This source file includes following definitions.
- ocl_calc
- calc
- collectGarbage
- calc
- collectGarbage
- impl
- createOptFlow_Farneback
- calc
- impl
- collectGarbage
- createOptFlow_DualTVL1
- createOptFlow_Farneback_CUDA
- createOptFlow_DualTVL1_CUDA
- createOptFlow_Brox_CUDA
- createOptFlow_PyrLK_CUDA
- calc
- collectGarbage
- calc
- impl
- collectGarbage
- createOptFlow_Brox_CUDA
- calc
- impl
- collectGarbage
- createOptFlow_PyrLK_CUDA
- calc
- impl
- collectGarbage
- createOptFlow_Farneback_CUDA
- calc
- impl
- collectGarbage
- createOptFlow_DualTVL1_CUDA
#include "precomp.hpp"
#include "opencv2/core/opencl/ocl_defs.hpp"
using namespace cv;
using namespace cv::cuda;
using namespace cv::superres;
using namespace cv::superres::detail;
namespace
{
class CpuOpticalFlow : public virtual cv::superres::DenseOpticalFlowExt
{
public:
explicit CpuOpticalFlow(int work_type);
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
protected:
virtual void impl(InputArray input0, InputArray input1, OutputArray dst) = 0;
private:
bool ocl_calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
int work_type_;
Mat buf_[6];
Mat flow_;
Mat flows_[2];
UMat ubuf_[6];
UMat uflow_;
std::vector<UMat> uflows_;
};
CpuOpticalFlow::CpuOpticalFlow(int work_type) :
work_type_(work_type)
{
}
bool CpuOpticalFlow::ocl_calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
{
UMat frame0 = arrGetUMat(_frame0, ubuf_[0]);
UMat frame1 = arrGetUMat(_frame1, ubuf_[1]);
CV_Assert( frame1.type() == frame0.type() );
CV_Assert( frame1.size() == frame0.size() );
UMat input0 = convertToType(frame0, work_type_, ubuf_[2], ubuf_[3]);
UMat input1 = convertToType(frame1, work_type_, ubuf_[4], ubuf_[5]);
if (!_flow2.needed())
{
impl(input0, input1, _flow1);
return true;
}
impl(input0, input1, uflow_);
if (!_flow2.needed())
arrCopy(uflow_, _flow1);
else
{
split(uflow_, uflows_);
arrCopy(uflows_[0], _flow1);
arrCopy(uflows_[1], _flow2);
}
return true;
}
void CpuOpticalFlow::calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
{
CV_OCL_RUN(_flow1.isUMat() && (_flow2.isUMat() || !_flow2.needed()),
ocl_calc(_frame0, _frame1, _flow1, _flow2))
Mat frame0 = arrGetMat(_frame0, buf_[0]);
Mat frame1 = arrGetMat(_frame1, buf_[1]);
CV_Assert( frame1.type() == frame0.type() );
CV_Assert( frame1.size() == frame0.size() );
Mat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]);
Mat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]);
if (!_flow2.needed() && _flow1.kind() < _InputArray::OPENGL_BUFFER)
{
impl(input0, input1, _flow1);
return;
}
impl(input0, input1, flow_);
if (!_flow2.needed())
arrCopy(flow_, _flow1);
else
{
split(flow_, flows_);
arrCopy(flows_[0], _flow1);
arrCopy(flows_[1], _flow2);
}
}
void CpuOpticalFlow::collectGarbage()
{
for (int i = 0; i < 6; ++i)
buf_[i].release();
flow_.release();
flows_[0].release();
flows_[1].release();
for (int i = 0; i < 6; ++i)
ubuf_[i].release();
uflow_.release();
uflows_[0].release();
uflows_[1].release();
}
}
namespace
{
class Farneback : public CpuOpticalFlow, public cv::superres::FarnebackOpticalFlow
{
public:
Farneback();
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
CV_IMPL_PROPERTY(double, PyrScale, pyrScale_)
CV_IMPL_PROPERTY(int, LevelsNumber, numLevels_)
CV_IMPL_PROPERTY(int, WindowSize, winSize_)
CV_IMPL_PROPERTY(int, Iterations, numIters_)
CV_IMPL_PROPERTY(int, PolyN, polyN_)
CV_IMPL_PROPERTY(double, PolySigma, polySigma_)
CV_IMPL_PROPERTY(int, Flags, flags_)
protected:
void impl(InputArray input0, InputArray input1, OutputArray dst);
private:
double pyrScale_;
int numLevels_;
int winSize_;
int numIters_;
int polyN_;
double polySigma_;
int flags_;
};
Farneback::Farneback() : CpuOpticalFlow(CV_8UC1)
