This source file includes following definitions.
- LOCAL
- LOCAL
- LOCAL
- LOCAL
- METHODDEF
- METHODDEF
- METHODDEF
- METHODDEF
- METHODDEF
- METHODDEF
- METHODDEF
- GLOBAL
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#define HUFF_LOOKAHEAD 8
typedef struct {
INT32 maxcode[18];
INT32 valoffset[17];
JHUFF_TBL *pub;
int look_nbits[1<<HUFF_LOOKAHEAD];
UINT8 look_sym[1<<HUFF_LOOKAHEAD];
} d_derived_tbl;
typedef INT32 bit_buf_type;
#define BIT_BUF_SIZE 32
typedef struct {
bit_buf_type get_buffer;
int bits_left;
} bitread_perm_state;
typedef struct {
const JOCTET * next_input_byte;
size_t bytes_in_buffer;
bit_buf_type get_buffer;
int bits_left;
j_decompress_ptr cinfo;
} bitread_working_state;
#define BITREAD_STATE_VARS \
register bit_buf_type get_buffer; \
register int bits_left; \
bitread_working_state br_state
#define BITREAD_LOAD_STATE(cinfop,permstate) \
br_state.cinfo = cinfop; \
br_state.next_input_byte = cinfop->src->next_input_byte; \
br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
get_buffer = permstate.get_buffer; \
bits_left = permstate.bits_left;
#define BITREAD_SAVE_STATE(cinfop,permstate) \
cinfop->src->next_input_byte = br_state.next_input_byte; \
cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
permstate.get_buffer = get_buffer; \
permstate.bits_left = bits_left
#define CHECK_BIT_BUFFER(state,nbits,action) \
{ if (bits_left < (nbits)) { \
if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
{ action; } \
get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
#define GET_BITS(nbits) \
(((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
#define PEEK_BITS(nbits) \
(((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits))
#define DROP_BITS(nbits) \
(bits_left -= (nbits))
#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
{ register int nb, look; \
if (bits_left < HUFF_LOOKAHEAD) { \
if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
get_buffer = state.get_buffer; bits_left = state.bits_left; \
if (bits_left < HUFF_LOOKAHEAD) { \
nb = 1; goto slowlabel; \
} \
} \
look = PEEK_BITS(HUFF_LOOKAHEAD); \
if ((nb = htbl->look_nbits[look]) != 0) { \
DROP_BITS(nb); \
result = htbl->look_sym[look]; \
} else { \
nb = HUFF_LOOKAHEAD+1; \
slowlabel: \
if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
{ failaction; } \
get_buffer = state.get_buffer; bits_left = state.bits_left; \
} \
}
typedef struct {
unsigned int EOBRUN;
int last_dc_val[MAX_COMPS_IN_SCAN];
} savable_state;
#ifndef NO_STRUCT_ASSIGN
#define ASSIGN_STATE(dest,src) ((dest) = (src))
#else
#if MAX_COMPS_IN_SCAN == 4
#define ASSIGN_STATE(dest,src) \
((dest).EOBRUN = (src).EOBRUN, \
(dest).last_dc_val[0] = (src).last_dc_val[0], \
(dest).last_dc_val[1] = (src).last_dc_val[1], \
(dest).last_dc_val[2] = (src).last_dc_val[2], \
(dest).last_dc_val[3] = (src).last_dc_val[3])
#endif
#endif
typedef struct {
struct jpeg_entropy_decoder pub;
bitread_perm_state bitstate;
savable_state saved;
boolean insufficient_data;
unsigned int restarts_to_go;
d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
d_derived_tbl * ac_derived_tbl;
d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
int coef_limit[D_MAX_BLOCKS_IN_MCU];
} huff_entropy_decoder;
typedef huff_entropy_decoder * huff_entropy_ptr;
static const int jpeg_zigzag_order[8][8] = {
{ 0, 1, 5, 6, 14, 15, 27, 28 },
{ 2, 4, 7, 13, 16, 26, 29, 42 },
{ 3, 8, 12, 17, 25, 30, 41, 43 },
{ 9, 11, 18, 24, 31, 40, 44, 53 },
