root/modules/ts/src/cuda_test.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. randomInt
  2. randomDouble
  3. randomSize
  4. randomScalar
  5. randomMat
  6. createMat
  7. loadMat
  8. readImage
  9. readImageType
  10. supportFeature
  11. instance
  12. load
  13. loadAll
  14. parseCudaDeviceOptions
  15. printMatValImpl
  16. printMatVal
  17. minMaxLocGold
  18. getMat
  19. assertMatNear
  20. checkSimilarity
  21. types
  22. all_types
  23. PrintTo
  24. PrintTo
  25. dumpImage
  26. showDiff
  27. keyPointsEquals
  28. assertKeyPointsEquals
  29. getMatchedPointsCount
  30. getMatchedPointsCount
  31. printCudaInfo
  32. PrintTo

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "opencv2/ts/cuda_test.hpp"
#include <stdexcept>

using namespace cv;
using namespace cv::cuda;
using namespace cvtest;
using namespace testing;
using namespace testing::internal;

namespace perf
{
    CV_EXPORTS void printCudaInfo();
}

namespace cvtest
{
    //////////////////////////////////////////////////////////////////////
    // random generators

    int randomInt(int minVal, int maxVal)
    {
        RNG& rng = TS::ptr()->get_rng();
        return rng.uniform(minVal, maxVal);
    }

    double randomDouble(double minVal, double maxVal)
    {
        RNG& rng = TS::ptr()->get_rng();
        return rng.uniform(minVal, maxVal);
    }

    Size randomSize(int minVal, int maxVal)
    {
        return Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
    }

    Scalar randomScalar(double minVal, double maxVal)
    {
        return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
    }

    Mat randomMat(Size size, int type, double minVal, double maxVal)
    {
        return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
    }

    //////////////////////////////////////////////////////////////////////
    // GpuMat create

    GpuMat createMat(Size size, int type, bool useRoi)
    {
        Size size0 = size;

        if (useRoi)
        {
            size0.width += randomInt(5, 15);
            size0.height += randomInt(5, 15);
        }

        GpuMat d_m(size0, type);

        if (size0 != size)
            d_m = d_m(Rect((size0.width - size.width) / 2, (size0.height - size.height) / 2, size.width, size.height));

        return d_m;
    }

    GpuMat loadMat(const Mat& m, bool useRoi)
    {
        GpuMat d_m = createMat(m.size(), m.type(), useRoi);
        d_m.upload(m);
        return d_m;
    }

    //////////////////////////////////////////////////////////////////////
    // Image load

    Mat readImage(const std::string& fileName, int flags)
    {
        return imread(TS::ptr()->get_data_path() + fileName, flags);
    }

    Mat readImageType(const std::string& fname, int type)
    {
        Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
        if (CV_MAT_CN(type) == 4)
        {
            Mat temp;
            cvtColor(src, temp, COLOR_BGR2BGRA);
            swap(src, temp);
        }
        src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0);
        return src;
    }

    //////////////////////////////////////////////////////////////////////
    // Gpu devices

    bool supportFeature(const DeviceInfo& info, FeatureSet feature)
    {
        return TargetArchs::builtWith(feature) && info.supports(feature);
    }

    DeviceManager& DeviceManager::instance()
    {
        static DeviceManager obj;
        return obj;
    }

    void DeviceManager::load(int i)
    {
        devices_.clear();
        devices_.reserve(1);

        std::ostringstream msg;

        if (i < 0 || i >= getCudaEnabledDeviceCount())
        {
            msg << "Incorrect device number - " << i;
            throw std::runtime_error(msg.str());
        }

        DeviceInfo info(i);

        if (!info.isCompatible())
        {
            msg << "Device " << i << " [" << info.name() << "] is NOT compatible with current CUDA module build";
            throw std::runtime_error(msg.str());
        }

        devices_.push_back(info);
    }

    void DeviceManager::loadAll()
    {
        int deviceCount = getCudaEnabledDeviceCount();

        devices_.clear();
        devices_.reserve(deviceCount);

        for (int i = 0; i < deviceCount; ++i)
        {
            DeviceInfo info(i);
            if (info.isCompatible())
            {
                devices_.push_back(info);
            }
        }
    }

    void parseCudaDeviceOptions(int argc, char **argv)
    {
        cv::CommandLineParser cmd(argc, argv,
            "{ cuda_device | -1    | CUDA device on which tests will be executed (-1 means all devices) }"
            "{ h help      | false | Print help info                                                    }"
        );

        if (cmd.has("help"))
        {
            std::cout << "\nAvailable options besides google test option: \n";
            cmd.printMessage();
        }

        int device = cmd.get<int>("cuda_device");
        if (device < 0)
        {
            cvtest::DeviceManager::instance().loadAll();
            std::cout << "Run tests on all supported CUDA devices \n" << std::endl;
        }
        else
        {
            cvtest::DeviceManager::instance().load(device);
            cv::cuda::DeviceInfo info(device);
            std::cout << "Run tests on CUDA device " << device << " [" << info.name() << "] \n" << std::endl;
        }
    }

