root/modules/stitching/src/warpers.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. setCameraParams
  2. warpPoint
  3. warpPoint
  4. buildMaps
  5. buildMaps
  6. warp
  7. warp
  8. warpRoi
  9. warpRoi
  10. detectResultRoi
  11. detectResultRoi
  12. detectResultRoi
  13. buildMaps
  14. warp
  15. buildMaps
  16. warp

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "opencl_kernels_stitching.hpp"

namespace cv {
namespace detail {

void ProjectorBase::setCameraParams(InputArray _K, InputArray _R, InputArray _T)
{
    Mat K = _K.getMat(), R = _R.getMat(), T = _T.getMat();

    CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F);
    CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F);
    CV_Assert((T.size() == Size(1, 3) || T.size() == Size(3, 1)) && T.type() == CV_32F);

    Mat_<float> K_(K);
    k[0] = K_(0,0); k[1] = K_(0,1); k[2] = K_(0,2);
    k[3] = K_(1,0); k[4] = K_(1,1); k[5] = K_(1,2);
    k[6] = K_(2,0); k[7] = K_(2,1); k[8] = K_(2,2);

    Mat_<float> Rinv = R.t();
    rinv[0] = Rinv(0,0); rinv[1] = Rinv(0,1); rinv[2] = Rinv(0,2);
    rinv[3] = Rinv(1,0); rinv[4] = Rinv(1,1); rinv[5] = Rinv(1,2);
    rinv[6] = Rinv(2,0); rinv[7] = Rinv(2,1); rinv[8] = Rinv(2,2);

    Mat_<float> R_Kinv = R * K.inv();
    r_kinv[0] = R_Kinv(0,0); r_kinv[1] = R_Kinv(0,1); r_kinv[2] = R_Kinv(0,2);
    r_kinv[3] = R_Kinv(1,0); r_kinv[4] = R_Kinv(1,1); r_kinv[5] = R_Kinv(1,2);
    r_kinv[6] = R_Kinv(2,0); r_kinv[7] = R_Kinv(2,1); r_kinv[8] = R_Kinv(2,2);

    Mat_<float> K_Rinv = K * Rinv;
    k_rinv[0] = K_Rinv(0,0); k_rinv[1] = K_Rinv(0,1); k_rinv[2] = K_Rinv(0,2);
    k_rinv[3] = K_Rinv(1,0); k_rinv[4] = K_Rinv(1,1); k_rinv[5] = K_Rinv(1,2);
    k_rinv[6] = K_Rinv(2,0); k_rinv[7] = K_Rinv(2,1); k_rinv[8] = K_Rinv(2,2);

    Mat_<float> T_(T.reshape(0, 3));
    t[0] = T_(0,0); t[1] = T_(1,0); t[2] = T_(2,0);
}


Point2f PlaneWarper::warpPoint(const Point2f &pt, InputArray K, InputArray R, InputArray T)
{
    projector_.setCameraParams(K, R, T);
    Point2f uv;
    projector_.mapForward(pt.x, pt.y, uv.x, uv.y);
    return uv;
}

Point2f PlaneWarper::warpPoint(const Point2f &pt, InputArray K, InputArray R)
{
    float tz[] = {0.f, 0.f, 0.f};
    Mat_<float> T(3, 1, tz);
    return warpPoint(pt, K, R, T);
}

Rect PlaneWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap)
{
    return buildMaps(src_size, K, R, Mat::zeros(3, 1, CV_32FC1), xmap, ymap);
}

Rect PlaneWarper::buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, OutputArray _xmap, OutputArray _ymap)
{
    projector_.setCameraParams(K, R, T);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

    Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1);
    _xmap.create(dsize, CV_32FC1);
    _ymap.create(dsize, CV_32FC1);

    if (ocl::useOpenCL())
    {
        ocl::Kernel k("buildWarpPlaneMaps", ocl::stitching::warpers_oclsrc);
        if (!k.empty())
        {
            int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
            Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv), t(1, 3, CV_32FC1, projector_.t);
            UMat uxmap = _xmap.getUMat(), uymap = _ymap.getUMat(),
                    uk_rinv = k_rinv.getUMat(ACCESS_READ), ut = t.getUMat(ACCESS_READ);

            k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap),
                   ocl::KernelArg::PtrReadOnly(uk_rinv), ocl::KernelArg::PtrReadOnly(ut),
                   dst_tl.x, dst_tl.y, 1/projector_.scale, rowsPerWI);

            size_t globalsize[2] = { dsize.width, (dsize.height + rowsPerWI - 1) / rowsPerWI };
            if (k.run(2, globalsize, NULL, true))
            {
                CV_IMPL_ADD(CV_IMPL_OCL);
                return Rect(dst_tl, dst_br);
            }
        }
    }

