run(2, globalThreads, localThreads, false);
}
}
#endif
namespace
{
template <class T, int histSize, int shift>
class CLAHE_CalcLut_Body : public cv::ParallelLoopBody
{
public:
CLAHE_CalcLut_Body(const cv::Mat& src, const cv::Mat& lut, const cv::Size& tileSize, const int& tilesX, const int& clipLimit, const float& lutScale) :
src_(src), lut_(lut), tileSize_(tileSize), tilesX_(tilesX), clipLimit_(clipLimit), lutScale_(lutScale)
{
}
void operator ()(const cv::Range& range) const;
private:
cv::Mat src_;
mutable cv::Mat lut_;
cv::Size tileSize_;
int tilesX_;
int clipLimit_;
float lutScale_;
};
template <class T, int histSize, int shift>
void CLAHE_CalcLut_Body<T,histSize,shift>::operator ()(const cv::Range& range) const
{
T* tileLut = lut_.ptr<T>(range.start);
const size_t lut_step = lut_.step / sizeof(T);
for (int k = range.start; k < range.end; ++k, tileLut += lut_step)
{
const int ty = k / tilesX_;
const int tx = k % tilesX_;
cv::Rect tileROI;
tileROI.x = tx * tileSize_.width;
tileROI.y = ty * tileSize_.height;
tileROI.width = tileSize_.width;
tileROI.height = tileSize_.height;
const cv::Mat tile = src_(tileROI);
int tileHist[histSize] = {0, };
int height = tileROI.height;
const size_t sstep = src_.step / sizeof(T);
for (const T* ptr = tile.ptr<T>(0); height--; ptr += sstep)
{
int x = 0;
for (; x <= tileROI.width - 4; x += 4)
{
int t0 = ptr[x], t1 = ptr[x+1];
tileHist[t0 >> shift]++; tileHist[t1 >> shift]++;
t0 = ptr[x+2]; t1 = ptr[x+3];
tileHist[t0 >> shift]++; tileHist[t1 >> shift]++;
}
for (; x < tileROI.width; ++x)
tileHist[ptr[x] >> shift]++;
}
if (clipLimit_ > 0)
{
int clipped = 0;
for (int i = 0; i < histSize; ++i)
{
if (tileHist[i] > clipLimit_)
{
clipped += tileHist[i] - clipLimit_;
tileHist[i] = clipLimit_;
}
}
int redistBatch = clipped / histSize;
int residual = clipped - redistBatch * histSize;
for (int i = 0; i < histSize; ++i)
tileHist[i] += redistBatch;
for (int i = 0; i < residual; ++i)
tileHist[i]++;
}
int sum = 0;
for (int i = 0; i < histSize; ++i)
{
sum += tileHist[i];
tileLut[i] = cv::saturate_cast<T>(sum * lutScale_);
}
}
}
template <class T>
class CLAHE_Interpolation_Body : public cv::ParallelLoopBody
{
public:
CLAHE_Interpolation_Body(const cv::Mat& src, const cv::Mat& dst, const cv::Mat& lut, const cv::Size& tileSize, const int& tilesX, const int& tilesY) :
src_(src), dst_(dst), lut_(lut), tileSize_(tileSize), tilesX_(tilesX), tilesY_(tilesY)
{
buf.allocate(src.cols << 2);
ind1_p = (int *)buf;
ind2_p = ind1_p + src.cols;
xa_p = (float *)(ind2_p + src.cols);
xa1_p = xa_p + src.cols;
int lut_step = static_cast<int>(lut_.step / sizeof(T));
float inv_tw = 1.0f / tileSize_.width;
for (int x = 0; x < src.cols; ++x)
{
float txf = x * inv_tw - 0.5f;
int tx1 = cvFloor(txf);
int tx2 = tx1 + 1;
xa_p[x] = txf - tx1;
xa1_p[x] = 1.0f - xa_p[x];
tx1 = std::max(tx1, 0);
tx2 = std::min(tx2, tilesX_ - 1);
ind1_p[x] = tx1 * lut_step;
ind2_p[x] = tx2 * lut_step;
}
}
void operator ()(const cv::Range& range) const;
private:
cv::Mat src_;
mutable cv::Mat dst_;
cv::Mat lut_;
cv::Size tileSize_;
int tilesX_;
int tilesY_;
cv::AutoBuffer<int> buf;
int * ind1_p, * ind2_p;
float * xa_p, * xa1_p;
};
template <class T>
void CLAHE_Interpolation_Body<T>::operator ()(const cv::Range& range) const
{
float inv_th = 1.0f / tileSize_.height;
for (int y = range.start; y < range.end; ++y)
{
const T* srcRow = src_.ptr<T>(y);
T* dstRow = dst_.ptr<T>(y);
float tyf = y * inv_th - 0.5f;
int ty1 = cvFloor(tyf);
int ty2 = ty1 + 1;
float ya = tyf - ty1, ya1 = 1.0f - ya;
ty1 = std::max(ty1, 0);
ty2 = std::min(ty2, tilesY_ - 1);
const T* lutPlane1 = lut_.ptr<T>(ty1 * tilesX_);
const T* lutPlane2 = lut_.ptr<T>(ty2 * tilesX_);
for (int x = 0; x < src_.cols; ++x)
{
int srcVal = srcRow[x];
int ind1 = ind1_p[x] + srcVal;
int ind2 = ind2_p[x] + srcVal;
float res = (lutPlane1[ind1] * xa1_p[x] + lutPlane1[ind2] * xa_p[x]) * ya1 +