    //////////////////////////////////////////////////////////////////////
    // Additional assertion

    namespace
    {
        template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p)
        {
            const int cn = m.channels();

            std::ostringstream ostr;
            ostr << "(";

            p.x /= cn;

            ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn));
            for (int c = 1; c < m.channels(); ++c)
            {
                ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c));
            }
            ostr << ")";

            return ostr.str();
        }

        std::string printMatVal(const Mat& m, Point p)
        {
            typedef std::string (*func_t)(const Mat& m, Point p);

            static const func_t funcs[] =
            {
                printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>,
                printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double>
            };

            return funcs[m.depth()](m, p);
        }
    }

    void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask)
    {
        if (src.depth() != CV_8S)
        {
            minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask);
            return;
        }

        // OpenCV's minMaxLoc doesn't support CV_8S type
        double minVal = std::numeric_limits<double>::max();
        Point minLoc(-1, -1);

        double maxVal = -std::numeric_limits<double>::max();
        Point maxLoc(-1, -1);

        for (int y = 0; y < src.rows; ++y)
        {
            const schar* src_row = src.ptr<schar>(y);
            const uchar* mask_row = mask.empty() ? 0 : mask.ptr<uchar>(y);

            for (int x = 0; x < src.cols; ++x)
            {
                if (!mask_row || mask_row[x])
                {
                    schar val = src_row[x];

                    if (val < minVal)
                    {
                        minVal = val;
                        minLoc = cv::Point(x, y);
                    }

                    if (val > maxVal)
                    {
                        maxVal = val;
                        maxLoc = cv::Point(x, y);
                    }
                }
            }
        }

        if (minVal_) *minVal_ = minVal;
        if (maxVal_) *maxVal_ = maxVal;

        if (minLoc_) *minLoc_ = minLoc;
        if (maxLoc_) *maxLoc_ = maxLoc;
    }

    Mat getMat(InputArray arr)
    {
        if (arr.kind() == _InputArray::CUDA_GPU_MAT)
        {
            Mat m;
            arr.getGpuMat().download(m);
            return m;
        }

        return arr.getMat();
    }

    AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, InputArray m1_, InputArray m2_, double eps)
    {
        Mat m1 = getMat(m1_);
        Mat m2 = getMat(m2_);

        if (m1.size() != m2.size())
        {
            return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different sizes : \""
                                      << expr1 << "\" [" << PrintToString(m1.size()) << "] vs \""
                                      << expr2 << "\" [" << PrintToString(m2.size()) << "]";
        }

        if (m1.type() != m2.type())
        {
            return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different types : \""
                                      << expr1 << "\" [" << PrintToString(MatType(m1.type())) << "] vs \""
                                      << expr2 << "\" [" << PrintToString(MatType(m2.type())) << "]";
        }

        Mat diff;
        absdiff(m1.reshape(1), m2.reshape(1), diff);

        double maxVal = 0.0;
        Point maxLoc;
        minMaxLocGold(diff, 0, &maxVal, 0, &maxLoc);

        if (maxVal > eps)
        {
            return AssertionFailure() << "The max difference between matrices \"" << expr1 << "\" and \"" << expr2
                                      << "\" is " << maxVal << " at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ")"
                                      << ", which exceeds \"" << eps_expr << "\", where \""
                                      << expr1 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m1, maxLoc) << ", \""
                                      << expr2 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m2, maxLoc) << ", \""
                                      << eps_expr << "\" evaluates to " << eps;
        }

        return AssertionSuccess();
    }

    double checkSimilarity(InputArray m1, InputArray m2)
    {
        Mat diff;
        matchTemplate(getMat(m1), getMat(m2), diff, TM_CCORR_NORMED);
        return std::abs(diff.at<float>(0, 0) - 1.f);
    }

