root/modules/stitching/src/motion_estimators.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. cameras
  2. calcDeriv
  3. estimate
  4. estimate
  5. setUpInitialCameraParams
  6. obtainRefinedCameraParams
  7. calcError
  8. calcJacobian
  9. setUpInitialCameraParams
  10. obtainRefinedCameraParams
  11. calcError
  12. calcJacobian
  13. waveCorrect
  14. matchesGraphAsString
  15. leaveBiggestComponent
  16. findMaxSpanningTree

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "opencv2/calib3d/calib3d_c.h"
#include "opencv2/core/cvdef.h"

using namespace cv;
using namespace cv::detail;

namespace {

struct IncDistance
{
    IncDistance(std::vector<int> &vdists) : dists(&vdists[0]) {}
    void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; }
    int* dists;
};


struct CalcRotation
{
    CalcRotation(int _num_images, const std::vector<MatchesInfo> &_pairwise_matches, std::vector<CameraParams> &_cameras)
        : num_images(_num_images), pairwise_matches(&_pairwise_matches[0]), cameras(&_cameras[0]) {}

    void operator ()(const GraphEdge &edge)
    {
        int pair_idx = edge.from * num_images + edge.to;

        Mat_<double> K_from = Mat::eye(3, 3, CV_64F);
        K_from(0,0) = cameras[edge.from].focal;
        K_from(1,1) = cameras[edge.from].focal * cameras[edge.from].aspect;
        K_from(0,2) = cameras[edge.from].ppx;
        K_from(1,2) = cameras[edge.from].ppy;

        Mat_<double> K_to = Mat::eye(3, 3, CV_64F);
        K_to(0,0) = cameras[edge.to].focal;
        K_to(1,1) = cameras[edge.to].focal * cameras[edge.to].aspect;
        K_to(0,2) = cameras[edge.to].ppx;
        K_to(1,2) = cameras[edge.to].ppy;

        Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to;
        cameras[edge.to].R = cameras[edge.from].R * R;
    }

    int num_images;
    const MatchesInfo* pairwise_matches;
    CameraParams* cameras;
};


//////////////////////////////////////////////////////////////////////////////

void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res)
{
    for (int i = 0; i < err1.rows; ++i)
        res.at<double>(i, 0) = (err2.at<double>(i, 0) - err1.at<double>(i, 0)) / h;
}

} // namespace


namespace cv {
namespace detail {

bool HomographyBasedEstimator::estimate(
        const std::vector<ImageFeatures> &features,
        const std::vector<MatchesInfo> &pairwise_matches,
        std::vector<CameraParams> &cameras)
{
    LOGLN("Estimating rotations...");
#if ENABLE_LOG
    int64 t = getTickCount();
#endif

    const int num_images = static_cast<int>(features.size());

#if 0
    // Robustly estimate focal length from rotating cameras
    std::vector<Mat> Hs;
    for (int iter = 0; iter < 100; ++iter)
    {
        int len = 2 + rand()%(pairwise_matches.size() - 1);
        std::vector<int> subset;
        selectRandomSubset(len, pairwise_matches.size(), subset);
        Hs.clear();
        for (size_t i = 0; i < subset.size(); ++i)
            if (!pairwise_matches[subset[i]].H.empty())
                Hs.push_back(pairwise_matches[subset[i]].H);
        Mat_<double> K;
        if (Hs.size() >= 2)
        {
            if (calibrateRotatingCamera(Hs, K))
                cin.get();
        }
    }
#endif

    if (!is_focals_estimated_)
    {
        // Estimate focal length and set it for all cameras
        std::vector<double> focals;
        estimateFocal(features, pairwise_matches, focals);
        cameras.assign(num_images, CameraParams());
        for (int i = 0; i < num_images; ++i)
            cameras[i].focal = focals[i];
    }
    else
    {
        for (int i = 0; i < num_images; ++i)
        {
            cameras[i].ppx -= 0.5 * features[i].img_size.width;
            cameras[i].ppy -= 0.5 * features[i].img_size.height;
        }
    }

