root/3rdparty/libwebp/dec/vp8.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. WebPGetDecoderVersion
  2. SetOk
  3. VP8InitIoInternal
  4. VP8New
  5. VP8StatusMessage
  6. VP8Delete
  7. VP8SetError
  8. VP8CheckSignature
  9. VP8GetInfo
  10. ResetSegmentHeader
  11. ParseSegmentHeader
  12. ParsePartitions
  13. ParseFilterHeader
  14. VP8GetHeaders
  15. GetLargeValue
  16. GetCoeffs
  17. ParseResiduals
  18. VP8DecodeMB
  19. VP8InitScanline
  20. ParseFrame
  21. VP8Decode
  22. VP8Clear

// Copyright 2010 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// main entry for the decoder
//
// Author: Skal (pascal.massimino@gmail.com)

#include <stdlib.h>

#include "./vp8i.h"
#include "./vp8li.h"
#include "./webpi.h"
#include "../utils/bit_reader.h"

#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif

//------------------------------------------------------------------------------

int WebPGetDecoderVersion(void) {
  return (DEC_MAJ_VERSION << 16) | (DEC_MIN_VERSION << 8) | DEC_REV_VERSION;
}

//------------------------------------------------------------------------------
// VP8Decoder

static void SetOk(VP8Decoder* const dec) {
  dec->status_ = VP8_STATUS_OK;
  dec->error_msg_ = "OK";
}

int VP8InitIoInternal(VP8Io* const io, int version) {
  if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_DECODER_ABI_VERSION)) {
    return 0;  // mismatch error
  }
  if (io != NULL) {
    memset(io, 0, sizeof(*io));
  }
  return 1;
}

VP8Decoder* VP8New(void) {
  VP8Decoder* const dec = (VP8Decoder*)calloc(1, sizeof(*dec));
  if (dec != NULL) {
    SetOk(dec);
    WebPWorkerInit(&dec->worker_);
    dec->ready_ = 0;
    dec->num_parts_ = 1;
  }
  return dec;
}

VP8StatusCode VP8Status(VP8Decoder* const dec) {
  if (!dec) return VP8_STATUS_INVALID_PARAM;
  return dec->status_;
}

const char* VP8StatusMessage(VP8Decoder* const dec) {
  if (dec == NULL) return "no object";
  if (!dec->error_msg_) return "OK";
  return dec->error_msg_;
}

void VP8Delete(VP8Decoder* const dec) {
  if (dec != NULL) {
    VP8Clear(dec);
    free(dec);
  }
}

int VP8SetError(VP8Decoder* const dec,
                VP8StatusCode error, const char* const msg) {
  // TODO This check would be unnecessary if alpha decompression was separated
  // from VP8ProcessRow/FinishRow. This avoids setting 'dec->status_' to
  // something other than VP8_STATUS_BITSTREAM_ERROR on alpha decompression
  // failure.
  if (dec->status_ == VP8_STATUS_OK) {
    dec->status_ = error;
    dec->error_msg_ = msg;
    dec->ready_ = 0;
  }
  return 0;
}

//------------------------------------------------------------------------------

int VP8CheckSignature(const uint8_t* const data, size_t data_size) {
  return (data_size >= 3 &&
          data[0] == 0x9d && data[1] == 0x01 && data[2] == 0x2a);
}

int VP8GetInfo(const uint8_t* data, size_t data_size, size_t chunk_size,
               int* const width, int* const height) {
  if (data == NULL || data_size < VP8_FRAME_HEADER_SIZE) {
    return 0;         // not enough data
  }
  // check signature
  if (!VP8CheckSignature(data + 3, data_size - 3)) {
    return 0;         // Wrong signature.
  } else {
    const uint32_t bits = data[0] | (data[1] << 8) | (data[2] << 16);
    const int key_frame = !(bits & 1);
    const int w = ((data[7] << 8) | data[6]) & 0x3fff;
    const int h = ((data[9] << 8) | data[8]) & 0x3fff;

    if (!key_frame) {   // Not a keyframe.
      return 0;
    }

    if (((bits >> 1) & 7) > 3) {
      return 0;         // unknown profile
    }
    if (!((bits >> 4) & 1)) {
      return 0;         // first frame is invisible!
    }
    if (((bits >> 5)) >= chunk_size) {  // partition_length
      return 0;         // inconsistent size information.
    }