    Mat xmap = _xmap.getMat(), ymap = _ymap.getMat();

    float x, y;
    for (int v = dst_tl.y; v <= dst_br.y; ++v)
    {
        for (int u = dst_tl.x; u <= dst_br.x; ++u)
        {
            projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y);
            xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x;
            ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y;
        }
    }

    return Rect(dst_tl, dst_br);
}


Point PlaneWarper::warp(InputArray src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode,
                        OutputArray dst)
{
    UMat uxmap, uymap;
    Rect dst_roi = buildMaps(src.size(), K, R, T, uxmap, uymap);

    dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
    remap(src, dst, uxmap, uymap, interp_mode, border_mode);

    return dst_roi.tl();
}

Point PlaneWarper::warp(InputArray src, InputArray K, InputArray R,
                        int interp_mode, int border_mode, OutputArray dst)
{
    float tz[] = {0.f, 0.f, 0.f};
    Mat_<float> T(3, 1, tz);
    return warp(src, K, R, T, interp_mode, border_mode, dst);
}

Rect PlaneWarper::warpRoi(Size src_size, InputArray K, InputArray R, InputArray T)
{
    projector_.setCameraParams(K, R, T);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

    return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1));
}

Rect PlaneWarper::warpRoi(Size src_size, InputArray K, InputArray R)
{
    float tz[] = {0.f, 0.f, 0.f};
    Mat_<float> T(3, 1, tz);
    return warpRoi(src_size, K, R, T);
}


void PlaneWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
{
    float tl_uf = std::numeric_limits<float>::max();
    float tl_vf = std::numeric_limits<float>::max();
    float br_uf = -std::numeric_limits<float>::max();
    float br_vf = -std::numeric_limits<float>::max();

    float u, v;

    projector_.mapForward(0, 0, u, v);
    tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
    br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);

    projector_.mapForward(0, static_cast<float>(src_size.height - 1), u, v);
    tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
    br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);

    projector_.mapForward(static_cast<float>(src_size.width - 1), 0, u, v);
    tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
    br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);

    projector_.mapForward(static_cast<float>(src_size.width - 1), static_cast<float>(src_size.height - 1), u, v);
    tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
    br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);

    dst_tl.x = static_cast<int>(tl_uf);
    dst_tl.y = static_cast<int>(tl_vf);
    dst_br.x = static_cast<int>(br_uf);
    dst_br.y = static_cast<int>(br_vf);
}


void SphericalWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
{
    detectResultRoiByBorder(src_size, dst_tl, dst_br);

    float tl_uf = static_cast<float>(dst_tl.x);
    float tl_vf = static_cast<float>(dst_tl.y);
    float br_uf = static_cast<float>(dst_br.x);
    float br_vf = static_cast<float>(dst_br.y);

    float x = projector_.rinv[1];
    float y = projector_.rinv[4];
    float z = projector_.rinv[7];
    if (y > 0.f)
    {
        float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
        float y_ = projector_.k[4] * y / z + projector_.k[5];
        if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
        {
            tl_uf = std::min(tl_uf, 0.f); tl_vf = std::min(tl_vf, static_cast<float>(CV_PI * projector_.scale));
            br_uf = std::max(br_uf, 0.f); br_vf = std::max(br_vf, static_cast<float>(CV_PI * projector_.scale));
        }
    }

    x = projector_.rinv[1];
    y = -projector_.rinv[4];
    z = projector_.rinv[7];
    if (y > 0.f)
    {
        float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
        float y_ = projector_.k[4] * y / z + projector_.k[5];
        if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
        {
            tl_uf = std::min(tl_uf, 0.f); tl_vf = std::min(tl_vf, static_cast<float>(0));
            br_uf = std::max(br_uf, 0.f); br_vf = std::max(br_vf, static_cast<float>(0));
        }
    }

    dst_tl.x = static_cast<int>(tl_uf);
    dst_tl.y = static_cast<int>(tl_vf);
    dst_br.x = static_cast<int>(br_uf);
    dst_br.y = static_cast<int>(br_vf);
}

void SphericalPortraitWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
{
    detectResultRoiByBorder(src_size, dst_tl, dst_br);

    float tl_uf = static_cast<float>(dst_tl.x);
    float tl_vf = static_cast<float>(dst_tl.y);
    float br_uf = static_cast<float>(dst_br.x);
    float br_vf = static_cast<float>(dst_br.y);

    float x = projector_.rinv[0];
    float y = projector_.rinv[3];
    float z = projector_.rinv[6];
    if (y > 0.f)
    {
        float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
        float y_ = projector_.k[4] * y / z + projector_.k[5];
        if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
        {
            tl_uf = std::min(tl_uf, 0.f); tl_vf = std::min(tl_vf, static_cast<float>(CV_PI * projector_.scale));
            br_uf = std::max(br_uf, 0.f); br_vf = std::max(br_vf, static_cast<float>(CV_PI * projector_.scale));
        }
    }