    // Restore global motion
    Graph span_tree;
    std::vector<int> span_tree_centers;
    findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers);
    span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras));

    // As calculations were performed under assumption that p.p. is in image center
    for (int i = 0; i < num_images; ++i)
    {
        cameras[i].ppx += 0.5 * features[i].img_size.width;
        cameras[i].ppy += 0.5 * features[i].img_size.height;
    }

    LOGLN("Estimating rotations, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    return true;
}


//////////////////////////////////////////////////////////////////////////////

bool BundleAdjusterBase::estimate(const std::vector<ImageFeatures> &features,
                                  const std::vector<MatchesInfo> &pairwise_matches,
                                  std::vector<CameraParams> &cameras)
{
    LOG_CHAT("Bundle adjustment");
#if ENABLE_LOG
    int64 t = getTickCount();
#endif

    num_images_ = static_cast<int>(features.size());
    features_ = &features[0];
    pairwise_matches_ = &pairwise_matches[0];

    setUpInitialCameraParams(cameras);

    // Leave only consistent image pairs
    edges_.clear();
    for (int i = 0; i < num_images_ - 1; ++i)
    {
        for (int j = i + 1; j < num_images_; ++j)
        {
            const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
            if (matches_info.confidence > conf_thresh_)
                edges_.push_back(std::make_pair(i, j));
        }
    }

    // Compute number of correspondences
    total_num_matches_ = 0;
    for (size_t i = 0; i < edges_.size(); ++i)
        total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ +
                                                                edges_[i].second].num_inliers);

    CvLevMarq solver(num_images_ * num_params_per_cam_,
                     total_num_matches_ * num_errs_per_measurement_,
                     term_criteria_);

    Mat err, jac;
    CvMat matParams = cam_params_;
    cvCopy(&matParams, solver.param);

    int iter = 0;
    for(;;)
    {
        const CvMat* _param = 0;
        CvMat* _jac = 0;
        CvMat* _err = 0;

        bool proceed = solver.update(_param, _jac, _err);

        cvCopy(_param, &matParams);

        if (!proceed || !_err)
            break;

        if (_jac)
        {
            calcJacobian(jac);
            CvMat tmp = jac;
            cvCopy(&tmp, _jac);
        }

        if (_err)
        {
            calcError(err);
            LOG_CHAT(".");
            iter++;
            CvMat tmp = err;
            cvCopy(&tmp, _err);
        }
    }

    LOGLN_CHAT("");
    LOGLN_CHAT("Bundle adjustment, final RMS error: " << std::sqrt(err.dot(err) / total_num_matches_));
    LOGLN_CHAT("Bundle adjustment, iterations done: " << iter);

    // Check if all camera parameters are valid
    bool ok = true;
    for (int i = 0; i < cam_params_.rows; ++i)
    {
        if (cvIsNaN(cam_params_.at<double>(i,0)))
        {
            ok = false;
            break;
        }
    }
    if (!ok)
        return false;

    obtainRefinedCameraParams(cameras);

    // Normalize motion to center image
    Graph span_tree;
    std::vector<int> span_tree_centers;
    findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers);
    Mat R_inv = cameras[span_tree_centers[0]].R.inv();
    for (int i = 0; i < num_images_; ++i)
        cameras[i].R = R_inv * cameras[i].R;

    LOGLN_CHAT("Bundle adjustment, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    return true;
}


//////////////////////////////////////////////////////////////////////////////

void BundleAdjusterReproj::setUpInitialCameraParams(const std::vector<CameraParams> &cameras)
{
    cam_params_.create(num_images_ * 7, 1, CV_64F);
    SVD svd;
    for (int i = 0; i < num_images_; ++i)
    {
        cam_params_.at<double>(i * 7, 0) = cameras[i].focal;
        cam_params_.at<double>(i * 7 + 1, 0) = cameras[i].ppx;
        cam_params_.at<double>(i * 7 + 2, 0) = cameras[i].ppy;
        cam_params_.at<double>(i * 7 + 3, 0) = cameras[i].aspect;

        svd(cameras[i].R, SVD::FULL_UV);
        Mat R = svd.u * svd.vt;
        if (determinant(R) < 0)
            R *= -1;