(lutPlane2[ind1] * xa1_p[x] + lutPlane2[ind2] * xa_p[x]) * ya;
dstRow[x] = cv::saturate_cast<T>(res);
}
}
}
class CLAHE_Impl : public cv::CLAHE
{
public:
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
void apply(cv::InputArray src, cv::OutputArray dst);
void setClipLimit(double clipLimit);
double getClipLimit() const;
void setTilesGridSize(cv::Size tileGridSize);
cv::Size getTilesGridSize() const;
void collectGarbage();
private:
double clipLimit_;
int tilesX_;
int tilesY_;
cv::Mat srcExt_;
cv::Mat lut_;
#ifdef HAVE_OPENCL
cv::UMat usrcExt_;
cv::UMat ulut_;
#endif
};
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
{
}
void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
{
CV_Assert( _src.type() == CV_8UC1 || _src.type() == CV_16UC1 );
#ifdef HAVE_OPENCL
bool useOpenCL = cv::ocl::useOpenCL() && _src.isUMat() && _src.dims()<=2 && _src.type() == CV_8UC1;
#endif
int histSize = _src.type() == CV_8UC1 ? 256 : 4096;
cv::Size tileSize;
cv::_InputArray _srcForLut;
if (_src.size().width % tilesX_ == 0 && _src.size().height % tilesY_ == 0)
{
tileSize = cv::Size(_src.size().width / tilesX_, _src.size().height / tilesY_);
_srcForLut = _src;
}
else
{
#ifdef HAVE_OPENCL
if(useOpenCL)
{
cv::copyMakeBorder(_src, usrcExt_, 0, tilesY_ - (_src.size().height % tilesY_), 0, tilesX_ - (_src.size().width % tilesX_), cv::BORDER_REFLECT_101);
tileSize = cv::Size(usrcExt_.size().width / tilesX_, usrcExt_.size().height / tilesY_);
_srcForLut = usrcExt_;
}
else
#endif
{
cv::copyMakeBorder(_src, srcExt_, 0, tilesY_ - (_src.size().height % tilesY_), 0, tilesX_ - (_src.size().width % tilesX_), cv::BORDER_REFLECT_101);
tileSize = cv::Size(srcExt_.size().width / tilesX_, srcExt_.size().height / tilesY_);
_srcForLut = srcExt_;
}
}
const int tileSizeTotal = tileSize.area();
const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
int clipLimit = 0;
if (clipLimit_ > 0.0)
{
clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
clipLimit = std::max(clipLimit, 1);
}
#ifdef HAVE_OPENCL
if (useOpenCL && clahe::calcLut(_srcForLut, ulut_, tilesX_, tilesY_, tileSize, clipLimit, lutScale) )
if( clahe::transform(_src, _dst, ulut_, tilesX_, tilesY_, tileSize) )
{
CV_IMPL_ADD(CV_IMPL_OCL);
return;
}
#endif
cv::Mat src = _src.getMat();
_dst.create( src.size(), src.type() );
cv::Mat dst = _dst.getMat();
cv::Mat srcForLut = _srcForLut.getMat();
lut_.create(tilesX_ * tilesY_, histSize, _src.type());
cv::Ptr<cv::ParallelLoopBody> calcLutBody;
if (_src.type() == CV_8UC1)
calcLutBody = cv::makePtr<CLAHE_CalcLut_Body<uchar, 256, 0> >(srcForLut, lut_, tileSize, tilesX_, clipLimit, lutScale);
else if (_src.type() == CV_16UC1)
calcLutBody = cv::makePtr<CLAHE_CalcLut_Body<ushort, 4096, 4> >(srcForLut, lut_, tileSize, tilesX_, clipLimit, lutScale);
else
CV_Error( CV_StsBadArg, "Unsupported type" );
cv::parallel_for_(cv::Range(0, tilesX_ * tilesY_), *calcLutBody);
cv::Ptr<cv::ParallelLoopBody> interpolationBody;
if (_src.type() == CV_8UC1)
interpolationBody = cv::makePtr<CLAHE_Interpolation_Body<uchar> >(src, dst, lut_, tileSize, tilesX_, tilesY_);
else if (_src.type() == CV_16UC1)
interpolationBody = cv::makePtr<CLAHE_Interpolation_Body<ushort> >(src, dst, lut_, tileSize, tilesX_, tilesY_);
cv::parallel_for_(cv::Range(0, src.rows), *interpolationBody);
}
void CLAHE_Impl::setClipLimit(double clipLimit)
{
clipLimit_ = clipLimit;
}
double CLAHE_Impl::getClipLimit() const
{
return clipLimit_;
}
void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
{
tilesX_ = tileGridSize.width;
tilesY_ = tileGridSize.height;
}
cv::Size CLAHE_Impl::getTilesGridSize() const
{
return cv::Size(tilesX_, tilesY_);
}
void CLAHE_Impl::collectGarbage()
{
srcExt_.release();
lut_.release();
#ifdef HAVE_OPENCL
usrcExt_.release();
ulut_.release();
#endif
}
}
cv::Ptr<cv::CLAHE> cv::createCLAHE(double clipLimit, cv::Size tileGridSize)
{
return makePtr<CLAHE_Impl>(clipLimit, tileGridSize.width, tileGridSize.height);
}