    //////////////////////////////////////////////////////////////////////
    // Helper structs for value-parameterized tests

    vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
    {
        vector<MatType> v;

        v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1));

        for (int depth = depth_start; depth <= depth_end; ++depth)
        {
            for (int cn = cn_start; cn <= cn_end; ++cn)
            {
                v.push_back(MatType(CV_MAKE_TYPE(depth, cn)));
            }
        }

        return v;
    }

    const vector<MatType>& all_types()
    {
        static vector<MatType> v = types(CV_8U, CV_64F, 1, 4);

        return v;
    }

    void PrintTo(const UseRoi& useRoi, std::ostream* os)
    {
        if (useRoi)
            (*os) << "sub matrix";
        else
            (*os) << "whole matrix";
    }

    void PrintTo(const Inverse& inverse, std::ostream* os)
    {
        if (inverse)
            (*os) << "inverse";
        else
            (*os) << "direct";
    }

    //////////////////////////////////////////////////////////////////////
    // Other

    void dumpImage(const std::string& fileName, const Mat& image)
    {
        imwrite(TS::ptr()->get_data_path() + fileName, image);
    }

    void showDiff(InputArray gold_, InputArray actual_, double eps)
    {
        Mat gold = getMat(gold_);
        Mat actual = getMat(actual_);

        Mat diff;
        absdiff(gold, actual, diff);
        threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY);

        namedWindow("gold", WINDOW_NORMAL);
        namedWindow("actual", WINDOW_NORMAL);
        namedWindow("diff", WINDOW_NORMAL);

        imshow("gold", gold);
        imshow("actual", actual);
        imshow("diff", diff);

        waitKey();
    }

    namespace
    {
        bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
        {
            const double maxPtDif = 1.0;
            const double maxSizeDif = 1.0;
            const double maxAngleDif = 2.0;
            const double maxResponseDif = 0.1;

            double dist = cv::norm(p1.pt - p2.pt);

            if (dist < maxPtDif &&
                fabs(p1.size - p2.size) < maxSizeDif &&
                abs(p1.angle - p2.angle) < maxAngleDif &&
                abs(p1.response - p2.response) < maxResponseDif &&
                p1.octave == p2.octave &&
                p1.class_id == p2.class_id)
            {
                return true;
            }

            return false;
        }

        struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
        {
            bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
            {
                return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
            }
        };
    }

    testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
    {
        if (gold.size() != actual.size())
        {
            return testing::AssertionFailure() << "KeyPoints size mistmach\n"
                                               << "\"" << gold_expr << "\" : " << gold.size() << "\n"
                                               << "\"" << actual_expr << "\" : " << actual.size();
        }

        std::sort(actual.begin(), actual.end(), KeyPointLess());
        std::sort(gold.begin(), gold.end(), KeyPointLess());

        for (size_t i = 0; i < gold.size(); ++i)
        {
            const cv::KeyPoint& p1 = gold[i];
            const cv::KeyPoint& p2 = actual[i];

            if (!keyPointsEquals(p1, p2))
            {
                return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
                                                   << "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
                                                   << "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
                                                   << "size : " << p1.size << " vs " << p2.size << "\n"
                                                   << "angle : " << p1.angle << " vs " << p2.angle << "\n"
                                                   << "response : " << p1.response << " vs " << p2.response << "\n"
                                                   << "octave : " << p1.octave << " vs " << p2.octave << "\n"
                                                   << "class_id : " << p1.class_id << " vs " << p2.class_id;
            }
        }

        return ::testing::AssertionSuccess();
    }

    int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
    {
        std::sort(actual.begin(), actual.end(), KeyPointLess());
        std::sort(gold.begin(), gold.end(), KeyPointLess());

        int validCount = 0;

        for (size_t i = 0; i < gold.size(); ++i)
        {
            const cv::KeyPoint& p1 = gold[i];
            const cv::KeyPoint& p2 = actual[i];

            if (keyPointsEquals(p1, p2))
                ++validCount;
        }

        return validCount;
    }

    int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
    {
        int validCount = 0;

        for (size_t i = 0; i < matches.size(); ++i)
        {
            const cv::DMatch& m = matches[i];

            const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
            const cv::KeyPoint& p2 = keypoints2[m.trainIdx];

            if (keyPointsEquals(p1, p2))
                ++validCount;
        }

        return validCount;
    }

    void printCudaInfo()
    {
        perf::printCudaInfo();
    }
}


void cv::cuda::PrintTo(const DeviceInfo& info, std::ostream* os)
{
    (*os) << info.name();
}

/* [<][>][^][v][top][bottom][index][help] */