root/modules/ml/src/knearest.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. train
  2. doTrain
  3. clear
  4. read
  5. write
  6. getModelName
  7. getType
  8. findNearestCore
  9. findNearest
  10. getModelName
  11. getType
  12. doTrain
  13. findNearest
  14. CV_IMPL_PROPERTY
  15. setAlgorithmType
  16. isClassifier
  17. isTrained
  18. getVarCount
  19. write
  20. read
  21. findNearest
  22. predict
  23. train
  24. getDefaultName
  25. initImpl
  26. create

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2014, Itseez Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "kdtree.hpp"

/****************************************************************************************\
*                              K-Nearest Neighbors Classifier                            *
\****************************************************************************************/

namespace cv {
namespace ml {

const String NAME_BRUTE_FORCE = "opencv_ml_knn";
const String NAME_KDTREE = "opencv_ml_knn_kd";

class Impl
{
public:
    Impl()
    {
        defaultK = 10;
        isclassifier = true;
        Emax = INT_MAX;
    }

    virtual ~Impl() {}
    virtual String getModelName() const = 0;
    virtual int getType() const = 0;
    virtual float findNearest( InputArray _samples, int k,
                               OutputArray _results,
                               OutputArray _neighborResponses,
                               OutputArray _dists ) const = 0;

    bool train( const Ptr<TrainData>& data, int flags )
    {
        Mat new_samples = data->getTrainSamples(ROW_SAMPLE);
        Mat new_responses;
        data->getTrainResponses().convertTo(new_responses, CV_32F);
        bool update = (flags & ml::KNearest::UPDATE_MODEL) != 0 && !samples.empty();

        CV_Assert( new_samples.type() == CV_32F );

        if( !update )
        {
            clear();
        }
        else
        {
            CV_Assert( new_samples.cols == samples.cols &&
                       new_responses.cols == responses.cols );
        }

        samples.push_back(new_samples);
        responses.push_back(new_responses);

        doTrain(samples);

        return true;
    }

    virtual void doTrain(InputArray points) { (void)points; }

    void clear()
    {
        samples.release();
        responses.release();
    }

    void read( const FileNode& fn )
    {
        clear();
        isclassifier = (int)fn["is_classifier"] != 0;
        defaultK = (int)fn["default_k"];

        fn["samples"] >> samples;
        fn["responses"] >> responses;
    }

    void write( FileStorage& fs ) const
    {
        fs << "is_classifier" << (int)isclassifier;
        fs << "default_k" << defaultK;

        fs << "samples" << samples;
        fs << "responses" << responses;
    }

public:
    int defaultK;
    bool isclassifier;
    int Emax;

    Mat samples;
    Mat responses;
};

class BruteForceImpl : public Impl
{
public:
    String getModelName() const { return NAME_BRUTE_FORCE; }
    int getType() const { return ml::KNearest::BRUTE_FORCE; }

    void findNearestCore( const Mat& _samples, int k0, const Range& range,
                          Mat* results, Mat* neighbor_responses,
                          Mat* dists, float* presult ) const
    {
        int testidx, baseidx, i, j, d = samples.cols, nsamples = samples.rows;
        int testcount = range.end - range.start;
        int k = std::min(k0, nsamples);

        AutoBuffer<float> buf(testcount*k*2);
        float* dbuf = buf;
        float* rbuf = dbuf + testcount*k;

        const float* rptr = responses.ptr<float>();

        for( testidx = 0; testidx < testcount; testidx++ )
        {
            for( i = 0; i < k; i++ )
            {
                dbuf[testidx*k + i] = FLT_MAX;
                rbuf[testidx*k + i] = 0.f;
            }
        }

        for( baseidx = 0; baseidx < nsamples; baseidx++ )
        {
            for( testidx = 0; testidx < testcount; testidx++ )
            {
                const float* v = samples.ptr<float>(baseidx);
                const float* u = _samples.ptr<float>(testidx + range.start);

                float s = 0;
                for( i = 0; i <= d - 4; i += 4 )
                {
                    float t0 = u[i] - v[i], t1 = u[i+1] - v[i+1];
                    float t2 = u[i+2] - v[i+2], t3 = u[i+3] - v[i+3];
                    s += t0*t0 + t1*t1 + t2*t2 + t3*t3;
                }

                for( ; i < d; i++ )
                {
                    float t0 = u[i] - v[i];
                    s += t0*t0;
                }