        Mat rvec;
        Rodrigues(R, rvec);
        CV_Assert(rvec.type() == CV_32F);
        cam_params_.at<double>(i * 7 + 4, 0) = rvec.at<float>(0, 0);
        cam_params_.at<double>(i * 7 + 5, 0) = rvec.at<float>(1, 0);
        cam_params_.at<double>(i * 7 + 6, 0) = rvec.at<float>(2, 0);
    }
}


void BundleAdjusterReproj::obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const
{
    for (int i = 0; i < num_images_; ++i)
    {
        cameras[i].focal = cam_params_.at<double>(i * 7, 0);
        cameras[i].ppx = cam_params_.at<double>(i * 7 + 1, 0);
        cameras[i].ppy = cam_params_.at<double>(i * 7 + 2, 0);
        cameras[i].aspect = cam_params_.at<double>(i * 7 + 3, 0);

        Mat rvec(3, 1, CV_64F);
        rvec.at<double>(0, 0) = cam_params_.at<double>(i * 7 + 4, 0);
        rvec.at<double>(1, 0) = cam_params_.at<double>(i * 7 + 5, 0);
        rvec.at<double>(2, 0) = cam_params_.at<double>(i * 7 + 6, 0);
        Rodrigues(rvec, cameras[i].R);

        Mat tmp;
        cameras[i].R.convertTo(tmp, CV_32F);
        cameras[i].R = tmp;
    }
}


void BundleAdjusterReproj::calcError(Mat &err)
{
    err.create(total_num_matches_ * 2, 1, CV_64F);

    int match_idx = 0;
    for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx)
    {
        int i = edges_[edge_idx].first;
        int j = edges_[edge_idx].second;
        double f1 = cam_params_.at<double>(i * 7, 0);
        double f2 = cam_params_.at<double>(j * 7, 0);
        double ppx1 = cam_params_.at<double>(i * 7 + 1, 0);
        double ppx2 = cam_params_.at<double>(j * 7 + 1, 0);
        double ppy1 = cam_params_.at<double>(i * 7 + 2, 0);
        double ppy2 = cam_params_.at<double>(j * 7 + 2, 0);
        double a1 = cam_params_.at<double>(i * 7 + 3, 0);
        double a2 = cam_params_.at<double>(j * 7 + 3, 0);

        double R1[9];
        Mat R1_(3, 3, CV_64F, R1);
        Mat rvec(3, 1, CV_64F);
        rvec.at<double>(0, 0) = cam_params_.at<double>(i * 7 + 4, 0);
        rvec.at<double>(1, 0) = cam_params_.at<double>(i * 7 + 5, 0);
        rvec.at<double>(2, 0) = cam_params_.at<double>(i * 7 + 6, 0);
        Rodrigues(rvec, R1_);

        double R2[9];
        Mat R2_(3, 3, CV_64F, R2);
        rvec.at<double>(0, 0) = cam_params_.at<double>(j * 7 + 4, 0);
        rvec.at<double>(1, 0) = cam_params_.at<double>(j * 7 + 5, 0);
        rvec.at<double>(2, 0) = cam_params_.at<double>(j * 7 + 6, 0);
        Rodrigues(rvec, R2_);

        const ImageFeatures& features1 = features_[i];
        const ImageFeatures& features2 = features_[j];
        const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];

        Mat_<double> K1 = Mat::eye(3, 3, CV_64F);
        K1(0,0) = f1; K1(0,2) = ppx1;
        K1(1,1) = f1*a1; K1(1,2) = ppy1;

