/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_STITCHING_MOTION_ESTIMATORS_HPP__ #define __OPENCV_STITCHING_MOTION_ESTIMATORS_HPP__ #include "opencv2/core.hpp" #include "matchers.hpp" #include "util.hpp" #include "camera.hpp" namespace cv { namespace detail { //! @addtogroup stitching_rotation //! @{ /** @brief Rotation estimator base class. It takes features of all images, pairwise matches between all images and estimates rotations of all cameras. @note The coordinate system origin is implementation-dependent, but you can always normalize the rotations in respect to the first camera, for instance. : */ class CV_EXPORTS Estimator { public: virtual ~Estimator() {} /** @brief Estimates camera parameters. @param features Features of images @param pairwise_matches Pairwise matches of images @param cameras Estimated camera parameters @return True in case of success, false otherwise */ bool operator ()(const std::vector<ImageFeatures> &features, const std::vector<MatchesInfo> &pairwise_matches, std::vector<CameraParams> &cameras) { return estimate(features, pairwise_matches, cameras); } protected: /** @brief This method must implement camera parameters estimation logic in order to make the wrapper detail::Estimator::operator()_ work. @param features Features of images @param pairwise_matches Pairwise matches of images @param cameras Estimated camera parameters @return True in case of success, false otherwise */ virtual bool estimate(const std::vector<ImageFeatures> &features, const std::vector<MatchesInfo> &pairwise_matches, std::vector<CameraParams> &cameras) = 0; }; /** @brief Homography based rotation estimator. */ class CV_EXPORTS HomographyBasedEstimator : public Estimator { public: HomographyBasedEstimator(bool is_focals_estimated = false) : is_focals_estimated_(is_focals_estimated) {} private: virtual bool estimate(const std::vector<ImageFeatures> &features, const std::vector<MatchesInfo> &pairwise_matches, std::vector<CameraParams> &cameras); bool is_focals_estimated_; }; /** @brief Base class for all camera parameters refinement methods. */ class CV_EXPORTS BundleAdjusterBase : public Estimator { public: const Mat refinementMask() const { return refinement_mask_.clone(); } void setRefinementMask(const Mat &mask) { CV_Assert(mask.type() == CV_8U && mask.size() == Size(3, 3)); refinement_mask_ = mask.clone(); } double confThresh() const { return conf_thresh_; } void setConfThresh(double conf_thresh) { conf_thresh_ = conf_thresh; } TermCriteria termCriteria() { return term_criteria_; } void setTermCriteria(const TermCriteria& term_criteria) { term_criteria_ = term_criteria; } protected: /** @brief Construct a bundle adjuster base instance. @param num_params_per_cam Number of parameters per camera @param num_errs_per_measurement Number of error terms (components) per match */ BundleAdjusterBase(int num_params_per_cam, int num_errs_per_measurement) : num_params_per_cam_(num_params_per_cam), num_errs_per_measurement_(num_errs_per_measurement) { setRefinementMask(Mat::ones(3, 3, CV_8U)); setConfThresh(1.); setTermCriteria(TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 1000, DBL_EPSILON)); } // Runs bundle adjustment virtual bool estimate(const std::vector<ImageFeatures> &features, const std::vector<MatchesInfo> &pairwise_matches, std::vector<CameraParams> &cameras); /** @brief Sets initial camera parameter to refine. @param cameras Camera parameters */ virtual void setUpInitialCameraParams(const std::vector<CameraParams> &cameras) = 0; /** @brief Gets the refined camera parameters. @param cameras Refined camera parameters */ virtual void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const = 0; /** @brief Calculates error vector. @param err Error column-vector of length total_num_matches \* num_errs_per_measurement */ virtual void calcError(Mat &err) = 0; /** @brief Calculates the cost function jacobian. @param jac Jacobian matrix of dimensions (total_num_matches \* num_errs_per_measurement) x (num_images \* num_params_per_cam) */ virtual void calcJacobian(Mat &jac) = 0; // 3x3 8U mask, where 0 means don't refine respective parameter, != 0 means refine Mat refinement_mask_; int num_images_; int total_num_matches_; int num_params_per_cam_; int num_errs_per_measurement_; const ImageFeatures *features_; const MatchesInfo *pairwise_matches_; // Threshold to filter out poorly matched image pairs double conf_thresh_; //Levenberg–Marquardt algorithm termination criteria TermCriteria term_criteria_; // Camera parameters matrix (CV_64F) Mat cam_params_; // Connected images pairs std::vector<std::pair<int,int> > edges_; }; /** @brief Implementation of the camera parameters refinement algorithm which minimizes sum of the reprojection error squares It can estimate focal length, aspect ratio, principal point. You can affect only on them via the refinement mask. */ class CV_EXPORTS BundleAdjusterReproj : public BundleAdjusterBase { public: BundleAdjusterReproj() : BundleAdjusterBase(7, 2) {} private: void setUpInitialCameraParams(const std::vector<CameraParams> &cameras); void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const; void calcError(Mat &err); void calcJacobian(Mat &jac); Mat err1_, err2_; }; /** @brief Implementation of the camera parameters refinement algorithm which minimizes sum of the distances between the rays passing through the camera center and a feature. : It can estimate focal length. It ignores the refinement mask for now. */ class CV_EXPORTS BundleAdjusterRay : public BundleAdjusterBase { public: BundleAdjusterRay() : BundleAdjusterBase(4, 3) {} private: void setUpInitialCameraParams(const std::vector<CameraParams> &cameras); void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const; void calcError(Mat &err); void calcJacobian(Mat &jac); Mat err1_, err2_; }; enum WaveCorrectKind { WAVE_CORRECT_HORIZ, WAVE_CORRECT_VERT }; /** @brief Tries to make panorama more horizontal (or vertical). @param rmats Camera rotation matrices. @param kind Correction kind, see detail::WaveCorrectKind. */ void CV_EXPORTS waveCorrect(std::vector<Mat> &rmats, WaveCorrectKind kind); ////////////////////////////////////////////////////////////////////////////// // Auxiliary functions // Returns matches graph representation in DOT language String CV_EXPORTS matchesGraphAsString(std::vector<String> &pathes, std::vector<MatchesInfo> &pairwise_matches, float conf_threshold); std::vector<int> CV_EXPORTS leaveBiggestComponent( std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches, float conf_threshold); void CV_EXPORTS findMaxSpanningTree( int num_images, const std::vector<MatchesInfo> &pairwise_matches, Graph &span_tree, std::vector<int> ¢ers); //! @} stitching_rotation } // namespace detail } // namespace cv #endif // __OPENCV_STITCHING_MOTION_ESTIMATORS_HPP__