                Cv32suf si;
                si.f = (float)s;
                Cv32suf* dd = (Cv32suf*)(&dbuf[testidx*k]);
                float* nr = &rbuf[testidx*k];

                for( i = k; i > 0; i-- )
                    if( si.i >= dd[i-1].i )
                        break;
                if( i >= k )
                    continue;

                for( j = k-2; j >= i; j-- )
                {
                    dd[j+1].i = dd[j].i;
                    nr[j+1] = nr[j];
                }
                dd[i].i = si.i;
                nr[i] = rptr[baseidx];
            }
        }

        float result = 0.f;
        float inv_scale = 1.f/k;

        for( testidx = 0; testidx < testcount; testidx++ )
        {
            if( neighbor_responses )
            {
                float* nr = neighbor_responses->ptr<float>(testidx + range.start);
                for( j = 0; j < k; j++ )
                    nr[j] = rbuf[testidx*k + j];
                for( ; j < k0; j++ )
                    nr[j] = 0.f;
            }

            if( dists )
            {
                float* dptr = dists->ptr<float>(testidx + range.start);
                for( j = 0; j < k; j++ )
                    dptr[j] = dbuf[testidx*k + j];
                for( ; j < k0; j++ )
                    dptr[j] = 0.f;
            }

            if( results || testidx+range.start == 0 )
            {
                if( !isclassifier || k == 1 )
                {
                    float s = 0.f;
                    for( j = 0; j < k; j++ )
                        s += rbuf[testidx*k + j];
                    result = (float)(s*inv_scale);
                }
                else
                {
                    float* rp = rbuf + testidx*k;
                    for( j = k-1; j > 0; j-- )
                    {
                        bool swap_fl = false;
                        for( i = 0; i < j; i++ )
                        {
                            if( rp[i] > rp[i+1] )
                            {
                                std::swap(rp[i], rp[i+1]);
                                swap_fl = true;
                            }
                        }
                        if( !swap_fl )
                            break;
                    }

                    result = rp[0];
                    int prev_start = 0;
                    int best_count = 0;
                    for( j = 1; j <= k; j++ )
                    {
                        if( j == k || rp[j] != rp[j-1] )
                        {
                            int count = j - prev_start;
                            if( best_count < count )
                            {
                                best_count = count;
                                result = rp[j-1];
                            }
                            prev_start = j;
                        }
                    }
                }
                if( results )
                    results->at<float>(testidx + range.start) = result;
                if( presult && testidx+range.start == 0 )
                    *presult = result;
            }
        }
    }

    struct findKNearestInvoker : public ParallelLoopBody
    {
        findKNearestInvoker(const BruteForceImpl* _p, int _k, const Mat& __samples,
                            Mat* __results, Mat* __neighbor_responses, Mat* __dists, float* _presult)
        {
            p = _p;
            k = _k;
            _samples = &__samples;
            _results = __results;
            _neighbor_responses = __neighbor_responses;
            _dists = __dists;
            presult = _presult;
        }

        void operator()( const Range& range ) const
        {
            int delta = std::min(range.end - range.start, 256);
            for( int start = range.start; start < range.end; start += delta )
            {
                p->findNearestCore( *_samples, k, Range(start, std::min(start + delta, range.end)),
                                    _results, _neighbor_responses, _dists, presult );
            }
        }

        const BruteForceImpl* p;
        int k;
        const Mat* _samples;
        Mat* _results;
        Mat* _neighbor_responses;
        Mat* _dists;
        float* presult;
    };

    float findNearest( InputArray _samples, int k,
                       OutputArray _results,
                       OutputArray _neighborResponses,
                       OutputArray _dists ) const
    {
        float result = 0.f;
        CV_Assert( 0 < k );

        Mat test_samples = _samples.getMat();
        CV_Assert( test_samples.type() == CV_32F && test_samples.cols == samples.cols );
        int testcount = test_samples.rows;

        if( testcount == 0 )
        {
            _results.release();
            _neighborResponses.release();
            _dists.release();
            return 0.f;
        }