        Mat_<double> K2 = Mat::eye(3, 3, CV_64F);
        K2(0,0) = f2; K2(0,2) = ppx2;
        K2(1,1) = f2*a2; K2(1,2) = ppy2;

        Mat_<double> H = K2 * R2_.inv() * R1_ * K1.inv();

        for (size_t k = 0; k < matches_info.matches.size(); ++k)
        {
            if (!matches_info.inliers_mask[k])
                continue;

            const DMatch& m = matches_info.matches[k];
            Point2f p1 = features1.keypoints[m.queryIdx].pt;
            Point2f p2 = features2.keypoints[m.trainIdx].pt;
            double x = H(0,0)*p1.x + H(0,1)*p1.y + H(0,2);
            double y = H(1,0)*p1.x + H(1,1)*p1.y + H(1,2);
            double z = H(2,0)*p1.x + H(2,1)*p1.y + H(2,2);

            err.at<double>(2 * match_idx, 0) = p2.x - x/z;
            err.at<double>(2 * match_idx + 1, 0) = p2.y - y/z;
            match_idx++;
        }
    }
}


void BundleAdjusterReproj::calcJacobian(Mat &jac)
{
    jac.create(total_num_matches_ * 2, num_images_ * 7, CV_64F);
    jac.setTo(0);

    double val;
    const double step = 1e-4;

    for (int i = 0; i < num_images_; ++i)
    {
        if (refinement_mask_.at<uchar>(0, 0))
        {
            val = cam_params_.at<double>(i * 7, 0);
            cam_params_.at<double>(i * 7, 0) = val - step;
            calcError(err1_);
            cam_params_.at<double>(i * 7, 0) = val + step;
            calcError(err2_);
            calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7));
            cam_params_.at<double>(i * 7, 0) = val;
        }
        if (refinement_mask_.at<uchar>(0, 2))
        {
            val = cam_params_.at<double>(i * 7 + 1, 0);
            cam_params_.at<double>(i * 7 + 1, 0) = val - step;
            calcError(err1_);
            cam_params_.at<double>(i * 7 + 1, 0) = val + step;
            calcError(err2_);
            calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7 + 1));
            cam_params_.at<double>(i * 7 + 1, 0) = val;
        }
        if (refinement_mask_.at<uchar>(1, 2))
        {
            val = cam_params_.at<double>(i * 7 + 2, 0);
            cam_params_.at<double>(i * 7 + 2, 0) = val - step;
            calcError(err1_);
            cam_params_.at<double>(i * 7 + 2, 0) = val + step;
            calcError(err2_);
            calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7 + 2));
            cam_params_.at<double>(i * 7 + 2, 0) = val;
        }
        if (refinement_mask_.at<uchar>(1, 1))
        {
            val = cam_params_.at<double>(i * 7 + 3, 0);
            cam_params_.at<double>(i * 7 + 3, 0) = val - step;
            calcError(err1_);
            cam_params_.at<double>(i * 7 + 3, 0) = val + step;
            calcError(err2_);
            calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7 + 3));
            cam_params_.at<double>(i * 7 + 3, 0) = val;
        }
        for (int j = 4; j < 7; ++j)
        {
            val = cam_params_.at<double>(i * 7 + j, 0);
            cam_params_.at<double>(i * 7 + j, 0) = val - step;
            calcError(err1_);
            cam_params_.at<double>(i * 7 + j, 0) = val + step;
            calcError(err2_);
            calcDeriv(err1_, err2_, 2 * step, jac.col(i * 7 + j));
            cam_params_.at<double>(i * 7 + j, 0) = val;
        }
    }
}


//////////////////////////////////////////////////////////////////////////////

void BundleAdjusterRay::setUpInitialCameraParams(const std::vector<CameraParams> &cameras)
{
    cam_params_.create(num_images_ * 4, 1, CV_64F);
    SVD svd;
    for (int i = 0; i < num_images_; ++i)
    {
        cam_params_.at<double>(i * 4, 0) = cameras[i].focal;

        svd(cameras[i].R, SVD::FULL_UV);
        Mat R = svd.u * svd.vt;
        if (determinant(R) < 0)
            R *= -1;

