root/modules/stitching/include/opencv2/stitching/detail/warpers_inl.hpp

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. warpPoint
  2. buildMaps
  3. warp
  4. warpBackward
  5. warpRoi
  6. detectResultRoi
  7. detectResultRoiByBorder
  8. mapForward
  9. mapBackward
  10. mapForward
  11. mapBackward
  12. mapForward
  13. mapBackward
  14. mapForward
  15. mapBackward
  16. mapForward
  17. mapBackward
  18. mapForward
  19. mapBackward
  20. mapForward
  21. mapBackward
  22. mapForward
  23. mapBackward
  24. mapForward
  25. mapBackward
  26. mapForward
  27. mapBackward
  28. mapForward
  29. mapBackward
  30. mapForward
  31. mapBackward
  32. mapForward
  33. mapBackward
  34. mapForward
  35. mapBackward

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_STITCHING_WARPERS_INL_HPP__
#define __OPENCV_STITCHING_WARPERS_INL_HPP__

#include "opencv2/core.hpp"
#include "warpers.hpp" // Make your IDE see declarations
#include <limits>

//! @cond IGNORED

namespace cv {
namespace detail {

template <class P>
Point2f RotationWarperBase<P>::warpPoint(const Point2f &pt, InputArray K, InputArray R)
{
    projector_.setCameraParams(K, R);
    Point2f uv;
    projector_.mapForward(pt.x, pt.y, uv.x, uv.y);
    return uv;
}


template <class P>
Rect RotationWarperBase<P>::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray _xmap, OutputArray _ymap)
{
    projector_.setCameraParams(K, R);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

    _xmap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
    _ymap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);

    Mat xmap = _xmap.getMat(), ymap = _ymap.getMat();

    float x, y;
    for (int v = dst_tl.y; v <= dst_br.y; ++v)
    {
        for (int u = dst_tl.x; u <= dst_br.x; ++u)
        {
            projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y);
            xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x;
            ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y;
        }
    }

    return Rect(dst_tl, dst_br);
}


template <class P>
Point RotationWarperBase<P>::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
                                  OutputArray dst)
{
    UMat xmap, ymap;
    Rect dst_roi = buildMaps(src.size(), K, R, xmap, ymap);

    dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
    remap(src, dst, xmap, ymap, interp_mode, border_mode);

    return dst_roi.tl();
}


template <class P>
void RotationWarperBase<P>::warpBackward(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
                                         Size dst_size, OutputArray dst)
{
    projector_.setCameraParams(K, R);

    Point src_tl, src_br;
    detectResultRoi(dst_size, src_tl, src_br);

    Size size = src.size();
    CV_Assert(src_br.x - src_tl.x + 1 == size.width && src_br.y - src_tl.y + 1 == size.height);

    Mat xmap(dst_size, CV_32F);
    Mat ymap(dst_size, CV_32F);

    float u, v;
    for (int y = 0; y < dst_size.height; ++y)
    {
        for (int x = 0; x < dst_size.width; ++x)
        {
            projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
            xmap.at<float>(y, x) = u - src_tl.x;
            ymap.at<float>(y, x) = v - src_tl.y;
        }
    }

    dst.create(dst_size, src.type());
    remap(src, dst, xmap, ymap, interp_mode, border_mode);
}


template <class P>
Rect RotationWarperBase<P>::warpRoi(Size src_size, InputArray K, InputArray R)
{
    projector_.setCameraParams(K, R);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

    return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1));
}


template <class P>
void RotationWarperBase<P>::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
{
    float tl_uf = std::numeric_limits<float>::max();
    float tl_vf = std::numeric_limits<float>::max();
    float br_uf = -std::numeric_limits<float>::max();
    float br_vf = -std::numeric_limits<float>::max();

    float u, v;
    for (int y = 0; y < src_size.height; ++y)
    {
        for (int x = 0; x < src_size.width; ++x)
        {
            projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
            tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
            br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
        }
    }

    dst_tl.x = static_cast<int>(tl_uf);
    dst_tl.y = static_cast<int>(tl_vf);
    dst_br.x = static_cast<int>(br_uf);
    dst_br.y = static_cast<int>(br_vf);
}


template <class P>
void RotationWarperBase<P>::detectResultRoiByBorder(Size src_size, Point &dst_tl, Point &dst_br)
{
    float tl_uf = std::numeric_limits<float>::max();
    float tl_vf = std::numeric_limits<float>::max();
    float br_uf = -std::numeric_limits<float>::max();
    float br_vf = -std::numeric_limits<float>::max();