{
pyrScale_ = 0.5;
numLevels_ = 5;
winSize_ = 13;
numIters_ = 10;
polyN_ = 5;
polySigma_ = 1.1;
flags_ = 0;
}
void Farneback::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
CpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
}
void Farneback::collectGarbage()
{
CpuOpticalFlow::collectGarbage();
}
void Farneback::impl(InputArray input0, InputArray input1, OutputArray dst)
{
calcOpticalFlowFarneback(input0, input1, InputOutputArray(dst), pyrScale_,
numLevels_, winSize_, numIters_,
polyN_, polySigma_, flags_);
}
}
Ptr<cv::superres::FarnebackOpticalFlow> cv::superres::createOptFlow_Farneback()
{
return makePtr<Farneback>();
}
namespace
{
class DualTVL1 : public CpuOpticalFlow, public virtual cv::superres::DualTVL1OpticalFlow
{
public:
DualTVL1();
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
CV_WRAP_SAME_PROPERTY(double, Tau, (*alg_))
CV_WRAP_SAME_PROPERTY(double, Lambda, (*alg_))
CV_WRAP_SAME_PROPERTY(double, Theta, (*alg_))
CV_WRAP_SAME_PROPERTY(int, ScalesNumber, (*alg_))
CV_WRAP_SAME_PROPERTY(int, WarpingsNumber, (*alg_))
CV_WRAP_SAME_PROPERTY(double, Epsilon, (*alg_))
CV_WRAP_PROPERTY(int, Iterations, OuterIterations, (*alg_))
CV_WRAP_SAME_PROPERTY(bool, UseInitialFlow, (*alg_))
protected:
void impl(InputArray input0, InputArray input1, OutputArray dst);
private:
Ptr<cv::DualTVL1OpticalFlow> alg_;
};
DualTVL1::DualTVL1() : CpuOpticalFlow(CV_8UC1)
{
alg_ = cv::createOptFlow_DualTVL1();
}
void DualTVL1::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
CpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
}
void DualTVL1::impl(InputArray input0, InputArray input1, OutputArray dst)
{
alg_->calc(input0, input1, (InputOutputArray)dst);
}
void DualTVL1::collectGarbage()
{
alg_->collectGarbage();
CpuOpticalFlow::collectGarbage();
}
}
Ptr<cv::superres::DualTVL1OpticalFlow> cv::superres::createOptFlow_DualTVL1()
{
return makePtr<DualTVL1>();
}
#ifndef HAVE_OPENCV_CUDAOPTFLOW
Ptr<cv::superres::FarnebackOpticalFlow> cv::superres::createOptFlow_Farneback_CUDA()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
return Ptr<cv::superres::FarnebackOpticalFlow>();
}
Ptr<cv::superres::DualTVL1OpticalFlow> cv::superres::createOptFlow_DualTVL1_CUDA()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
return Ptr<cv::superres::DualTVL1OpticalFlow>();
}
Ptr<cv::superres::BroxOpticalFlow> cv::superres::createOptFlow_Brox_CUDA()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
return Ptr<cv::superres::BroxOpticalFlow>();
}
Ptr<cv::superres::PyrLKOpticalFlow> cv::superres::createOptFlow_PyrLK_CUDA()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
return Ptr<cv::superres::PyrLKOpticalFlow>();
}
#else
namespace
{
class GpuOpticalFlow : public virtual cv::superres::DenseOpticalFlowExt
{
public:
explicit GpuOpticalFlow(int work_type);
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
protected:
virtual void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) = 0;
private:
int work_type_;
GpuMat buf_[6];
GpuMat u_, v_, flow_;
};
GpuOpticalFlow::GpuOpticalFlow(int work_type) : work_type_(work_type)
{
}
void GpuOpticalFlow::calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
{
GpuMat frame0 = arrGetGpuMat(_frame0, buf_[0]);
GpuMat frame1 = arrGetGpuMat(_frame1, buf_[1]);
CV_Assert( frame1.type() == frame0.type() );
CV_Assert( frame1.size() == frame0.size() );
GpuMat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]);
GpuMat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]);
if (_flow2.needed() && _flow1.kind() == _InputArray::CUDA_GPU_MAT && _flow2.kind() == _InputArray::CUDA_GPU_MAT)
{
impl(input0, input1, _flow1.getGpuMatRef(), _flow2.getGpuMatRef());
return;
}
impl(input0, input1, u_, v_);
