root/modules/ml/src/kdtree.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. depth
  2. depth
  3. medianPartition
  4. computeSums
  5. build
  6. build
  7. idx
  8. findNearest
  9. findOrthoRange
  10. getPoints
  11. getPoint
  12. dims

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "kdtree.hpp"

namespace cv
{
namespace ml
{
// This is reimplementation of kd-trees from cvkdtree*.* by Xavier Delacour, cleaned-up and
// adopted to work with the new OpenCV data structures.

// The algorithm is taken from:
// J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search
// in highdimensional spaces. In Proc. IEEE Conf. Comp. Vision Patt. Recog.,
// pages 1000--1006, 1997. http://citeseer.ist.psu.edu/beis97shape.html

const int MAX_TREE_DEPTH = 32;

KDTree::KDTree()
{
    maxDepth = -1;
    normType = NORM_L2;
}

KDTree::KDTree(InputArray _points, bool _copyData)
{
    maxDepth = -1;
    normType = NORM_L2;
    build(_points, _copyData);
}

KDTree::KDTree(InputArray _points, InputArray _labels, bool _copyData)
{
    maxDepth = -1;
    normType = NORM_L2;
    build(_points, _labels, _copyData);
}

struct SubTree
{
    SubTree() : first(0), last(0), nodeIdx(0), depth(0) {}
    SubTree(int _first, int _last, int _nodeIdx, int _depth)
        : first(_first), last(_last), nodeIdx(_nodeIdx), depth(_depth) {}
    int first;
    int last;
    int nodeIdx;
    int depth;
};


static float
medianPartition( size_t* ofs, int a, int b, const float* vals )
{
    int k, a0 = a, b0 = b;
    int middle = (a + b)/2;
    while( b > a )
    {
        int i0 = a, i1 = (a+b)/2, i2 = b;
        float v0 = vals[ofs[i0]], v1 = vals[ofs[i1]], v2 = vals[ofs[i2]];
        int ip = v0 < v1 ? (v1 < v2 ? i1 : v0 < v2 ? i2 : i0) :
            v0 < v2 ? i0 : (v1 < v2 ? i2 : i1);
        float pivot = vals[ofs[ip]];
        std::swap(ofs[ip], ofs[i2]);

        for( i1 = i0, i0--; i1 <= i2; i1++ )
            if( vals[ofs[i1]] <= pivot )
            {
                i0++;
                std::swap(ofs[i0], ofs[i1]);
            }
        if( i0 == middle )
            break;
        if( i0 > middle )
            b = i0 - (b == i0);
        else
            a = i0;
    }

    float pivot = vals[ofs[middle]];
    int less = 0, more = 0;
    for( k = a0; k < middle; k++ )
    {
        CV_Assert(vals[ofs[k]] <= pivot);
        less += vals[ofs[k]] < pivot;
    }
    for( k = b0; k > middle; k-- )
    {
        CV_Assert(vals[ofs[k]] >= pivot);
        more += vals[ofs[k]] > pivot;
    }
    CV_Assert(std::abs(more - less) <= 1);

    return vals[ofs[middle]];
}

static void
computeSums( const Mat& points, const size_t* ofs, int a, int b, double* sums )
{
    int i, j, dims = points.cols;
    const float* data = points.ptr<float>(0);
    for( j = 0; j < dims; j++ )
        sums[j*2] = sums[j*2+1] = 0;
    for( i = a; i <= b; i++ )
    {
        const float* row = data + ofs[i];
        for( j = 0; j < dims; j++ )
        {
            double t = row[j], s = sums[j*2] + t, s2 = sums[j*2+1] + t*t;
            sums[j*2] = s; sums[j*2+1] = s2;
        }
    }
}


void KDTree::build(InputArray _points, bool _copyData)
{
    build(_points, noArray(), _copyData);
}