    float u, v;
    for (float x = 0; x < src_size.width; ++x)
    {
        projector_.mapForward(static_cast<float>(x), 0, u, v);
        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);

        projector_.mapForward(static_cast<float>(x), static_cast<float>(src_size.height - 1), u, v);
        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
    }
    for (int y = 0; y < src_size.height; ++y)
    {
        projector_.mapForward(0, static_cast<float>(y), u, v);
        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);

        projector_.mapForward(static_cast<float>(src_size.width - 1), static_cast<float>(y), u, v);
        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
    }

    dst_tl.x = static_cast<int>(tl_uf);
    dst_tl.y = static_cast<int>(tl_vf);
    dst_br.x = static_cast<int>(br_uf);
    dst_br.y = static_cast<int>(br_vf);
}


inline
void PlaneProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    x_ = t[0] + x_ / z_ * (1 - t[2]);
    y_ = t[1] + y_ / z_ * (1 - t[2]);

    u = scale * x_;
    v = scale * y_;
}


inline
void PlaneProjector::mapBackward(float u, float v, float &x, float &y)
{
    u = u / scale - t[0];
    v = v / scale - t[1];

    float z;
    x = k_rinv[0] * u + k_rinv[1] * v + k_rinv[2] * (1 - t[2]);
    y = k_rinv[3] * u + k_rinv[4] * v + k_rinv[5] * (1 - t[2]);
    z = k_rinv[6] * u + k_rinv[7] * v + k_rinv[8] * (1 - t[2]);

    x /= z;
    y /= z;
}


inline
void SphericalProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    u = scale * atan2f(x_, z_);
    float w = y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_);
    v = scale * (static_cast<float>(CV_PI) - acosf(w == w ? w : 0));
}


inline
void SphericalProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float sinv = sinf(static_cast<float>(CV_PI) - v);
    float x_ = sinv * sinf(u);
    float y_ = cosf(static_cast<float>(CV_PI) - v);
    float z_ = sinv * cosf(u);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}


inline
void CylindricalProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    u = scale * atan2f(x_, z_);
    v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);
}


inline
void CylindricalProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float x_ = sinf(u);
    float y_ = v;
    float z_ = cosf(u);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void FisheyeProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    u = scale * v_ * cosf(u_);
    v = scale * v_ * sinf(u_);
}

inline
void FisheyeProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float u_ = atan2f(v, u);
    float v_ = sqrtf(u*u + v*v);

    float sinv = sinf((float)CV_PI - v_);
    float x_ = sinv * sinf(u_);
    float y_ = cosf((float)CV_PI - v_);
    float z_ = sinv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void StereographicProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    float r = sinf(v_) / (1 - cosf(v_));

    u = scale * r * cos(u_);
    v = scale * r * sin(u_);
}

inline
void StereographicProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float u_ = atan2f(v, u);
    float r = sqrtf(u*u + v*v);
    float v_ = 2 * atanf(1.f / r);

    float sinv = sinf((float)CV_PI - v_);
    float x_ = sinv * sinf(u_);
    float y_ = cosf((float)CV_PI - v_);
    float z_ = sinv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void CompressedRectilinearProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    u = scale * a * tanf(u_ / a);
    v = scale * b * tanf(v_) / cosf(u_);
}

inline
void CompressedRectilinearProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float aatg = a * atanf(u / a);
    float u_ = aatg;
    float v_ = atanf(v * cosf(aatg) / b);

    float cosv = cosf(v_);
    float x_ = cosv * sinf(u_);
    float y_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void CompressedRectilinearPortraitProjector::mapForward(float x, float y, float &u, float &v)
{
    float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    u = - scale * a * tanf(u_ / a);
    v = scale * b * tanf(v_) / cosf(u_);
}

inline
void CompressedRectilinearPortraitProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= - scale;
    v /= scale;

    float aatg = a * atanf(u / a);
    float u_ = aatg;
    float v_ = atanf(v * cosf( aatg ) / b);

    float cosv = cosf(v_);
    float y_ = cosv * sinf(u_);
    float x_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void PaniniProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    float tg = a * tanf(u_ / a);
    u = scale * tg;

    float sinu = sinf(u_);
    if ( fabs(sinu) < 1E-7 )
        v = scale * b * tanf(v_);
    else
        v = scale * b * tg * tanf(v_) / sinu;
}