{ 10, 19, 23, 32, 39, 45, 52, 54 },
{ 20, 22, 33, 38, 46, 51, 55, 60 },
{ 21, 34, 37, 47, 50, 56, 59, 61 },
{ 35, 36, 48, 49, 57, 58, 62, 63 }
};
static const int jpeg_zigzag_order7[7][7] = {
{ 0, 1, 5, 6, 14, 15, 27 },
{ 2, 4, 7, 13, 16, 26, 28 },
{ 3, 8, 12, 17, 25, 29, 38 },
{ 9, 11, 18, 24, 30, 37, 39 },
{ 10, 19, 23, 31, 36, 40, 45 },
{ 20, 22, 32, 35, 41, 44, 46 },
{ 21, 33, 34, 42, 43, 47, 48 }
};
static const int jpeg_zigzag_order6[6][6] = {
{ 0, 1, 5, 6, 14, 15 },
{ 2, 4, 7, 13, 16, 25 },
{ 3, 8, 12, 17, 24, 26 },
{ 9, 11, 18, 23, 27, 32 },
{ 10, 19, 22, 28, 31, 33 },
{ 20, 21, 29, 30, 34, 35 }
};
static const int jpeg_zigzag_order5[5][5] = {
{ 0, 1, 5, 6, 14 },
{ 2, 4, 7, 13, 15 },
{ 3, 8, 12, 16, 21 },
{ 9, 11, 17, 20, 22 },
{ 10, 18, 19, 23, 24 }
};
static const int jpeg_zigzag_order4[4][4] = {
{ 0, 1, 5, 6 },
{ 2, 4, 7, 12 },
{ 3, 8, 11, 13 },
{ 9, 10, 14, 15 }
};
static const int jpeg_zigzag_order3[3][3] = {
{ 0, 1, 5 },
{ 2, 4, 6 },
{ 3, 7, 8 }
};
static const int jpeg_zigzag_order2[2][2] = {
{ 0, 1 },
{ 2, 3 }
};
LOCAL(void)
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
d_derived_tbl ** pdtbl)
{
JHUFF_TBL *htbl;
d_derived_tbl *dtbl;
int p, i, l, si, numsymbols;
int lookbits, ctr;
char huffsize[257];
unsigned int huffcode[257];
unsigned int code;
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
htbl =
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
if (htbl == NULL)
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
if (*pdtbl == NULL)
*pdtbl = (d_derived_tbl *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(d_derived_tbl));
dtbl = *pdtbl;
dtbl->pub = htbl;
p = 0;
for (l = 1; l <= 16; l++) {
i = (int) htbl->bits[l];
if (i < 0 || p + i > 256)
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
while (i--)
huffsize[p++] = (char) l;
}
huffsize[p] = 0;
numsymbols = p;
code = 0;
si = huffsize[0];
p = 0;
while (huffsize[p]) {
while (((int) huffsize[p]) == si) {
huffcode[p++] = code;
code++;
}
if (((INT32) code) >= (((INT32) 1) << si))
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
code <<= 1;
si++;
}
p = 0;
for (l = 1; l <= 16; l++) {
if (htbl->bits[l]) {
dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
p += htbl->bits[l];
dtbl->maxcode[l] = huffcode[p-1];
} else {
dtbl->maxcode[l] = -1;
}
}
dtbl->maxcode[17] = 0xFFFFFL;
MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
p = 0;
for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
dtbl->look_nbits[lookbits] = l;
dtbl->look_sym[lookbits] = htbl->huffval[p];
lookbits++;
}
}
}
if (isDC) {
for (i = 0; i < numsymbols; i++) {
int sym = htbl->huffval[i];
if (sym < 0 || sym > 15)
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
}
}
}
#ifdef SLOW_SHIFT_32
#define MIN_GET_BITS 15
#else
#define MIN_GET_BITS (BIT_BUF_SIZE-7)
#endif
LOCAL(boolean)
jpeg_fill_bit_buffer (bitread_working_state * state,
register bit_buf_type get_buffer, register int bits_left,
int nbits)
{
register const JOCTET * next_input_byte = state->next_input_byte;
register size_t bytes_in_buffer = state->bytes_in_buffer;
j_decompress_ptr cinfo = state->cinfo;
if (cinfo->unread_marker == 0) {
while (bits_left < MIN_GET_BITS) {
register int c;
if (bytes_in_buffer == 0) {
if (! (*cinfo->src->fill_input_buffer) (cinfo))
return FALSE;
next_input_byte = cinfo->src->next_input_byte;
bytes_in_buffer = cinfo->src->bytes_in_buffer;
}
bytes_in_buffer--;
c = GETJOCTET(*next_input_byte++);
if (c == 0xFF) {
do {