void KDTree::build(InputArray __points, InputArray __labels, bool _copyData)
{
    Mat _points = __points.getMat(), _labels = __labels.getMat();
    CV_Assert(_points.type() == CV_32F && !_points.empty());
    std::vector<KDTree::Node>().swap(nodes);

    if( !_copyData )
        points = _points;
    else
    {
        points.release();
        points.create(_points.size(), _points.type());
    }

    int i, j, n = _points.rows, ptdims = _points.cols, top = 0;
    const float* data = _points.ptr<float>(0);
    float* dstdata = points.ptr<float>(0);
    size_t step = _points.step1();
    size_t dstep = points.step1();
    int ptpos = 0;
    labels.resize(n);
    const int* _labels_data = 0;

    if( !_labels.empty() )
    {
        int nlabels = _labels.checkVector(1, CV_32S, true);
        CV_Assert(nlabels == n);
        _labels_data = _labels.ptr<int>();
    }

    Mat sumstack(MAX_TREE_DEPTH*2, ptdims*2, CV_64F);
    SubTree stack[MAX_TREE_DEPTH*2];

    std::vector<size_t> _ptofs(n);
    size_t* ptofs = &_ptofs[0];

    for( i = 0; i < n; i++ )
        ptofs[i] = i*step;

    nodes.push_back(Node());
    computeSums(points, ptofs, 0, n-1, sumstack.ptr<double>(top));
    stack[top++] = SubTree(0, n-1, 0, 0);
    int _maxDepth = 0;

    while( --top >= 0 )
    {
        int first = stack[top].first, last = stack[top].last;
        int depth = stack[top].depth, nidx = stack[top].nodeIdx;
        int count = last - first + 1, dim = -1;
        const double* sums = sumstack.ptr<double>(top);
        double invCount = 1./count, maxVar = -1.;

        if( count == 1 )
        {
            int idx0 = (int)(ptofs[first]/step);
            int idx = _copyData ? ptpos++ : idx0;
            nodes[nidx].idx = ~idx;
            if( _copyData )
            {
                const float* src = data + ptofs[first];
                float* dst = dstdata + idx*dstep;
                for( j = 0; j < ptdims; j++ )
                    dst[j] = src[j];
            }
            labels[idx] = _labels_data ? _labels_data[idx0] : idx0;
            _maxDepth = std::max(_maxDepth, depth);
            continue;
        }

        // find the dimensionality with the biggest variance
        for( j = 0; j < ptdims; j++ )
        {
            double m = sums[j*2]*invCount;
            double varj = sums[j*2+1]*invCount - m*m;
            if( maxVar < varj )
            {
                maxVar = varj;
                dim = j;
            }
        }

        int left = (int)nodes.size(), right = left + 1;
        nodes.push_back(Node());
        nodes.push_back(Node());
        nodes[nidx].idx = dim;
        nodes[nidx].left = left;
        nodes[nidx].right = right;
        nodes[nidx].boundary = medianPartition(ptofs, first, last, data + dim);

        int middle = (first + last)/2;
        double *lsums = (double*)sums, *rsums = lsums + ptdims*2;
        computeSums(points, ptofs, middle+1, last, rsums);
        for( j = 0; j < ptdims*2; j++ )
            lsums[j] = sums[j] - rsums[j];
        stack[top++] = SubTree(first, middle, left, depth+1);
        stack[top++] = SubTree(middle+1, last, right, depth+1);
    }
    maxDepth = _maxDepth;
}


struct PQueueElem
{
    PQueueElem() : dist(0), idx(0) {}
    PQueueElem(float _dist, int _idx) : dist(_dist), idx(_idx) {}
    float dist;
    int idx;
};


int KDTree::findNearest(InputArray _vec, int K, int emax,
                        OutputArray _neighborsIdx, OutputArray _neighbors,
                        OutputArray _dist, OutputArray _labels) const