inline
void PaniniProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float lamda = a * atanf(u / a);
    float u_ = lamda;

    float v_;
    if ( fabs(lamda) > 1E-7)
        v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda / a)));
    else
        v_ = atanf(v / b);

    float cosv = cosf(v_);
    float x_ = cosv * sinf(u_);
    float y_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void PaniniPortraitProjector::mapForward(float x, float y, float &u, float &v)
{
    float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    float tg = a * tanf(u_ / a);
    u = - scale * tg;

    float sinu = sinf( u_ );
    if ( fabs(sinu) < 1E-7 )
        v = scale * b * tanf(v_);
    else
        v = scale * b * tg * tanf(v_) / sinu;
}

inline
void PaniniPortraitProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= - scale;
    v /= scale;

    float lamda = a * atanf(u / a);
    float u_ = lamda;

    float v_;
    if ( fabs(lamda) > 1E-7)
        v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda/a)));
    else
        v_ = atanf(v / b);

    float cosv = cosf(v_);
    float y_ = cosv * sinf(u_);
    float x_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void MercatorProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    u = scale * u_;
    v = scale * logf( tanf( (float)(CV_PI/4) + v_/2 ) );
}

inline
void MercatorProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float v_ = atanf( sinhf(v) );
    float u_ = u;

    float cosv = cosf(v_);
    float x_ = cosv * sinf(u_);
    float y_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void TransverseMercatorProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    float B = cosf(v_) * sinf(u_);

    u = scale / 2 * logf( (1+B) / (1-B) );
    v = scale * atan2f(tanf(v_), cosf(u_));
}

inline
void TransverseMercatorProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float v_ = asinf( sinf(v) / coshf(u) );
    float u_ = atan2f( sinhf(u), cos(v) );

    float cosv = cosf(v_);
    float x_ = cosv * sinf(u_);
    float y_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void SphericalPortraitProjector::mapForward(float x, float y, float &u0, float &v0)
{
    float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float x_ = y0_;
    float y_ = x0_;
    float u, v;

    u = scale * atan2f(x_, z_);
    v = scale * (static_cast<float>(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)));

    u0 = -u;//v;
    v0 = v;//u;
}


inline
void SphericalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
{
    float u, v;
    u = -u0;//v0;
    v = v0;//u0;

    u /= scale;
    v /= scale;

    float sinv = sinf(static_cast<float>(CV_PI) - v);
    float x0_ = sinv * sinf(u);
    float y0_ = cosf(static_cast<float>(CV_PI) - v);
    float z_ = sinv * cosf(u);

    float x_ = y0_;
    float y_ = x0_;

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void CylindricalPortraitProjector::mapForward(float x, float y, float &u0, float &v0)
{
    float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_  = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float x_ = y0_;
    float y_ = x0_;
    float u, v;

    u = scale * atan2f(x_, z_);
    v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);

    u0 = -u;//v;
    v0 = v;//u;
}


inline
void CylindricalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
{
    float u, v;
    u = -u0;//v0;
    v = v0;//u0;

    u /= scale;
    v /= scale;

    float x0_ = sinf(u);
    float y0_ = v;
    float z_  = cosf(u);

    float x_ = y0_;
    float y_ = x0_;

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void PlanePortraitProjector::mapForward(float x, float y, float &u0, float &v0)
{
    float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_  = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float x_ = y0_;
    float y_ = x0_;

    x_ = t[0] + x_ / z_ * (1 - t[2]);
    y_ = t[1] + y_ / z_ * (1 - t[2]);

    float u,v;
    u = scale * x_;
    v = scale * y_;

    u0 = -u;
    v0 = v;
}


inline
void PlanePortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
{
    float u, v;
    u = -u0;
    v = v0;

    u = u / scale - t[0];
    v = v / scale - t[1];

    float z;
    x = k_rinv[0] * v + k_rinv[1] * u + k_rinv[2] * (1 - t[2]);
    y = k_rinv[3] * v + k_rinv[4] * u + k_rinv[5] * (1 - t[2]);
    z = k_rinv[6] * v + k_rinv[7] * u + k_rinv[8] * (1 - t[2]);

    x /= z;
    y /= z;
}


} // namespace detail
} // namespace cv

//! @endcond

#endif // __OPENCV_STITCHING_WARPERS_INL_HPP__

/* [<][>][^][v][top][bottom][index][help] */