if (bytes_in_buffer == 0) {
if (! (*cinfo->src->fill_input_buffer) (cinfo))
return FALSE;
next_input_byte = cinfo->src->next_input_byte;
bytes_in_buffer = cinfo->src->bytes_in_buffer;
}
bytes_in_buffer--;
c = GETJOCTET(*next_input_byte++);
} while (c == 0xFF);
if (c == 0) {
c = 0xFF;
} else {
cinfo->unread_marker = c;
goto no_more_bytes;
}
}
get_buffer = (get_buffer << 8) | c;
bits_left += 8;
}
} else {
no_more_bytes:
if (nbits > bits_left) {
if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
WARNMS(cinfo, JWRN_HIT_MARKER);
((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
}
get_buffer <<= MIN_GET_BITS - bits_left;
bits_left = MIN_GET_BITS;
}
}
state->next_input_byte = next_input_byte;
state->bytes_in_buffer = bytes_in_buffer;
state->get_buffer = get_buffer;
state->bits_left = bits_left;
return TRUE;
}
#ifdef AVOID_TABLES
#define BIT_MASK(nbits) ((1<<(nbits))-1)
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
#else
#define BIT_MASK(nbits) bmask[nbits]
#define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
static const int bmask[16] =
{ 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
#endif
LOCAL(int)
jpeg_huff_decode (bitread_working_state * state,
register bit_buf_type get_buffer, register int bits_left,
d_derived_tbl * htbl, int min_bits)
{
register int l = min_bits;
register INT32 code;
CHECK_BIT_BUFFER(*state, l, return -1);
code = GET_BITS(l);
while (code > htbl->maxcode[l]) {
code <<= 1;
CHECK_BIT_BUFFER(*state, 1, return -1);
code |= GET_BITS(1);
l++;
}
state->get_buffer = get_buffer;
state->bits_left = bits_left;
if (l > 16) {
WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
return 0;
}
return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
}
LOCAL(boolean)
process_restart (j_decompress_ptr cinfo)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
int ci;
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
entropy->bitstate.bits_left = 0;
if (! (*cinfo->marker->read_restart_marker) (cinfo))
return FALSE;
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
entropy->saved.last_dc_val[ci] = 0;
entropy->saved.EOBRUN = 0;
entropy->restarts_to_go = cinfo->restart_interval;
if (cinfo->unread_marker == 0)
entropy->insufficient_data = FALSE;
return TRUE;
}
METHODDEF(boolean)
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
int Al = cinfo->Al;
register int s, r;
int blkn, ci;
JBLOCKROW block;
BITREAD_STATE_VARS;
savable_state state;
d_derived_tbl * tbl;
jpeg_component_info * compptr;
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
if (! entropy->insufficient_data) {
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(state, entropy->saved);
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
tbl = entropy->derived_tbls[compptr->dc_tbl_no];
HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
}
s += state.last_dc_val[ci];
state.last_dc_val[ci] = s;
(*block)[0] = (JCOEF) (s << Al);
}
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(entropy->saved, state);
}
entropy->restarts_to_go--;
return TRUE;
}
METHODDEF(boolean)
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
register int s, k, r;
unsigned int EOBRUN;
int Se, Al;
const int * natural_order;
JBLOCKROW block;
BITREAD_STATE_VARS;
d_derived_tbl * tbl;
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
if (! entropy->insufficient_data) {
Se = cinfo->Se;
Al = cinfo->Al;
natural_order = cinfo->natural_order;
EOBRUN = entropy->saved.EOBRUN;
if (EOBRUN)
EOBRUN--;