{
    Mat vecmat = _vec.getMat();
    CV_Assert( vecmat.isContinuous() && vecmat.type() == CV_32F && vecmat.total() == (size_t)points.cols );
    const float* vec = vecmat.ptr<float>();
    K = std::min(K, points.rows);
    int ptdims = points.cols;

    CV_Assert(K > 0 && (normType == NORM_L2 || normType == NORM_L1));

    AutoBuffer<uchar> _buf((K+1)*(sizeof(float) + sizeof(int)));
    int* idx = (int*)(uchar*)_buf;
    float* dist = (float*)(idx + K + 1);
    int i, j, ncount = 0, e = 0;

    int qsize = 0, maxqsize = 1 << 10;
    AutoBuffer<uchar> _pqueue(maxqsize*sizeof(PQueueElem));
    PQueueElem* pqueue = (PQueueElem*)(uchar*)_pqueue;
    emax = std::max(emax, 1);

    for( e = 0; e < emax; )
    {
        float d, alt_d = 0.f;
        int nidx;

        if( e == 0 )
            nidx = 0;
        else
        {
            // take the next node from the priority queue
            if( qsize == 0 )
                break;
            nidx = pqueue[0].idx;
            alt_d = pqueue[0].dist;
            if( --qsize > 0 )
            {
                std::swap(pqueue[0], pqueue[qsize]);
                d = pqueue[0].dist;
                for( i = 0;;)
                {
                    int left = i*2 + 1, right = i*2 + 2;
                    if( left >= qsize )
                        break;
                    if( right < qsize && pqueue[right].dist < pqueue[left].dist )
                        left = right;
                    if( pqueue[left].dist >= d )
                        break;
                    std::swap(pqueue[i], pqueue[left]);
                    i = left;
                }
            }

            if( ncount == K && alt_d > dist[ncount-1] )
                continue;
        }

        for(;;)
        {
            if( nidx < 0 )
                break;
            const Node& n = nodes[nidx];

            if( n.idx < 0 )
            {
                i = ~n.idx;
                const float* row = points.ptr<float>(i);
                if( normType == NORM_L2 )
                    for( j = 0, d = 0.f; j < ptdims; j++ )
                    {
                        float t = vec[j] - row[j];
                        d += t*t;
                    }
                else
                    for( j = 0, d = 0.f; j < ptdims; j++ )
                        d += std::abs(vec[j] - row[j]);

                dist[ncount] = d;
                idx[ncount] = i;
                for( i = ncount-1; i >= 0; i-- )
                {
                    if( dist[i] <= d )
                        break;
                    std::swap(dist[i], dist[i+1]);
                    std::swap(idx[i], idx[i+1]);
                }
                ncount += ncount < K;
                e++;
                break;
            }

            int alt;
            if( vec[n.idx] <= n.boundary )
            {
                nidx = n.left;
                alt = n.right;
            }
            else
            {
                nidx = n.right;
                alt = n.left;
            }

            d = vec[n.idx] - n.boundary;
            if( normType == NORM_L2 )
                d = d*d + alt_d;
            else
                d = std::abs(d) + alt_d;
            // subtree prunning
            if( ncount == K && d > dist[ncount-1] )
                continue;
            // add alternative subtree to the priority queue
            pqueue[qsize] = PQueueElem(d, alt);
            for( i = qsize; i > 0; )
            {
                int parent = (i-1)/2;
                if( parent < 0 || pqueue[parent].dist <= d )
                    break;
                std::swap(pqueue[i], pqueue[parent]);
                i = parent;
            }
            qsize += qsize+1 < maxqsize;
        }
    }