    if (width) {
      *width = w;
    }
    if (height) {
      *height = h;
    }

    return 1;
  }
}

//------------------------------------------------------------------------------
// Header parsing

static void ResetSegmentHeader(VP8SegmentHeader* const hdr) {
  assert(hdr != NULL);
  hdr->use_segment_ = 0;
  hdr->update_map_ = 0;
  hdr->absolute_delta_ = 1;
  memset(hdr->quantizer_, 0, sizeof(hdr->quantizer_));
  memset(hdr->filter_strength_, 0, sizeof(hdr->filter_strength_));
}

// Paragraph 9.3
static int ParseSegmentHeader(VP8BitReader* br,
                              VP8SegmentHeader* hdr, VP8Proba* proba) {
  assert(br != NULL);
  assert(hdr != NULL);
  hdr->use_segment_ = VP8Get(br);
  if (hdr->use_segment_) {
    hdr->update_map_ = VP8Get(br);
    if (VP8Get(br)) {   // update data
      int s;
      hdr->absolute_delta_ = VP8Get(br);
      for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
        hdr->quantizer_[s] = VP8Get(br) ? VP8GetSignedValue(br, 7) : 0;
      }
      for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
        hdr->filter_strength_[s] = VP8Get(br) ? VP8GetSignedValue(br, 6) : 0;
      }
    }
    if (hdr->update_map_) {
      int s;
      for (s = 0; s < MB_FEATURE_TREE_PROBS; ++s) {
        proba->segments_[s] = VP8Get(br) ? VP8GetValue(br, 8) : 255u;
      }
    }
  } else {
    hdr->update_map_ = 0;
  }
  return !br->eof_;
}

// Paragraph 9.5
// This function returns VP8_STATUS_SUSPENDED if we don't have all the
// necessary data in 'buf'.
// This case is not necessarily an error (for incremental decoding).
// Still, no bitreader is ever initialized to make it possible to read
// unavailable memory.
// If we don't even have the partitions' sizes, than VP8_STATUS_NOT_ENOUGH_DATA
// is returned, and this is an unrecoverable error.
// If the partitions were positioned ok, VP8_STATUS_OK is returned.
static VP8StatusCode ParsePartitions(VP8Decoder* const dec,
                                     const uint8_t* buf, size_t size) {
  VP8BitReader* const br = &dec->br_;
  const uint8_t* sz = buf;
  const uint8_t* buf_end = buf + size;
  const uint8_t* part_start;
  int last_part;
  int p;

  dec->num_parts_ = 1 << VP8GetValue(br, 2);
  last_part = dec->num_parts_ - 1;
  part_start = buf + last_part * 3;
  if (buf_end < part_start) {
    // we can't even read the sizes with sz[]! That's a failure.
    return VP8_STATUS_NOT_ENOUGH_DATA;
  }
  for (p = 0; p < last_part; ++p) {
    const uint32_t psize = sz[0] | (sz[1] << 8) | (sz[2] << 16);
    const uint8_t* part_end = part_start + psize;
    if (part_end > buf_end) part_end = buf_end;
    VP8InitBitReader(dec->parts_ + p, part_start, part_end);
    part_start = part_end;
    sz += 3;
  }
  VP8InitBitReader(dec->parts_ + last_part, part_start, buf_end);
  return (part_start < buf_end) ? VP8_STATUS_OK :
           VP8_STATUS_SUSPENDED;   // Init is ok, but there's not enough data
}

// Paragraph 9.4
static int ParseFilterHeader(VP8BitReader* br, VP8Decoder* const dec) {
  VP8FilterHeader* const hdr = &dec->filter_hdr_;
  hdr->simple_    = VP8Get(br);
  hdr->level_     = VP8GetValue(br, 6);
  hdr->sharpness_ = VP8GetValue(br, 3);
  hdr->use_lf_delta_ = VP8Get(br);
  if (hdr->use_lf_delta_) {
    if (VP8Get(br)) {   // update lf-delta?
      int i;
      for (i = 0; i < NUM_REF_LF_DELTAS; ++i) {
        if (VP8Get(br)) {
          hdr->ref_lf_delta_[i] = VP8GetSignedValue(br, 6);
        }
      }
      for (i = 0; i < NUM_MODE_LF_DELTAS; ++i) {
        if (VP8Get(br)) {
          hdr->mode_lf_delta_[i] = VP8GetSignedValue(br, 6);
        }
      }
    }
  }
  dec->filter_type_ = (hdr->level_ == 0) ? 0 : hdr->simple_ ? 1 : 2;
  return !br->eof_;
}