else {
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
block = MCU_data[0];
tbl = entropy->ac_derived_tbl;
for (k = cinfo->Ss; k <= Se; k++) {
HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
r = s >> 4;
s &= 15;
if (s) {
k += r;
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
(*block)[natural_order[k]] = (JCOEF) (s << Al);
} else {
if (r != 15) {
if (r) {
EOBRUN = 1 << r;
CHECK_BIT_BUFFER(br_state, r, return FALSE);
r = GET_BITS(r);
EOBRUN += r;
EOBRUN--;
}
break;
}
k += 15;
}
}
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
}
entropy->saved.EOBRUN = EOBRUN;
}
entropy->restarts_to_go--;
return TRUE;
}
METHODDEF(boolean)
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
int p1 = 1 << cinfo->Al;
int blkn;
JBLOCKROW block;
BITREAD_STATE_VARS;
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
CHECK_BIT_BUFFER(br_state, 1, return FALSE);
if (GET_BITS(1))
(*block)[0] |= p1;
}
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
entropy->restarts_to_go--;
return TRUE;
}
METHODDEF(boolean)
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
register int s, k, r;
unsigned int EOBRUN;
int Se, p1, m1;
const int * natural_order;
JBLOCKROW block;
JCOEFPTR thiscoef;
BITREAD_STATE_VARS;
d_derived_tbl * tbl;
int num_newnz;
int newnz_pos[DCTSIZE2];
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
if (! entropy->insufficient_data) {
Se = cinfo->Se;
p1 = 1 << cinfo->Al;
m1 = (-1) << cinfo->Al;
natural_order = cinfo->natural_order;
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
EOBRUN = entropy->saved.EOBRUN;
block = MCU_data[0];
tbl = entropy->ac_derived_tbl;
num_newnz = 0;
k = cinfo->Ss;
if (EOBRUN == 0) {
do {
HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
r = s >> 4;
s &= 15;
if (s) {
if (s != 1)
WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
if (GET_BITS(1))
s = p1;
else
s = m1;
} else {
if (r != 15) {
EOBRUN = 1 << r;
if (r) {
CHECK_BIT_BUFFER(br_state, r, goto undoit);
r = GET_BITS(r);
EOBRUN += r;
}
break;
}
}
do {
thiscoef = *block + natural_order[k];
if (*thiscoef) {
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
if (GET_BITS(1)) {
if ((*thiscoef & p1) == 0) {
if (*thiscoef >= 0)
*thiscoef += p1;
else
*thiscoef += m1;
}
}
} else {
if (--r < 0)
break;
}
k++;
} while (k <= Se);
if (s) {
int pos = natural_order[k];
(*block)[pos] = (JCOEF) s;
newnz_pos[num_newnz++] = pos;
}
k++;
} while (k <= Se);
}
if (EOBRUN) {
do {
thiscoef = *block + natural_order[k];
if (*thiscoef) {
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
if (GET_BITS(1)) {
if ((*thiscoef & p1) == 0) {
if (*thiscoef >= 0)
*thiscoef += p1;
else
*thiscoef += m1;
}
}
}
k++;
} while (k <= Se);
EOBRUN--;
}
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
entropy->saved.EOBRUN = EOBRUN;
}
entropy->restarts_to_go--;
return TRUE;
undoit:
while (num_newnz)
(*block)[newnz_pos[--num_newnz]] = 0;
return FALSE;
}
METHODDEF(boolean)
decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
const int * natural_order;
int Se, blkn;
BITREAD_STATE_VARS;
savable_state state;
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
if (! entropy->insufficient_data) {
natural_order = cinfo->natural_order;
Se = cinfo->lim_Se;
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(state, entropy->saved);
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
JBLOCKROW block = MCU_data[blkn];
d_derived_tbl * htbl;
register int s, k, r;
int coef_limit, ci;