        Mat rvec;
        Rodrigues(R, rvec);
        CV_Assert(rvec.type() == CV_32F);
        cam_params_.at<double>(i * 4 + 1, 0) = rvec.at<float>(0, 0);
        cam_params_.at<double>(i * 4 + 2, 0) = rvec.at<float>(1, 0);
        cam_params_.at<double>(i * 4 + 3, 0) = rvec.at<float>(2, 0);
    }
}


void BundleAdjusterRay::obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const
{
    for (int i = 0; i < num_images_; ++i)
    {
        cameras[i].focal = cam_params_.at<double>(i * 4, 0);

        Mat rvec(3, 1, CV_64F);
        rvec.at<double>(0, 0) = cam_params_.at<double>(i * 4 + 1, 0);
        rvec.at<double>(1, 0) = cam_params_.at<double>(i * 4 + 2, 0);
        rvec.at<double>(2, 0) = cam_params_.at<double>(i * 4 + 3, 0);
        Rodrigues(rvec, cameras[i].R);

        Mat tmp;
        cameras[i].R.convertTo(tmp, CV_32F);
        cameras[i].R = tmp;
    }
}


void BundleAdjusterRay::calcError(Mat &err)
{
    err.create(total_num_matches_ * 3, 1, CV_64F);

    int match_idx = 0;
    for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx)
    {
        int i = edges_[edge_idx].first;
        int j = edges_[edge_idx].second;
        double f1 = cam_params_.at<double>(i * 4, 0);
        double f2 = cam_params_.at<double>(j * 4, 0);

        double R1[9];
        Mat R1_(3, 3, CV_64F, R1);
        Mat rvec(3, 1, CV_64F);
        rvec.at<double>(0, 0) = cam_params_.at<double>(i * 4 + 1, 0);
        rvec.at<double>(1, 0) = cam_params_.at<double>(i * 4 + 2, 0);
        rvec.at<double>(2, 0) = cam_params_.at<double>(i * 4 + 3, 0);
        Rodrigues(rvec, R1_);

        double R2[9];
        Mat R2_(3, 3, CV_64F, R2);
        rvec.at<double>(0, 0) = cam_params_.at<double>(j * 4 + 1, 0);
        rvec.at<double>(1, 0) = cam_params_.at<double>(j * 4 + 2, 0);
        rvec.at<double>(2, 0) = cam_params_.at<double>(j * 4 + 3, 0);
        Rodrigues(rvec, R2_);

        const ImageFeatures& features1 = features_[i];
        const ImageFeatures& features2 = features_[j];
        const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];

        Mat_<double> K1 = Mat::eye(3, 3, CV_64F);
        K1(0,0) = f1; K1(0,2) = features1.img_size.width * 0.5;
        K1(1,1) = f1; K1(1,2) = features1.img_size.height * 0.5;

        Mat_<double> K2 = Mat::eye(3, 3, CV_64F);
        K2(0,0) = f2; K2(0,2) = features2.img_size.width * 0.5;
        K2(1,1) = f2; K2(1,2) = features2.img_size.height * 0.5;

        Mat_<double> H1 = R1_ * K1.inv();
        Mat_<double> H2 = R2_ * K2.inv();

        for (size_t k = 0; k < matches_info.matches.size(); ++k)
        {
            if (!matches_info.inliers_mask[k])
                continue;

            const DMatch& m = matches_info.matches[k];

            Point2f p1 = features1.keypoints[m.queryIdx].pt;
            double x1 = H1(0,0)*p1.x + H1(0,1)*p1.y + H1(0,2);
            double y1 = H1(1,0)*p1.x + H1(1,1)*p1.y + H1(1,2);
            double z1 = H1(2,0)*p1.x + H1(2,1)*p1.y + H1(2,2);
            double len = std::sqrt(x1*x1 + y1*y1 + z1*z1);
            x1 /= len; y1 /= len; z1 /= len;

