root/modules/ml/test/test_save_load.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. run_test_case
  2. validate_test_results
  3. TEST
  4. TEST
  5. TEST
  6. TEST
  7. TEST
  8. TEST
  9. TEST
  10. TEST
  11. suffixes
  12. run
  13. oneTest
  14. randomFillCategories
  15. TEST
  16. TEST
  17. TEST
  18. TEST
  19. TEST
  20. TEST
  21. TEST

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

#include <iostream>
#include <fstream>

using namespace cv;
using namespace std;

CV_SLMLTest::CV_SLMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName )
{
    validationFN = "slvalidation.xml";
}

int CV_SLMLTest::run_test_case( int testCaseIdx )
{
    int code = cvtest::TS::OK;
    code = prepare_test_case( testCaseIdx );

    if( code == cvtest::TS::OK )
    {
        data->setTrainTestSplit(data->getNTrainSamples(), true);
        code = train( testCaseIdx );
        if( code == cvtest::TS::OK )
        {
            get_test_error( testCaseIdx, &test_resps1 );
            fname1 = tempfile(".yml.gz");
            save( fname1.c_str() );
            load( fname1.c_str() );
            get_test_error( testCaseIdx, &test_resps2 );
            fname2 = tempfile(".yml.gz");
            save( fname2.c_str() );
        }
        else
            ts->printf( cvtest::TS::LOG, "model can not be trained" );
    }
    return code;
}

int CV_SLMLTest::validate_test_results( int testCaseIdx )
{
    int code = cvtest::TS::OK;

    // 1. compare files
    FILE *fs1 = fopen(fname1.c_str(), "rb"), *fs2 = fopen(fname2.c_str(), "rb");
    size_t sz1 = 0, sz2 = 0;
    if( !fs1 || !fs2 )
        code = cvtest::TS::FAIL_MISSING_TEST_DATA;
    if( code >= 0 )
    {
        fseek(fs1, 0, SEEK_END); fseek(fs2, 0, SEEK_END);
        sz1 = ftell(fs1);
        sz2 = ftell(fs2);
        fseek(fs1, 0, SEEK_SET); fseek(fs2, 0, SEEK_SET);
    }

    if( sz1 != sz2 )
        code = cvtest::TS::FAIL_INVALID_OUTPUT;

    if( code >= 0 )
    {
        const int BUFSZ = 1024;
        uchar buf1[BUFSZ], buf2[BUFSZ];
        for( size_t pos = 0; pos < sz1;  )
        {
            size_t r1 = fread(buf1, 1, BUFSZ, fs1);
            size_t r2 = fread(buf2, 1, BUFSZ, fs2);
            if( r1 != r2 || memcmp(buf1, buf2, r1) != 0 )
            {
                ts->printf( cvtest::TS::LOG,
                           "in test case %d first (%s) and second (%s) saved files differ in %d-th kb\n",
                           testCaseIdx, fname1.c_str(), fname2.c_str(),
                           (int)pos );
                code = cvtest::TS::FAIL_INVALID_OUTPUT;
                break;
            }
            pos += r1;
        }
    }

    if(fs1)
        fclose(fs1);
    if(fs2)
        fclose(fs2);

    // delete temporary files
    if( code >= 0 )
    {
        remove( fname1.c_str() );
        remove( fname2.c_str() );
    }

    if( code >= 0 )
    {
        // 2. compare responses
        CV_Assert( test_resps1.size() == test_resps2.size() );
        vector<float>::const_iterator it1 = test_resps1.begin(), it2 = test_resps2.begin();
        for( ; it1 != test_resps1.end(); ++it1, ++it2 )
        {
            if( fabs(*it1 - *it2) > FLT_EPSILON )
            {
                ts->printf( cvtest::TS::LOG, "in test case %d responses predicted before saving and after loading is different", testCaseIdx );
                code = cvtest::TS::FAIL_INVALID_OUTPUT;
                break;
            }
        }
    }
    return code;
}

TEST(ML_NaiveBayes, save_load) { CV_SLMLTest test( CV_NBAYES ); test.safe_run(); }
TEST(ML_KNearest, save_load) { CV_SLMLTest test( CV_KNEAREST ); test.safe_run(); }
TEST(ML_SVM, save_load) { CV_SLMLTest test( CV_SVM ); test.safe_run(); }
TEST(ML_ANN, save_load) { CV_SLMLTest test( CV_ANN ); test.safe_run(); }
TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); }
TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); }
TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); }
TEST(DISABLED_ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); }

class CV_LegacyTest : public cvtest::BaseTest
{
public:
    CV_LegacyTest(const std::string &_modelName, const std::string &_suffixes = std::string())
        : cvtest::BaseTest(), modelName(_modelName), suffixes(_suffixes)
    {
    }
    virtual ~CV_LegacyTest() {}
protected:
    void run(int)
    {
        unsigned int idx = 0;
        for (;;)
        {
            if (idx >= suffixes.size())
                break;
            int found = (int)suffixes.find(';', idx);
            string piece = suffixes.substr(idx, found - idx);
            if (piece.empty())
                break;
            oneTest(piece);
            idx += (unsigned int)piece.size() + 1;
        }
    }
    void oneTest(const string & suffix)
    {
        using namespace cv::ml;