htbl = entropy->dc_cur_tbls[blkn];
HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
htbl = entropy->ac_cur_tbls[blkn];
k = 1;
coef_limit = entropy->coef_limit[blkn];
if (coef_limit) {
if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
}
ci = cinfo->MCU_membership[blkn];
s += state.last_dc_val[ci];
state.last_dc_val[ci] = s;
(*block)[0] = (JCOEF) s;
for (; k < coef_limit; k++) {
HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
r = s >> 4;
s &= 15;
if (s) {
k += r;
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
(*block)[natural_order[k]] = (JCOEF) s;
} else {
if (r != 15)
goto EndOfBlock;
k += 15;
}
}
} else {
if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
DROP_BITS(s);
}
}
for (; k <= Se; k++) {
HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
r = s >> 4;
s &= 15;
if (s) {
k += r;
CHECK_BIT_BUFFER(br_state, s, return FALSE);
DROP_BITS(s);
} else {
if (r != 15)
break;
k += 15;
}
}
EndOfBlock: ;
}
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(entropy->saved, state);
}
entropy->restarts_to_go--;
return TRUE;
}
METHODDEF(boolean)
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
int blkn;
BITREAD_STATE_VARS;
savable_state state;
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
if (! entropy->insufficient_data) {
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(state, entropy->saved);
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
JBLOCKROW block = MCU_data[blkn];
d_derived_tbl * htbl;
register int s, k, r;
int coef_limit, ci;
htbl = entropy->dc_cur_tbls[blkn];
HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
htbl = entropy->ac_cur_tbls[blkn];
k = 1;
coef_limit = entropy->coef_limit[blkn];
if (coef_limit) {
if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
}
ci = cinfo->MCU_membership[blkn];
s += state.last_dc_val[ci];
state.last_dc_val[ci] = s;
(*block)[0] = (JCOEF) s;
for (; k < coef_limit; k++) {
HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
r = s >> 4;
s &= 15;
if (s) {
k += r;
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
(*block)[jpeg_natural_order[k]] = (JCOEF) s;
} else {
if (r != 15)
goto EndOfBlock;
k += 15;
}
}
} else {
if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
DROP_BITS(s);
}
}
for (; k < DCTSIZE2; k++) {
HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
r = s >> 4;
s &= 15;
if (s) {
k += r;
CHECK_BIT_BUFFER(br_state, s, return FALSE);
DROP_BITS(s);
} else {
if (r != 15)
break;
k += 15;
}
}
EndOfBlock: ;
}
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
ASSIGN_STATE(entropy->saved, state);
}
entropy->restarts_to_go--;
return TRUE;
}
METHODDEF(void)
start_pass_huff_decoder (j_decompress_ptr cinfo)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
int ci, blkn, tbl, i;
jpeg_component_info * compptr;
if (cinfo->progressive_mode) {
if (cinfo->Ss == 0) {
if (cinfo->Se != 0)
goto bad;
} else {
if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
goto bad;
if (cinfo->comps_in_scan != 1)
goto bad;
}
if (cinfo->Ah != 0) {
if (cinfo->Ah-1 != cinfo->Al)
goto bad;
}
if (cinfo->Al > 13) {
bad:
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
}
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
if (cinfo->Ss && coef_bit_ptr[0] < 0)
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
if (cinfo->Ah != expected)
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
coef_bit_ptr[coefi] = cinfo->Al;
}
}
if (cinfo->Ah == 0) {
if (cinfo->Ss == 0)