            Point2f p2 = features2.keypoints[m.trainIdx].pt;
            double x2 = H2(0,0)*p2.x + H2(0,1)*p2.y + H2(0,2);
            double y2 = H2(1,0)*p2.x + H2(1,1)*p2.y + H2(1,2);
            double z2 = H2(2,0)*p2.x + H2(2,1)*p2.y + H2(2,2);
            len = std::sqrt(x2*x2 + y2*y2 + z2*z2);
            x2 /= len; y2 /= len; z2 /= len;

            double mult = std::sqrt(f1 * f2);
            err.at<double>(3 * match_idx, 0) = mult * (x1 - x2);
            err.at<double>(3 * match_idx + 1, 0) = mult * (y1 - y2);
            err.at<double>(3 * match_idx + 2, 0) = mult * (z1 - z2);

            match_idx++;
        }
    }
}


void BundleAdjusterRay::calcJacobian(Mat &jac)
{
    jac.create(total_num_matches_ * 3, num_images_ * 4, CV_64F);

    double val;
    const double step = 1e-3;

    for (int i = 0; i < num_images_; ++i)
    {
        for (int j = 0; j < 4; ++j)
        {
            val = cam_params_.at<double>(i * 4 + j, 0);
            cam_params_.at<double>(i * 4 + j, 0) = val - step;
            calcError(err1_);
            cam_params_.at<double>(i * 4 + j, 0) = val + step;
            calcError(err2_);
            calcDeriv(err1_, err2_, 2 * step, jac.col(i * 4 + j));
            cam_params_.at<double>(i * 4 + j, 0) = val;
        }
    }
}


//////////////////////////////////////////////////////////////////////////////

void waveCorrect(std::vector<Mat> &rmats, WaveCorrectKind kind)
{
    LOGLN("Wave correcting...");
#if ENABLE_LOG
    int64 t = getTickCount();
#endif
    if (rmats.size() <= 1)
    {
        LOGLN("Wave correcting, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
        return;
    }

    Mat moment = Mat::zeros(3, 3, CV_32F);
    for (size_t i = 0; i < rmats.size(); ++i)
    {
        Mat col = rmats[i].col(0);
        moment += col * col.t();
    }
    Mat eigen_vals, eigen_vecs;
    eigen(moment, eigen_vals, eigen_vecs);

    Mat rg1;
    if (kind == WAVE_CORRECT_HORIZ)
        rg1 = eigen_vecs.row(2).t();
    else if (kind == WAVE_CORRECT_VERT)
        rg1 = eigen_vecs.row(0).t();
    else
        CV_Error(CV_StsBadArg, "unsupported kind of wave correction");

    Mat img_k = Mat::zeros(3, 1, CV_32F);
    for (size_t i = 0; i < rmats.size(); ++i)
        img_k += rmats[i].col(2);
    Mat rg0 = rg1.cross(img_k);
    double rg0_norm = norm(rg0);

    if( rg0_norm <= DBL_MIN )
    {
        return;
    }

    rg0 /= rg0_norm;

    Mat rg2 = rg0.cross(rg1);

    double conf = 0;
    if (kind == WAVE_CORRECT_HORIZ)
    {
        for (size_t i = 0; i < rmats.size(); ++i)
            conf += rg0.dot(rmats[i].col(0));
        if (conf < 0)
        {
            rg0 *= -1;
            rg1 *= -1;
        }
    }
    else if (kind == WAVE_CORRECT_VERT)
    {
        for (size_t i = 0; i < rmats.size(); ++i)
            conf -= rg1.dot(rmats[i].col(0));
        if (conf < 0)
        {
            rg0 *= -1;
            rg1 *= -1;
        }
    }