// Topmost call
int VP8GetHeaders(VP8Decoder* const dec, VP8Io* const io) {
  const uint8_t* buf;
  size_t buf_size;
  VP8FrameHeader* frm_hdr;
  VP8PictureHeader* pic_hdr;
  VP8BitReader* br;
  VP8StatusCode status;
  WebPHeaderStructure headers;

  if (dec == NULL) {
    return 0;
  }
  SetOk(dec);
  if (io == NULL) {
    return VP8SetError(dec, VP8_STATUS_INVALID_PARAM,
                       "null VP8Io passed to VP8GetHeaders()");
  }

  // Process Pre-VP8 chunks.
  headers.data = io->data;
  headers.data_size = io->data_size;
  status = WebPParseHeaders(&headers);
  if (status != VP8_STATUS_OK) {
    return VP8SetError(dec, status, "Incorrect/incomplete header.");
  }
  if (headers.is_lossless) {
    return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
                       "Unexpected lossless format encountered.");
  }

  if (dec->alpha_data_ == NULL) {
    assert(dec->alpha_data_size_ == 0);
    // We have NOT set alpha data yet. Set it now.
    // (This is to ensure that dec->alpha_data_ is NOT reset to NULL if
    // WebPParseHeaders() is called more than once, as in incremental decoding
    // case.)
    dec->alpha_data_ = headers.alpha_data;
    dec->alpha_data_size_ = headers.alpha_data_size;
  }

  // Process the VP8 frame header.
  buf = headers.data + headers.offset;
  buf_size = headers.data_size - headers.offset;
  assert(headers.data_size >= headers.offset);  // WebPParseHeaders' guarantee
  if (buf_size < 4) {
    return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
                       "Truncated header.");
  }

  // Paragraph 9.1
  {
    const uint32_t bits = buf[0] | (buf[1] << 8) | (buf[2] << 16);
    frm_hdr = &dec->frm_hdr_;
    frm_hdr->key_frame_ = !(bits & 1);
    frm_hdr->profile_ = (bits >> 1) & 7;
    frm_hdr->show_ = (bits >> 4) & 1;
    frm_hdr->partition_length_ = (bits >> 5);
    if (frm_hdr->profile_ > 3)
      return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
                         "Incorrect keyframe parameters.");
    if (!frm_hdr->show_)
      return VP8SetError(dec, VP8_STATUS_UNSUPPORTED_FEATURE,
                         "Frame not displayable.");
    buf += 3;
    buf_size -= 3;
  }

  pic_hdr = &dec->pic_hdr_;
  if (frm_hdr->key_frame_) {
    // Paragraph 9.2
    if (buf_size < 7) {
      return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
                         "cannot parse picture header");
    }
    if (!VP8CheckSignature(buf, buf_size)) {
      return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
                         "Bad code word");
    }
    pic_hdr->width_ = ((buf[4] << 8) | buf[3]) & 0x3fff;
    pic_hdr->xscale_ = buf[4] >> 6;   // ratio: 1, 5/4 5/3 or 2
    pic_hdr->height_ = ((buf[6] << 8) | buf[5]) & 0x3fff;
    pic_hdr->yscale_ = buf[6] >> 6;
    buf += 7;
    buf_size -= 7;

    dec->mb_w_ = (pic_hdr->width_ + 15) >> 4;
    dec->mb_h_ = (pic_hdr->height_ + 15) >> 4;
    // Setup default output area (can be later modified during io->setup())
    io->width = pic_hdr->width_;
    io->height = pic_hdr->height_;
    io->use_scaling  = 0;
    io->use_cropping = 0;
    io->crop_top  = 0;
    io->crop_left = 0;
    io->crop_right  = io->width;
    io->crop_bottom = io->height;
    io->mb_w = io->width;   // sanity check
    io->mb_h = io->height;  // ditto