entropy->pub.decode_mcu = decode_mcu_DC_first;
else
entropy->pub.decode_mcu = decode_mcu_AC_first;
} else {
if (cinfo->Ss == 0)
entropy->pub.decode_mcu = decode_mcu_DC_refine;
else
entropy->pub.decode_mcu = decode_mcu_AC_refine;
}
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
if (cinfo->Ss == 0) {
if (cinfo->Ah == 0) {
tbl = compptr->dc_tbl_no;
jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
& entropy->derived_tbls[tbl]);
}
} else {
tbl = compptr->ac_tbl_no;
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
& entropy->derived_tbls[tbl]);
entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
}
entropy->saved.last_dc_val[ci] = 0;
}
entropy->saved.EOBRUN = 0;
} else {
if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
cinfo->Se != cinfo->lim_Se))
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
if (cinfo->lim_Se != DCTSIZE2-1)
entropy->pub.decode_mcu = decode_mcu_sub;
else
entropy->pub.decode_mcu = decode_mcu;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
tbl = compptr->dc_tbl_no;
jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
& entropy->dc_derived_tbls[tbl]);
if (cinfo->lim_Se) {
tbl = compptr->ac_tbl_no;
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
& entropy->ac_derived_tbls[tbl]);
}
entropy->saved.last_dc_val[ci] = 0;
}
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
if (compptr->component_needed) {
ci = compptr->DCT_v_scaled_size;
i = compptr->DCT_h_scaled_size;
switch (cinfo->lim_Se) {
case (1*1-1):
entropy->coef_limit[blkn] = 1;
break;
case (2*2-1):
if (ci <= 0 || ci > 2) ci = 2;
if (i <= 0 || i > 2) i = 2;
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
break;
case (3*3-1):
if (ci <= 0 || ci > 3) ci = 3;
if (i <= 0 || i > 3) i = 3;
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
break;
case (4*4-1):
if (ci <= 0 || ci > 4) ci = 4;
if (i <= 0 || i > 4) i = 4;
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
break;
case (5*5-1):
if (ci <= 0 || ci > 5) ci = 5;
if (i <= 0 || i > 5) i = 5;
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
break;
case (6*6-1):
if (ci <= 0 || ci > 6) ci = 6;
if (i <= 0 || i > 6) i = 6;
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
break;
case (7*7-1):
if (ci <= 0 || ci > 7) ci = 7;
if (i <= 0 || i > 7) i = 7;
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
break;
default:
if (ci <= 0 || ci > 8) ci = 8;
if (i <= 0 || i > 8) i = 8;
entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
break;
}
} else {
entropy->coef_limit[blkn] = 0;
}
}
}
entropy->bitstate.bits_left = 0;
entropy->bitstate.get_buffer = 0;
entropy->insufficient_data = FALSE;
entropy->restarts_to_go = cinfo->restart_interval;
}
GLOBAL(void)
jinit_huff_decoder (j_decompress_ptr cinfo)
{
huff_entropy_ptr entropy;
int i;
entropy = (huff_entropy_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(huff_entropy_decoder));
cinfo->entropy = &entropy->pub;
entropy->pub.start_pass = start_pass_huff_decoder;
if (cinfo->progressive_mode) {
int *coef_bit_ptr, ci;
cinfo->coef_bits = (int (*)[DCTSIZE2])
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
cinfo->num_components*DCTSIZE2*SIZEOF(int));
coef_bit_ptr = & cinfo->coef_bits[0][0];
for (ci = 0; ci < cinfo->num_components; ci++)
for (i = 0; i < DCTSIZE2; i++)
*coef_bit_ptr++ = -1;
for (i = 0; i < NUM_HUFF_TBLS; i++) {
entropy->derived_tbls[i] = NULL;
}
} else {
for (i = 0; i < NUM_HUFF_TBLS; i++) {
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
}
}
}