    Mat R = Mat::zeros(3, 3, CV_32F);
    Mat tmp = R.row(0);
    Mat(rg0.t()).copyTo(tmp);
    tmp = R.row(1);
    Mat(rg1.t()).copyTo(tmp);
    tmp = R.row(2);
    Mat(rg2.t()).copyTo(tmp);

    for (size_t i = 0; i < rmats.size(); ++i)
        rmats[i] = R * rmats[i];

    LOGLN("Wave correcting, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
}


//////////////////////////////////////////////////////////////////////////////

String matchesGraphAsString(std::vector<String> &pathes, std::vector<MatchesInfo> &pairwise_matches,
                                float conf_threshold)
{
    std::stringstream str;
    str << "graph matches_graph{\n";

    const int num_images = static_cast<int>(pathes.size());
    std::set<std::pair<int,int> > span_tree_edges;
    DisjointSets comps(num_images);

    for (int i = 0; i < num_images; ++i)
    {
        for (int j = 0; j < num_images; ++j)
        {
            if (pairwise_matches[i*num_images + j].confidence < conf_threshold)
                continue;
            int comp1 = comps.findSetByElem(i);
            int comp2 = comps.findSetByElem(j);
            if (comp1 != comp2)
            {
                comps.mergeSets(comp1, comp2);
                span_tree_edges.insert(std::make_pair(i, j));
            }
        }
    }

    for (std::set<std::pair<int,int> >::const_iterator itr = span_tree_edges.begin();
         itr != span_tree_edges.end(); ++itr)
    {
        std::pair<int,int> edge = *itr;
        if (span_tree_edges.find(edge) != span_tree_edges.end())
        {
            String name_src = pathes[edge.first];
            size_t prefix_len = name_src.find_last_of("/\\");
            if (prefix_len != String::npos) prefix_len++; else prefix_len = 0;
            name_src = name_src.substr(prefix_len, name_src.size() - prefix_len);

            String name_dst = pathes[edge.second];
            prefix_len = name_dst.find_last_of("/\\");
            if (prefix_len != String::npos) prefix_len++; else prefix_len = 0;
            name_dst = name_dst.substr(prefix_len, name_dst.size() - prefix_len);

            int pos = edge.first*num_images + edge.second;
            str << "\"" << name_src.c_str() << "\" -- \"" << name_dst.c_str() << "\""
                << "[label=\"Nm=" << pairwise_matches[pos].matches.size()
                << ", Ni=" << pairwise_matches[pos].num_inliers
                << ", C=" << pairwise_matches[pos].confidence << "\"];\n";
        }
    }

    for (size_t i = 0; i < comps.size.size(); ++i)
    {
        if (comps.size[comps.findSetByElem((int)i)] == 1)
        {
            String name = pathes[i];
            size_t prefix_len = name.find_last_of("/\\");
            if (prefix_len != String::npos) prefix_len++; else prefix_len = 0;
            name = name.substr(prefix_len, name.size() - prefix_len);
            str << "\"" << name.c_str() << "\";\n";
        }
    }

    str << "}";
    return str.str().c_str();
}

std::vector<int> leaveBiggestComponent(std::vector<ImageFeatures> &features,  std::vector<MatchesInfo> &pairwise_matches,
                                      float conf_threshold)
{
    const int num_images = static_cast<int>(features.size());

    DisjointSets comps(num_images);
    for (int i = 0; i < num_images; ++i)
    {
        for (int j = 0; j < num_images; ++j)
        {
            if (pairwise_matches[i*num_images + j].confidence < conf_threshold)
                continue;
            int comp1 = comps.findSetByElem(i);
            int comp2 = comps.findSetByElem(j);
            if (comp1 != comp2)
                comps.mergeSets(comp1, comp2);
        }
    }

    int max_comp = static_cast<int>(std::max_element(comps.size.begin(), comps.size.end()) - comps.size.begin());