    VP8ResetProba(&dec->proba_);
    ResetSegmentHeader(&dec->segment_hdr_);
    dec->segment_ = 0;    // default for intra
  }

  // Check if we have all the partition #0 available, and initialize dec->br_
  // to read this partition (and this partition only).
  if (frm_hdr->partition_length_ > buf_size) {
    return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
                       "bad partition length");
  }

  br = &dec->br_;
  VP8InitBitReader(br, buf, buf + frm_hdr->partition_length_);
  buf += frm_hdr->partition_length_;
  buf_size -= frm_hdr->partition_length_;

  if (frm_hdr->key_frame_) {
    pic_hdr->colorspace_ = VP8Get(br);
    pic_hdr->clamp_type_ = VP8Get(br);
  }
  if (!ParseSegmentHeader(br, &dec->segment_hdr_, &dec->proba_)) {
    return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
                       "cannot parse segment header");
  }
  // Filter specs
  if (!ParseFilterHeader(br, dec)) {
    return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
                       "cannot parse filter header");
  }
  status = ParsePartitions(dec, buf, buf_size);
  if (status != VP8_STATUS_OK) {
    return VP8SetError(dec, status, "cannot parse partitions");
  }

  // quantizer change
  VP8ParseQuant(dec);

  // Frame buffer marking
  if (!frm_hdr->key_frame_) {
    // Paragraph 9.7
#ifndef ONLY_KEYFRAME_CODE
    dec->buffer_flags_ = VP8Get(br) << 0;   // update golden
    dec->buffer_flags_ |= VP8Get(br) << 1;  // update alt ref
    if (!(dec->buffer_flags_ & 1)) {
      dec->buffer_flags_ |= VP8GetValue(br, 2) << 2;
    }
    if (!(dec->buffer_flags_ & 2)) {
      dec->buffer_flags_ |= VP8GetValue(br, 2) << 4;
    }
    dec->buffer_flags_ |= VP8Get(br) << 6;    // sign bias golden
    dec->buffer_flags_ |= VP8Get(br) << 7;    // sign bias alt ref
#else
    return VP8SetError(dec, VP8_STATUS_UNSUPPORTED_FEATURE,
                       "Not a key frame.");
#endif
  } else {
    dec->buffer_flags_ = 0x003 | 0x100;
  }

  // Paragraph 9.8
#ifndef ONLY_KEYFRAME_CODE
  dec->update_proba_ = VP8Get(br);
  if (!dec->update_proba_) {    // save for later restore
    dec->proba_saved_ = dec->proba_;
  }
  dec->buffer_flags_ &= 1 << 8;
  dec->buffer_flags_ |=
      (frm_hdr->key_frame_ || VP8Get(br)) << 8;    // refresh last frame
#else
  VP8Get(br);   // just ignore the value of update_proba_
#endif

  VP8ParseProba(br, dec);

#ifdef WEBP_EXPERIMENTAL_FEATURES
  // Extensions
  if (dec->pic_hdr_.colorspace_) {
    const size_t kTrailerSize = 8;
    const uint8_t kTrailerMarker = 0x01;
    const uint8_t* ext_buf = buf - kTrailerSize;
    size_t size;

    if (frm_hdr->partition_length_ < kTrailerSize ||
        ext_buf[kTrailerSize - 1] != kTrailerMarker) {
      return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
                         "RIFF: Inconsistent extra information.");
    }

    // Layer
    size = (ext_buf[0] << 0) | (ext_buf[1] << 8) | (ext_buf[2] << 16);
    dec->layer_data_size_ = size;
    dec->layer_data_ = NULL;  // will be set later
    dec->layer_colorspace_ = ext_buf[3];
  }
#endif

  // sanitized state
  dec->ready_ = 1;
  return 1;
}

//------------------------------------------------------------------------------
// Residual decoding (Paragraph 13.2 / 13.3)

static const int kBands[16 + 1] = {
  0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7,
  0  // extra entry as sentinel
};

static const uint8_t kCat3[] = { 173, 148, 140, 0 };
static const uint8_t kCat4[] = { 176, 155, 140, 135, 0 };
static const uint8_t kCat5[] = { 180, 157, 141, 134, 130, 0 };
static const uint8_t kCat6[] =
  { 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0 };
static const uint8_t* const kCat3456[] = { kCat3, kCat4, kCat5, kCat6 };
static const uint8_t kZigzag[16] = {
  0, 1, 4, 8,  5, 2, 3, 6,  9, 12, 13, 10,  7, 11, 14, 15
};

typedef const uint8_t (*ProbaArray)[NUM_CTX][NUM_PROBAS];  // for const-casting
typedef const uint8_t (*ProbaCtxArray)[NUM_PROBAS];