if (_flow2.needed())
{
arrCopy(u_, _flow1);
arrCopy(v_, _flow2);
}
else
{
GpuMat src[] = {u_, v_};
merge(src, 2, flow_);
arrCopy(flow_, _flow1);
}
}
void GpuOpticalFlow::collectGarbage()
{
for (int i = 0; i < 6; ++i)
buf_[i].release();
u_.release();
v_.release();
flow_.release();
}
}
namespace
{
class Brox_CUDA : public GpuOpticalFlow, public virtual cv::superres::BroxOpticalFlow
{
public:
Brox_CUDA();
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
CV_IMPL_PROPERTY(double, Alpha, alpha_)
CV_IMPL_PROPERTY(double, Gamma, gamma_)
CV_IMPL_PROPERTY(double, ScaleFactor, scaleFactor_)
CV_IMPL_PROPERTY(int, InnerIterations, innerIterations_)
CV_IMPL_PROPERTY(int, OuterIterations, outerIterations_)
CV_IMPL_PROPERTY(int, SolverIterations, solverIterations_)
protected:
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
private:
double alpha_;
double gamma_;
double scaleFactor_;
int innerIterations_;
int outerIterations_;
int solverIterations_;
Ptr<cuda::BroxOpticalFlow> alg_;
};
Brox_CUDA::Brox_CUDA() : GpuOpticalFlow(CV_32FC1)
{
alg_ = cuda::BroxOpticalFlow::create(0.197f, 50.0f, 0.8f, 10, 77, 10);
alpha_ = alg_->getFlowSmoothness();
gamma_ = alg_->getGradientConstancyImportance();
scaleFactor_ = alg_->getPyramidScaleFactor();
innerIterations_ = alg_->getInnerIterations();
outerIterations_ = alg_->getOuterIterations();
solverIterations_ = alg_->getSolverIterations();
}
void Brox_CUDA::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
GpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
}
void Brox_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
{
alg_->setFlowSmoothness(alpha_);
alg_->setGradientConstancyImportance(gamma_);
alg_->setPyramidScaleFactor(scaleFactor_);
alg_->setInnerIterations(innerIterations_);
alg_->setOuterIterations(outerIterations_);
alg_->setSolverIterations(solverIterations_);
GpuMat flow;
alg_->calc(input0, input1, flow);
GpuMat flows[2];
cuda::split(flow, flows);
dst1 = flows[0];
dst2 = flows[1];
}
void Brox_CUDA::collectGarbage()
{
alg_ = cuda::BroxOpticalFlow::create(alpha_, gamma_, scaleFactor_, innerIterations_, outerIterations_, solverIterations_);
GpuOpticalFlow::collectGarbage();
}
}
Ptr<cv::superres::BroxOpticalFlow> cv::superres::createOptFlow_Brox_CUDA()
{
return makePtr<Brox_CUDA>();
}
namespace
{
class PyrLK_CUDA : public GpuOpticalFlow, public cv::superres::PyrLKOpticalFlow
{
public:
PyrLK_CUDA();
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
CV_IMPL_PROPERTY(int, WindowSize, winSize_)
CV_IMPL_PROPERTY(int, MaxLevel, maxLevel_)
CV_IMPL_PROPERTY(int, Iterations, iterations_)
protected:
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
private:
int winSize_;
int maxLevel_;
int iterations_;
Ptr<cuda::DensePyrLKOpticalFlow> alg_;
};
PyrLK_CUDA::PyrLK_CUDA() : GpuOpticalFlow(CV_8UC1)
{
alg_ = cuda::DensePyrLKOpticalFlow::create();
winSize_ = alg_->getWinSize().width;
maxLevel_ = alg_->getMaxLevel();
iterations_ = alg_->getNumIters();
}
void PyrLK_CUDA::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
GpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
}
void PyrLK_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
{
alg_->setWinSize(Size(winSize_, winSize_));
alg_->setMaxLevel(maxLevel_);
alg_->setNumIters(iterations_);
GpuMat flow;
alg_->calc(input0, input1, flow);
GpuMat flows[2];
cuda::split(flow, flows);
dst1 = flows[0];
dst2 = flows[1];
}
void PyrLK_CUDA::collectGarbage()
{
alg_ = cuda::DensePyrLKOpticalFlow::create();
GpuOpticalFlow::collectGarbage();
}
}
Ptr<cv::superres::PyrLKOpticalFlow> cv::superres::createOptFlow_PyrLK_CUDA()
{
return makePtr<PyrLK_CUDA>();
}
namespace
{
class Farneback_CUDA : public GpuOpticalFlow, public cv::superres::FarnebackOpticalFlow
