This source file includes following definitions.
- angle
- findSquares
- drawSquares
- drawSquaresBoth
- main
#include "opencv2/core.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <string.h>
using namespace cv;
using namespace std;
int thresh = 50, N = 11;
const char* wndname = "Square Detection Demo";
static double angle( Point pt1, Point pt2, Point pt0 )
{
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
static void findSquares( const UMat& image, vector<vector<Point> >& squares )
{
squares.clear();
UMat pyr, timg, gray0(image.size(), CV_8U), gray;
pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
pyrUp(pyr, timg, image.size());
vector<vector<Point> > contours;
for( int c = 0; c < 3; c++ )
{
int ch[] = {c, 0};
mixChannels(timg, gray0, ch, 1);
for( int l = 0; l < N; l++ )
{
if( l == 0 )
{
Canny(gray0, gray, 0, thresh, 5);
dilate(gray, gray, UMat(), Point(-1,-1));
}
else
{
cv::threshold(gray0, gray, (l+1)*255/N, 255, THRESH_BINARY);
}
findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);
vector<Point> approx;
for( size_t i = 0; i < contours.size(); i++ )
{
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
if( approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)) )
{
double maxCosine = 0;
for( int j = 2; j < 5; j++ )
{
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
if( maxCosine < 0.3 )
squares.push_back(approx);
}
}
}
}
}
static void drawSquares( UMat& _image, const vector<vector<Point> >& squares )
{
Mat image = _image.getMat(ACCESS_WRITE);
for( size_t i = 0; i < squares.size(); i++ )
{
const Point* p = &squares[i][0];
int n = (int)squares[i].size();
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, LINE_AA);
}
}
static UMat drawSquaresBoth( const UMat& image,
const vector<vector<Point> >& sqs)
{
UMat imgToShow(Size(image.cols, image.rows), image.type());
image.copyTo(imgToShow);
drawSquares(imgToShow, sqs);
return imgToShow;
}
int main(int argc, char** argv)
{
const char* keys =
"{ i input | ../data/pic1.png | specify input image }"
"{ o output | squares_output.jpg | specify output save path}"
"{ h help | false | print help message }"
"{ m cpu_mode | false | run without OpenCL }";
CommandLineParser cmd(argc, argv, keys);
if(cmd.has("help"))
{
cout << "Usage : squares [options]" << endl;
cout << "Available options:" << endl;
cmd.printMessage();
return EXIT_SUCCESS;
}
if (cmd.has("cpu_mode"))
{
ocl::setUseOpenCL(false);
std::cout << "OpenCL was disabled" << std::endl;
}
string inputName = cmd.get<string>("i");
string outfile = cmd.get<string>("o");
int iterations = 10;
namedWindow( wndname, WINDOW_AUTOSIZE );
vector<vector<Point> > squares;
UMat image;
imread(inputName, 1).copyTo(image);
if( image.empty() )
{
cout << "Couldn't load " << inputName << endl;
cmd.printMessage();
return EXIT_FAILURE;
}
int j = iterations;
int64 t_cpp = 0;
cout << "warming up ..." << endl;
findSquares(image, squares);
do
{
int64 t_start = cv::getTickCount();
findSquares(image, squares);
t_cpp += cv::getTickCount() - t_start;
t_start = cv::getTickCount();
cout << "run loop: " << j << endl;
}
while(--j);
cout << "average time: " << 1000.0f * (double)t_cpp / getTickFrequency() / iterations << "ms" << endl;
UMat result = drawSquaresBoth(image, squares);
imshow(wndname, result);
imwrite(outfile, result);
waitKey(0);
return EXIT_SUCCESS;
}