// See section 13-2: http://tools.ietf.org/html/rfc6386#section-13.2
static int GetLargeValue(VP8BitReader* const br, const uint8_t* const p) {
  int v;
  if (!VP8GetBit(br, p[3])) {
    if (!VP8GetBit(br, p[4])) {
      v = 2;
    } else {
      v = 3 + VP8GetBit(br, p[5]);
    }
  } else {
    if (!VP8GetBit(br, p[6])) {
      if (!VP8GetBit(br, p[7])) {
        v = 5 + VP8GetBit(br, 159);
      } else {
        v = 7 + 2 * VP8GetBit(br, 165);
        v += VP8GetBit(br, 145);
      }
    } else {
      const uint8_t* tab;
      const int bit1 = VP8GetBit(br, p[8]);
      const int bit0 = VP8GetBit(br, p[9 + bit1]);
      const int cat = 2 * bit1 + bit0;
      v = 0;
      for (tab = kCat3456[cat]; *tab; ++tab) {
        v += v + VP8GetBit(br, *tab);
      }
      v += 3 + (8 << cat);
    }
  }
  return v;
}

// Returns the position of the last non-zero coeff plus one
// (and 0 if there's no coeff at all)
static int GetCoeffs(VP8BitReader* const br, ProbaArray prob,
                     int ctx, const quant_t dq, int n, int16_t* out) {
  // n is either 0 or 1 here. kBands[n] is not necessary for extracting '*p'.
  const uint8_t* p = prob[n][ctx];
  if (!VP8GetBit(br, p[0])) {   // first EOB is more a 'CBP' bit.
    return 0;
  }
  for (; n < 16; ++n) {
    const ProbaCtxArray p_ctx = prob[kBands[n + 1]];
    if (!VP8GetBit(br, p[1])) {
      p = p_ctx[0];
    } else {  // non zero coeff
      int v;
      if (!VP8GetBit(br, p[2])) {
        v = 1;
        p = p_ctx[1];
      } else {
        v = GetLargeValue(br, p);
        p = p_ctx[2];
      }
      out[kZigzag[n]] = VP8GetSigned(br, v) * dq[n > 0];
      if (n < 15 && !VP8GetBit(br, p[0])) {   // EOB
        return n + 1;
      }
    }
  }
  return 16;
}

// Alias-safe way of converting 4bytes to 32bits.
typedef union {
  uint8_t  i8[4];
  uint32_t i32;
} PackedNz;

// Table to unpack four bits into four bytes
static const PackedNz kUnpackTab[16] = {
  {{0, 0, 0, 0}},  {{1, 0, 0, 0}},  {{0, 1, 0, 0}},  {{1, 1, 0, 0}},
  {{0, 0, 1, 0}},  {{1, 0, 1, 0}},  {{0, 1, 1, 0}},  {{1, 1, 1, 0}},
  {{0, 0, 0, 1}},  {{1, 0, 0, 1}},  {{0, 1, 0, 1}},  {{1, 1, 0, 1}},
  {{0, 0, 1, 1}},  {{1, 0, 1, 1}},  {{0, 1, 1, 1}},  {{1, 1, 1, 1}} };

// Macro to pack four LSB of four bytes into four bits.
#if defined(__PPC__) || defined(_M_PPC) || defined(_ARCH_PPC) || \
    defined(__BIG_ENDIAN__)
#define PACK_CST 0x08040201U
#else
#define PACK_CST 0x01020408U
#endif
#define PACK(X, S) ((((X).i32 * PACK_CST) & 0xff000000) >> (S))

static void ParseResiduals(VP8Decoder* const dec,
                           VP8MB* const mb, VP8BitReader* const token_br) {
  int out_t_nz, out_l_nz, first;
  ProbaArray ac_prob;
  const VP8QuantMatrix* q = &dec->dqm_[dec->segment_];
  int16_t* dst = dec->coeffs_;
  VP8MB* const left_mb = dec->mb_info_ - 1;
  PackedNz nz_ac, nz_dc;
  PackedNz tnz, lnz;
  uint32_t non_zero_ac = 0;
  uint32_t non_zero_dc = 0;
  int x, y, ch;