        int code = cvtest::TS::OK;
        string filename = ts->get_data_path() + "legacy/" + modelName + suffix;
        bool isTree = modelName == CV_BOOST || modelName == CV_DTREE || modelName == CV_RTREES;
        Ptr<StatModel> model;
        if (modelName == CV_BOOST)
            model = Algorithm::load<Boost>(filename);
        else if (modelName == CV_ANN)
            model = Algorithm::load<ANN_MLP>(filename);
        else if (modelName == CV_DTREE)
            model = Algorithm::load<DTrees>(filename);
        else if (modelName == CV_NBAYES)
            model = Algorithm::load<NormalBayesClassifier>(filename);
        else if (modelName == CV_SVM)
            model = Algorithm::load<SVM>(filename);
        else if (modelName == CV_RTREES)
            model = Algorithm::load<RTrees>(filename);
        if (!model)
        {
            code = cvtest::TS::FAIL_INVALID_TEST_DATA;
        }
        else
        {
            Mat input = Mat(isTree ? 10 : 1, model->getVarCount(), CV_32F);
            ts->get_rng().fill(input, RNG::UNIFORM, 0, 40);

            if (isTree)
                randomFillCategories(filename, input);

            Mat output;
            model->predict(input, output, StatModel::RAW_OUTPUT | (isTree ? DTrees::PREDICT_SUM : 0));
            // just check if no internal assertions or errors thrown
        }
        ts->set_failed_test_info(code);
    }
    void randomFillCategories(const string & filename, Mat & input)
    {
        Mat catMap;
        Mat catCount;
        std::vector<uchar> varTypes;

        FileStorage fs(filename, FileStorage::READ);
        FileNode root = fs.getFirstTopLevelNode();
        root["cat_map"] >> catMap;
        root["cat_count"] >> catCount;
        root["var_type"] >> varTypes;

        int offset = 0;
        int countOffset = 0;
        uint var = 0, varCount = (uint)varTypes.size();
        for (; var < varCount; ++var)
        {
            if (varTypes[var] == ml::VAR_CATEGORICAL)
            {
                int size = catCount.at<int>(0, countOffset);
                for (int row = 0; row < input.rows; ++row)
                {
                    int randomChosenIndex = offset + ((uint)ts->get_rng()) % size;
                    int value = catMap.at<int>(0, randomChosenIndex);
                    input.at<float>(row, var) = (float)value;
                }
                offset += size;
                ++countOffset;
            }
        }
    }
    string modelName;
    string suffixes;
};

TEST(ML_ANN, legacy_load) { CV_LegacyTest test(CV_ANN, "_waveform.xml"); test.safe_run(); }
TEST(ML_Boost, legacy_load) { CV_LegacyTest test(CV_BOOST, "_adult.xml;_1.xml;_2.xml;_3.xml"); test.safe_run(); }
TEST(ML_DTree, legacy_load) { CV_LegacyTest test(CV_DTREE, "_abalone.xml;_mushroom.xml"); test.safe_run(); }
TEST(ML_NBayes, legacy_load) { CV_LegacyTest test(CV_NBAYES, "_waveform.xml"); test.safe_run(); }
TEST(ML_SVM, legacy_load) { CV_LegacyTest test(CV_SVM, "_poletelecomm.xml;_waveform.xml"); test.safe_run(); }
TEST(ML_RTrees, legacy_load) { CV_LegacyTest test(CV_RTREES, "_waveform.xml"); test.safe_run(); }

/*TEST(ML_SVM, throw_exception_when_save_untrained_model)
{
    Ptr<cv::ml::SVM> svm;
    string filename = tempfile("svm.xml");
    ASSERT_THROW(svm.save(filename.c_str()), Exception);
    remove(filename.c_str());
}*/

TEST(DISABLED_ML_SVM, linear_save_load)
{
    Ptr<cv::ml::SVM> svm1, svm2, svm3;

    svm1 = Algorithm::load<SVM>("SVM45_X_38-1.xml");
    svm2 = Algorithm::load<SVM>("SVM45_X_38-2.xml");
    string tname = tempfile("a.xml");
    svm2->save(tname);
    svm3 = Algorithm::load<SVM>(tname);

    ASSERT_EQ(svm1->getVarCount(), svm2->getVarCount());
    ASSERT_EQ(svm1->getVarCount(), svm3->getVarCount());

    int m = 10000, n = svm1->getVarCount();
    Mat samples(m, n, CV_32F), r1, r2, r3;
    randu(samples, 0., 1.);

    svm1->predict(samples, r1);
    svm2->predict(samples, r2);
    svm3->predict(samples, r3);

    double eps = 1e-4;
    EXPECT_LE(norm(r1, r2, NORM_INF), eps);
    EXPECT_LE(norm(r1, r3, NORM_INF), eps);

    remove(tname.c_str());
}

/* End of file. */

/* [<][>][^][v][top][bottom][index][help] */