    x = projector_.rinv[0];
    y = -projector_.rinv[3];
    z = projector_.rinv[6];
    if (y > 0.f)
    {
        float x_ = (projector_.k[0] * x + projector_.k[1] * y) / z + projector_.k[2];
        float y_ = projector_.k[4] * y / z + projector_.k[5];
        if (x_ > 0.f && x_ < src_size.width && y_ > 0.f && y_ < src_size.height)
        {
            tl_uf = std::min(tl_uf, 0.f); tl_vf = std::min(tl_vf, static_cast<float>(0));
            br_uf = std::max(br_uf, 0.f); br_vf = std::max(br_vf, static_cast<float>(0));
        }
    }

    dst_tl.x = static_cast<int>(tl_uf);
    dst_tl.y = static_cast<int>(tl_vf);
    dst_br.x = static_cast<int>(br_uf);
    dst_br.y = static_cast<int>(br_vf);
}

/////////////////////////////////////////// SphericalWarper ////////////////////////////////////////

Rect SphericalWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap)
{
    if (ocl::useOpenCL())
    {
        ocl::Kernel k("buildWarpSphericalMaps", ocl::stitching::warpers_oclsrc);
        if (!k.empty())
        {
            int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
            projector_.setCameraParams(K, R);

            Point dst_tl, dst_br;
            detectResultRoi(src_size, dst_tl, dst_br);

            Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1);
            xmap.create(dsize, CV_32FC1);
            ymap.create(dsize, CV_32FC1);

            Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv);
            UMat uxmap = xmap.getUMat(), uymap = ymap.getUMat(), uk_rinv = k_rinv.getUMat(ACCESS_READ);

            k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap),
                   ocl::KernelArg::PtrReadOnly(uk_rinv), dst_tl.x, dst_tl.y, 1/projector_.scale, rowsPerWI);

            size_t globalsize[2] = { dsize.width, (dsize.height + rowsPerWI - 1) / rowsPerWI };
            if (k.run(2, globalsize, NULL, true))
            {
                CV_IMPL_ADD(CV_IMPL_OCL);
                return Rect(dst_tl, dst_br);
            }
        }
    }

    return RotationWarperBase<SphericalProjector>::buildMaps(src_size, K, R, xmap, ymap);
}

Point SphericalWarper::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst)
{
    UMat uxmap, uymap;
    Rect dst_roi = buildMaps(src.size(), K, R, uxmap, uymap);

    dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
    remap(src, dst, uxmap, uymap, interp_mode, border_mode);

    return dst_roi.tl();
}

/////////////////////////////////////////// CylindricalWarper ////////////////////////////////////////

Rect CylindricalWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap)
{
    if (ocl::useOpenCL())
    {
        ocl::Kernel k("buildWarpCylindricalMaps", ocl::stitching::warpers_oclsrc);
        if (!k.empty())
        {
            int rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
            projector_.setCameraParams(K, R);

            Point dst_tl, dst_br;
            detectResultRoi(src_size, dst_tl, dst_br);

            Size dsize(dst_br.x - dst_tl.x + 1, dst_br.y - dst_tl.y + 1);
            xmap.create(dsize, CV_32FC1);
            ymap.create(dsize, CV_32FC1);

            Mat k_rinv(1, 9, CV_32FC1, projector_.k_rinv);
            UMat uxmap = xmap.getUMat(), uymap = ymap.getUMat(), uk_rinv = k_rinv.getUMat(ACCESS_READ);

            k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap),
                   ocl::KernelArg::PtrReadOnly(uk_rinv), dst_tl.x, dst_tl.y, 1/projector_.scale,
                   rowsPerWI);

            size_t globalsize[2] = { dsize.width, (dsize.height + rowsPerWI - 1) / rowsPerWI };
            if (k.run(2, globalsize, NULL, true))
            {
                CV_IMPL_ADD(CV_IMPL_OCL);
                return Rect(dst_tl, dst_br);
            }
        }
    }

    return RotationWarperBase<CylindricalProjector>::buildMaps(src_size, K, R, xmap, ymap);
}

Point CylindricalWarper::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, OutputArray dst)
{
    UMat uxmap, uymap;
    Rect dst_roi = buildMaps(src.size(), K, R, uxmap, uymap);

    dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
    remap(src, dst, uxmap, uymap, interp_mode, border_mode);

    return dst_roi.tl();
}

} // namespace detail
} // namespace cv

/* [<][>][^][v][top][bottom][index][help] */