  nz_dc.i32 = nz_ac.i32 = 0;
  memset(dst, 0, 384 * sizeof(*dst));
  if (!dec->is_i4x4_) {    // parse DC
    int16_t dc[16] = { 0 };
    const int ctx = mb->dc_nz_ + left_mb->dc_nz_;
    mb->dc_nz_ = left_mb->dc_nz_ =
        (GetCoeffs(token_br, (ProbaArray)dec->proba_.coeffs_[1],
                   ctx, q->y2_mat_, 0, dc) > 0);
    first = 1;
    ac_prob = (ProbaArray)dec->proba_.coeffs_[0];
    VP8TransformWHT(dc, dst);
  } else {
    first = 0;
    ac_prob = (ProbaArray)dec->proba_.coeffs_[3];
  }

  tnz = kUnpackTab[mb->nz_ & 0xf];
  lnz = kUnpackTab[left_mb->nz_ & 0xf];
  for (y = 0; y < 4; ++y) {
    int l = lnz.i8[y];
    for (x = 0; x < 4; ++x) {
      const int ctx = l + tnz.i8[x];
      const int nz = GetCoeffs(token_br, ac_prob, ctx,
                               q->y1_mat_, first, dst);
      tnz.i8[x] = l = (nz > 0);
      nz_dc.i8[x] = (dst[0] != 0);
      nz_ac.i8[x] = (nz > 1);
      dst += 16;
    }
    lnz.i8[y] = l;
    non_zero_dc |= PACK(nz_dc, 24 - y * 4);
    non_zero_ac |= PACK(nz_ac, 24 - y * 4);
  }
  out_t_nz = PACK(tnz, 24);
  out_l_nz = PACK(lnz, 24);

  tnz = kUnpackTab[mb->nz_ >> 4];
  lnz = kUnpackTab[left_mb->nz_ >> 4];
  for (ch = 0; ch < 4; ch += 2) {
    for (y = 0; y < 2; ++y) {
      int l = lnz.i8[ch + y];
      for (x = 0; x < 2; ++x) {
        const int ctx = l + tnz.i8[ch + x];
        const int nz =
            GetCoeffs(token_br, (ProbaArray)dec->proba_.coeffs_[2],
                      ctx, q->uv_mat_, 0, dst);
        tnz.i8[ch + x] = l = (nz > 0);
        nz_dc.i8[y * 2 + x] = (dst[0] != 0);
        nz_ac.i8[y * 2 + x] = (nz > 1);
        dst += 16;
      }
      lnz.i8[ch + y] = l;
    }
    non_zero_dc |= PACK(nz_dc, 8 - ch * 2);
    non_zero_ac |= PACK(nz_ac, 8 - ch * 2);
  }
  out_t_nz |= PACK(tnz, 20);
  out_l_nz |= PACK(lnz, 20);
  mb->nz_ = out_t_nz;
  left_mb->nz_ = out_l_nz;

  dec->non_zero_ac_ = non_zero_ac;
  dec->non_zero_ = non_zero_ac | non_zero_dc;
  mb->skip_ = !dec->non_zero_;
}
#undef PACK

//------------------------------------------------------------------------------
// Main loop

int VP8DecodeMB(VP8Decoder* const dec, VP8BitReader* const token_br) {
  VP8BitReader* const br = &dec->br_;
  VP8MB* const left = dec->mb_info_ - 1;
  VP8MB* const info = dec->mb_info_ + dec->mb_x_;

  // Note: we don't save segment map (yet), as we don't expect
  // to decode more than 1 keyframe.
  if (dec->segment_hdr_.update_map_) {
    // Hardcoded tree parsing
    dec->segment_ = !VP8GetBit(br, dec->proba_.segments_[0]) ?
        VP8GetBit(br, dec->proba_.segments_[1]) :
        2 + VP8GetBit(br, dec->proba_.segments_[2]);
  }
  info->skip_ = dec->use_skip_proba_ ? VP8GetBit(br, dec->skip_p_) : 0;