    K = std::min(K, ncount);
    if( _neighborsIdx.needed() )
    {
        _neighborsIdx.create(K, 1, CV_32S, -1, true);
        Mat nidx = _neighborsIdx.getMat();
        Mat(nidx.size(), CV_32S, &idx[0]).copyTo(nidx);
    }
    if( _dist.needed() )
        sqrt(Mat(K, 1, CV_32F, dist), _dist);

    if( _neighbors.needed() || _labels.needed() )
        getPoints(Mat(K, 1, CV_32S, idx), _neighbors, _labels);
    return K;
}


void KDTree::findOrthoRange(InputArray _lowerBound,
                            InputArray _upperBound,
                            OutputArray _neighborsIdx,
                            OutputArray _neighbors,
                            OutputArray _labels ) const
{
    int ptdims = points.cols;
    Mat lowerBound = _lowerBound.getMat(), upperBound = _upperBound.getMat();
    CV_Assert( lowerBound.size == upperBound.size &&
               lowerBound.isContinuous() &&
               upperBound.isContinuous() &&
               lowerBound.type() == upperBound.type() &&
               lowerBound.type() == CV_32F &&
               lowerBound.total() == (size_t)ptdims );
    const float* L = lowerBound.ptr<float>();
    const float* R = upperBound.ptr<float>();

    std::vector<int> idx;
    AutoBuffer<int> _stack(MAX_TREE_DEPTH*2 + 1);
    int* stack = _stack;
    int top = 0;

    stack[top++] = 0;

    while( --top >= 0 )
    {
        int nidx = stack[top];
        if( nidx < 0 )
            break;
        const Node& n = nodes[nidx];
        if( n.idx < 0 )
        {
            int j, i = ~n.idx;
            const float* row = points.ptr<float>(i);
            for( j = 0; j < ptdims; j++ )
                if( row[j] < L[j] || row[j] >= R[j] )
                    break;
            if( j == ptdims )
                idx.push_back(i);
            continue;
        }
        if( L[n.idx] <= n.boundary )
            stack[top++] = n.left;
        if( R[n.idx] > n.boundary )
            stack[top++] = n.right;
    }

    if( _neighborsIdx.needed() )
    {
        _neighborsIdx.create((int)idx.size(), 1, CV_32S, -1, true);
        Mat nidx = _neighborsIdx.getMat();
        Mat(nidx.size(), CV_32S, &idx[0]).copyTo(nidx);
    }
    getPoints( idx, _neighbors, _labels );
}


void KDTree::getPoints(InputArray _idx, OutputArray _pts, OutputArray _labels) const
{
    Mat idxmat = _idx.getMat(), pts, labelsmat;
    CV_Assert( idxmat.isContinuous() && idxmat.type() == CV_32S &&
               (idxmat.cols == 1 || idxmat.rows == 1) );
    const int* idx = idxmat.ptr<int>();
    int* dstlabels = 0;

    int ptdims = points.cols;
    int i, nidx = (int)idxmat.total();
    if( nidx == 0 )
    {
        _pts.release();
        _labels.release();
        return;
    }

    if( _pts.needed() )
    {
        _pts.create( nidx, ptdims, points.type());
        pts = _pts.getMat();
    }

    if(_labels.needed())
    {
        _labels.create(nidx, 1, CV_32S, -1, true);
        labelsmat = _labels.getMat();
        CV_Assert( labelsmat.isContinuous() );
        dstlabels = labelsmat.ptr<int>();
    }
    const int* srclabels = !labels.empty() ? &labels[0] : 0;

    for( i = 0; i < nidx; i++ )
    {
        int k = idx[i];
        CV_Assert( (unsigned)k < (unsigned)points.rows );
        const float* src = points.ptr<float>(k);
        if( !pts.empty() )
            std::copy(src, src + ptdims, pts.ptr<float>(i));
        if( dstlabels )
            dstlabels[i] = srclabels ? srclabels[k] : k;
    }
}


const float* KDTree::getPoint(int ptidx, int* label) const
{
    CV_Assert( (unsigned)ptidx < (unsigned)points.rows);
    if(label)
        *label = labels[ptidx];
    return points.ptr<float>(ptidx);
}


int KDTree::dims() const
{
    return !points.empty() ? points.cols : 0;
}

}
}

/* [<][>][^][v][top][bottom][index][help] */