        Mat res, nr, d, *pres = 0, *pnr = 0, *pd = 0;
        if( _results.needed() )
        {
            _results.create(testcount, 1, CV_32F);
            pres = &(res = _results.getMat());
        }
        if( _neighborResponses.needed() )
        {
            _neighborResponses.create(testcount, k, CV_32F);
            pnr = &(nr = _neighborResponses.getMat());
        }
        if( _dists.needed() )
        {
            _dists.create(testcount, k, CV_32F);
            pd = &(d = _dists.getMat());
        }

        findKNearestInvoker invoker(this, k, test_samples, pres, pnr, pd, &result);
        parallel_for_(Range(0, testcount), invoker);
        //invoker(Range(0, testcount));
        return result;
    }
};


class KDTreeImpl : public Impl
{
public:
    String getModelName() const { return NAME_KDTREE; }
    int getType() const { return ml::KNearest::KDTREE; }

    void doTrain(InputArray points)
    {
        tr.build(points);
    }

    float findNearest( InputArray _samples, int k,
                       OutputArray _results,
                       OutputArray _neighborResponses,
                       OutputArray _dists ) const
    {
        float result = 0.f;
        CV_Assert( 0 < k );

        Mat test_samples = _samples.getMat();
        CV_Assert( test_samples.type() == CV_32F && test_samples.cols == samples.cols );
        int testcount = test_samples.rows;

        if( testcount == 0 )
        {
            _results.release();
            _neighborResponses.release();
            _dists.release();
            return 0.f;
        }

        Mat res, nr, d;
        if( _results.needed() )
        {
            _results.create(testcount, 1, CV_32F);
            res = _results.getMat();
        }
        if( _neighborResponses.needed() )
        {
            _neighborResponses.create(testcount, k, CV_32F);
            nr = _neighborResponses.getMat();
        }
        if( _dists.needed() )
        {
            _dists.create(testcount, k, CV_32F);
            d = _dists.getMat();
        }

        for (int i=0; i<test_samples.rows; ++i)
        {
            Mat _res, _nr, _d;
            if (res.rows>i)
            {
                _res = res.row(i);
            }
            if (nr.rows>i)
            {
                _nr = nr.row(i);
            }
            if (d.rows>i)
            {
                _d = d.row(i);
            }
            tr.findNearest(test_samples.row(i), k, Emax, _res, _nr, _d, noArray());
        }

        return result; // currently always 0
    }

    KDTree tr;
};

//================================================================

class KNearestImpl : public KNearest
{
    CV_IMPL_PROPERTY(int, DefaultK, impl->defaultK)
    CV_IMPL_PROPERTY(bool, IsClassifier, impl->isclassifier)
    CV_IMPL_PROPERTY(int, Emax, impl->Emax)

public:
    int getAlgorithmType() const
    {
        return impl->getType();
    }
    void setAlgorithmType(int val)
    {
        if (val != BRUTE_FORCE && val != KDTREE)
            val = BRUTE_FORCE;
        initImpl(val);
    }

public:
    KNearestImpl()
    {
        initImpl(BRUTE_FORCE);
    }
    ~KNearestImpl()
    {
    }

    bool isClassifier() const { return impl->isclassifier; }
    bool isTrained() const { return !impl->samples.empty(); }

    int getVarCount() const { return impl->samples.cols; }

    void write( FileStorage& fs ) const
    {
        impl->write(fs);
    }

    void read( const FileNode& fn )
    {
        int algorithmType = BRUTE_FORCE;
        if (fn.name() == NAME_KDTREE)
            algorithmType = KDTREE;
        initImpl(algorithmType);
        impl->read(fn);
    }

    float findNearest( InputArray samples, int k,
                       OutputArray results,
                       OutputArray neighborResponses=noArray(),
                       OutputArray dist=noArray() ) const
    {
        return impl->findNearest(samples, k, results, neighborResponses, dist);
    }

    float predict(InputArray inputs, OutputArray outputs, int) const
    {
        return impl->findNearest( inputs, impl->defaultK, outputs, noArray(), noArray() );
    }

    bool train( const Ptr<TrainData>& data, int flags )
    {
        return impl->train(data, flags);
    }

    String getDefaultName() const { return impl->getModelName(); }

protected:
    void initImpl(int algorithmType)
    {
        if (algorithmType != KDTREE)
            impl = makePtr<BruteForceImpl>();
        else
            impl = makePtr<KDTreeImpl>();
    }
    Ptr<Impl> impl;
};

Ptr<KNearest> KNearest::create()
{
    return makePtr<KNearestImpl>();
}

}
}

/* End of file */

/* [<][>][^][v][top][bottom][index][help] */