  VP8ParseIntraMode(br, dec);
  if (br->eof_) {
    return 0;
  }

  if (!info->skip_) {
    ParseResiduals(dec, info, token_br);
  } else {
    left->nz_ = info->nz_ = 0;
    if (!dec->is_i4x4_) {
      left->dc_nz_ = info->dc_nz_ = 0;
    }
    dec->non_zero_ = 0;
    dec->non_zero_ac_ = 0;
  }

  if (dec->filter_type_ > 0) {  // store filter info
    VP8FInfo* const finfo = dec->f_info_ + dec->mb_x_;
    *finfo = dec->fstrengths_[dec->segment_][dec->is_i4x4_];
    finfo->f_inner_ = (!info->skip_ || dec->is_i4x4_);
  }

  return (!token_br->eof_);
}

void VP8InitScanline(VP8Decoder* const dec) {
  VP8MB* const left = dec->mb_info_ - 1;
  left->nz_ = 0;
  left->dc_nz_ = 0;
  memset(dec->intra_l_, B_DC_PRED, sizeof(dec->intra_l_));
  dec->filter_row_ =
    (dec->filter_type_ > 0) &&
    (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_);
}

static int ParseFrame(VP8Decoder* const dec, VP8Io* io) {
  for (dec->mb_y_ = 0; dec->mb_y_ < dec->br_mb_y_; ++dec->mb_y_) {
    VP8BitReader* const token_br =
        &dec->parts_[dec->mb_y_ & (dec->num_parts_ - 1)];
    VP8InitScanline(dec);
    for (dec->mb_x_ = 0; dec->mb_x_ < dec->mb_w_;  dec->mb_x_++) {
      if (!VP8DecodeMB(dec, token_br)) {
        return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
                           "Premature end-of-file encountered.");
      }
      // Reconstruct and emit samples.
      VP8ReconstructBlock(dec);
    }
    if (!VP8ProcessRow(dec, io)) {
      return VP8SetError(dec, VP8_STATUS_USER_ABORT, "Output aborted.");
    }
  }
  if (dec->use_threads_ && !WebPWorkerSync(&dec->worker_)) {
    return 0;
  }

  // Finish
#ifndef ONLY_KEYFRAME_CODE
  if (!dec->update_proba_) {
    dec->proba_ = dec->proba_saved_;
  }
#endif

#ifdef WEBP_EXPERIMENTAL_FEATURES
  if (dec->layer_data_size_ > 0) {
    if (!VP8DecodeLayer(dec)) {
      return 0;
    }
  }
#endif

  return 1;
}

// Main entry point
int VP8Decode(VP8Decoder* const dec, VP8Io* const io) {
  int ok = 0;
  if (dec == NULL) {
    return 0;
  }
  if (io == NULL) {
    return VP8SetError(dec, VP8_STATUS_INVALID_PARAM,
                       "NULL VP8Io parameter in VP8Decode().");
  }

  if (!dec->ready_) {
    if (!VP8GetHeaders(dec, io)) {
      return 0;
    }
  }
  assert(dec->ready_);

  // Finish setting up the decoding parameter. Will call io->setup().
  ok = (VP8EnterCritical(dec, io) == VP8_STATUS_OK);
  if (ok) {   // good to go.
    // Will allocate memory and prepare everything.
    if (ok) ok = VP8InitFrame(dec, io);

    // Main decoding loop
    if (ok) ok = ParseFrame(dec, io);

    // Exit.
    ok &= VP8ExitCritical(dec, io);
  }

  if (!ok) {
    VP8Clear(dec);
    return 0;
  }

  dec->ready_ = 0;
  return ok;
}

void VP8Clear(VP8Decoder* const dec) {
  if (dec == NULL) {
    return;
  }
  if (dec->use_threads_) {
    WebPWorkerEnd(&dec->worker_);
  }
  if (dec->mem_) {
    free(dec->mem_);
  }
  dec->mem_ = NULL;
  dec->mem_size_ = 0;
  memset(&dec->br_, 0, sizeof(dec->br_));
  dec->ready_ = 0;
}

//------------------------------------------------------------------------------

#if defined(__cplusplus) || defined(c_plusplus)
}    // extern "C"
#endif

/* [<][>][^][v][top][bottom][index][help] */