{
public:
Farneback_CUDA();
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
CV_IMPL_PROPERTY(double, PyrScale, pyrScale_)
CV_IMPL_PROPERTY(int, LevelsNumber, numLevels_)
CV_IMPL_PROPERTY(int, WindowSize, winSize_)
CV_IMPL_PROPERTY(int, Iterations, numIters_)
CV_IMPL_PROPERTY(int, PolyN, polyN_)
CV_IMPL_PROPERTY(double, PolySigma, polySigma_)
CV_IMPL_PROPERTY(int, Flags, flags_)
protected:
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
private:
double pyrScale_;
int numLevels_;
int winSize_;
int numIters_;
int polyN_;
double polySigma_;
int flags_;
Ptr<cuda::FarnebackOpticalFlow> alg_;
};
Farneback_CUDA::Farneback_CUDA() : GpuOpticalFlow(CV_8UC1)
{
alg_ = cuda::FarnebackOpticalFlow::create();
pyrScale_ = alg_->getPyrScale();
numLevels_ = alg_->getNumLevels();
winSize_ = alg_->getWinSize();
numIters_ = alg_->getNumIters();
polyN_ = alg_->getPolyN();
polySigma_ = alg_->getPolySigma();
flags_ = alg_->getFlags();
}
void Farneback_CUDA::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
GpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
}
void Farneback_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
{
alg_->setPyrScale(pyrScale_);
alg_->setNumLevels(numLevels_);
alg_->setWinSize(winSize_);
alg_->setNumIters(numIters_);
alg_->setPolyN(polyN_);
alg_->setPolySigma(polySigma_);
alg_->setFlags(flags_);
GpuMat flow;
alg_->calc(input0, input1, flow);
GpuMat flows[2];
cuda::split(flow, flows);
dst1 = flows[0];
dst2 = flows[1];
}
void Farneback_CUDA::collectGarbage()
{
alg_ = cuda::FarnebackOpticalFlow::create();
GpuOpticalFlow::collectGarbage();
}
}
Ptr<cv::superres::FarnebackOpticalFlow> cv::superres::createOptFlow_Farneback_CUDA()
{
return makePtr<Farneback_CUDA>();
}
namespace
{
class DualTVL1_CUDA : public GpuOpticalFlow, public cv::superres::DualTVL1OpticalFlow
{
public:
DualTVL1_CUDA();
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
CV_IMPL_PROPERTY(double, Tau, tau_)
CV_IMPL_PROPERTY(double, Lambda, lambda_)
CV_IMPL_PROPERTY(double, Theta, theta_)
CV_IMPL_PROPERTY(int, ScalesNumber, nscales_)
CV_IMPL_PROPERTY(int, WarpingsNumber, warps_)
CV_IMPL_PROPERTY(double, Epsilon, epsilon_)
CV_IMPL_PROPERTY(int, Iterations, iterations_)
CV_IMPL_PROPERTY(bool, UseInitialFlow, useInitialFlow_)
protected:
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
private:
double tau_;
double lambda_;
double theta_;
int nscales_;
int warps_;
double epsilon_;
int iterations_;
bool useInitialFlow_;
Ptr<cuda::OpticalFlowDual_TVL1> alg_;
};
DualTVL1_CUDA::DualTVL1_CUDA() : GpuOpticalFlow(CV_8UC1)
{
alg_ = cuda::OpticalFlowDual_TVL1::create();
tau_ = alg_->getTau();
lambda_ = alg_->getLambda();
theta_ = alg_->getTheta();
nscales_ = alg_->getNumScales();
warps_ = alg_->getNumWarps();
epsilon_ = alg_->getEpsilon();
iterations_ = alg_->getNumIterations();
useInitialFlow_ = alg_->getUseInitialFlow();
}
void DualTVL1_CUDA::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
GpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
}
void DualTVL1_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
{
alg_->setTau(tau_);
alg_->setLambda(lambda_);
alg_->setTheta(theta_);
alg_->setNumScales(nscales_);
alg_->setNumWarps(warps_);
alg_->setEpsilon(epsilon_);
alg_->setNumIterations(iterations_);
alg_->setUseInitialFlow(useInitialFlow_);
GpuMat flow;
alg_->calc(input0, input1, flow);
GpuMat flows[2];
cuda::split(flow, flows);
dst1 = flows[0];
dst2 = flows[1];
}
void DualTVL1_CUDA::collectGarbage()
{
alg_ = cuda::OpticalFlowDual_TVL1::create();
GpuOpticalFlow::collectGarbage();
}
}
Ptr<cv::superres::DualTVL1OpticalFlow> cv::superres::createOptFlow_DualTVL1_CUDA()
{
return makePtr<DualTVL1_CUDA>();
}
#endif