    std::vector<int> indices;
    std::vector<int> indices_removed;
    for (int i = 0; i < num_images; ++i)
        if (comps.findSetByElem(i) == max_comp)
            indices.push_back(i);
        else
            indices_removed.push_back(i);

    std::vector<ImageFeatures> features_subset;
    std::vector<MatchesInfo> pairwise_matches_subset;
    for (size_t i = 0; i < indices.size(); ++i)
    {
        features_subset.push_back(features[indices[i]]);
        for (size_t j = 0; j < indices.size(); ++j)
        {
            pairwise_matches_subset.push_back(pairwise_matches[indices[i]*num_images + indices[j]]);
            pairwise_matches_subset.back().src_img_idx = static_cast<int>(i);
            pairwise_matches_subset.back().dst_img_idx = static_cast<int>(j);
        }
    }

    if (static_cast<int>(features_subset.size()) == num_images)
        return indices;

    LOG("Removed some images, because can't match them or there are too similar images: (");
    LOG(indices_removed[0] + 1);
    for (size_t i = 1; i < indices_removed.size(); ++i)
        LOG(", " << indices_removed[i]+1);
    LOGLN(").");
    LOGLN("Try to decrease the match confidence threshold and/or check if you're stitching duplicates.");

    features = features_subset;
    pairwise_matches = pairwise_matches_subset;

    return indices;
}


void findMaxSpanningTree(int num_images, const std::vector<MatchesInfo> &pairwise_matches,
                             Graph &span_tree, std::vector<int> &centers)
{
    Graph graph(num_images);
    std::vector<GraphEdge> edges;

    // Construct images graph and remember its edges
    for (int i = 0; i < num_images; ++i)
    {
        for (int j = 0; j < num_images; ++j)
        {
            if (pairwise_matches[i * num_images + j].H.empty())
                continue;
            float conf = static_cast<float>(pairwise_matches[i * num_images + j].num_inliers);
            graph.addEdge(i, j, conf);
            edges.push_back(GraphEdge(i, j, conf));
        }
    }

    DisjointSets comps(num_images);
    span_tree.create(num_images);
    std::vector<int> span_tree_powers(num_images, 0);

    // Find maximum spanning tree
    sort(edges.begin(), edges.end(), std::greater<GraphEdge>());
    for (size_t i = 0; i < edges.size(); ++i)
    {
        int comp1 = comps.findSetByElem(edges[i].from);
        int comp2 = comps.findSetByElem(edges[i].to);
        if (comp1 != comp2)
        {
            comps.mergeSets(comp1, comp2);
            span_tree.addEdge(edges[i].from, edges[i].to, edges[i].weight);
            span_tree.addEdge(edges[i].to, edges[i].from, edges[i].weight);
            span_tree_powers[edges[i].from]++;
            span_tree_powers[edges[i].to]++;
        }
    }

    // Find spanning tree leafs
    std::vector<int> span_tree_leafs;
    for (int i = 0; i < num_images; ++i)
        if (span_tree_powers[i] == 1)
            span_tree_leafs.push_back(i);

    // Find maximum distance from each spanning tree vertex
    std::vector<int> max_dists(num_images, 0);
    std::vector<int> cur_dists;
    for (size_t i = 0; i < span_tree_leafs.size(); ++i)
    {
        cur_dists.assign(num_images, 0);
        span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists));
        for (int j = 0; j < num_images; ++j)
            max_dists[j] = std::max(max_dists[j], cur_dists[j]);
    }

    // Find min-max distance
    int min_max_dist = max_dists[0];
    for (int i = 1; i < num_images; ++i)
        if (min_max_dist > max_dists[i])
            min_max_dist = max_dists[i];

    // Find spanning tree centers
    centers.clear();
    for (int i = 0; i < num_images; ++i)
        if (max_dists[i] == min_max_dist)
            centers.push_back(i);
    CV_Assert(centers.size() > 0 && centers.size() <= 2);
}

} // namespace detail
} // namespace cv

/* [<][>][^][v][top][bottom][index][help] */