root/3rdparty/openexr/IlmThread/IlmThreadPool.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. run
  2. numPending
  3. addTask
  4. removeTask
  5. stopping
  6. finish
  7. stopped
  8. stop
  9. group
  10. numThreads
  11. setNumThreads
  12. addTask
  13. globalThreadPool
  14. addGlobalTask

///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2005, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////

//-----------------------------------------------------------------------------
//
//      class Task, class ThreadPool, class TaskGroup
//
//-----------------------------------------------------------------------------

#include "IlmThread.h"
#include "IlmThreadMutex.h"
#include "IlmThreadSemaphore.h"
#include "IlmThreadPool.h"
#include "Iex.h"
#include <list>

using namespace std;

namespace IlmThread {
namespace {

class WorkerThread: public Thread
{
  public:

    WorkerThread (ThreadPool::Data* data);

    virtual void        run ();

  private:

    ThreadPool::Data *  _data;
};

} //namespace


struct TaskGroup::Data
{
     Data ();
    ~Data ();

    void        addTask () ;
    void        removeTask ();

    Semaphore   isEmpty;        // used to signal that the taskgroup is empty
    int         numPending;     // number of pending tasks to still execute
};


struct ThreadPool::Data
{
     Data ();
    ~Data();

    void        finish ();
    bool        stopped () const;
    void        stop ();

    Semaphore taskSemaphore;        // threads wait on this for ready tasks
    Mutex taskMutex;                // mutual exclusion for the tasks list
    list<Task*> tasks;              // the list of tasks to execute
    size_t numTasks;                // fast access to list size
                                    //   (list::size() can be O(n))

    Semaphore threadSemaphore;      // signaled when a thread starts executing
    Mutex threadMutex;              // mutual exclusion for threads list
    list<WorkerThread*> threads;    // the list of all threads
    size_t numThreads;              // fast access to list size

    bool stopping;                  // flag indicating whether to stop threads
    Mutex stopMutex;                // mutual exclusion for stopping flag
};



//
// class WorkerThread
//

WorkerThread::WorkerThread (ThreadPool::Data* data):
    _data (data)
{
    start();
}


void
WorkerThread::run ()
{
    //
    // Signal that the thread has started executing
    //

    _data->threadSemaphore.post();

    while (true)
    {
    //
        // Wait for a task to become available
    //

        _data->taskSemaphore.wait();

        {
            Lock taskLock (_data->taskMutex);

        //
            // If there is a task pending, pop off the next task in the FIFO
        //

            if (_data->numTasks > 0)
            {
                Task* task = _data->tasks.front();
        TaskGroup* taskGroup = task->group();
                _data->tasks.pop_front();
                _data->numTasks--;

                taskLock.release();
                task->execute();
                taskLock.acquire();

                delete task;
                taskGroup->_data->removeTask();
            }
            else if (_data->stopped())
        {
                break;
        }
        }
    }
}


//
// struct TaskGroup::Data
//

TaskGroup::Data::Data (): isEmpty (1), numPending (0)
{
    // empty
}


TaskGroup::Data::~Data ()
{
    //
    // A TaskGroup acts like an "inverted" semaphore: if the count
    // is above 0 then waiting on the taskgroup will block.  This
    // destructor waits until the taskgroup is empty before returning.
    //

    isEmpty.wait ();
}


void
TaskGroup::Data::addTask ()
{
    //
    // Any access to the taskgroup is protected by a mutex that is
    // held by the threadpool.  Therefore it is safe to access
    // numPending before we wait on the semaphore.
    //

    if (numPending++ == 0)
    isEmpty.wait ();
}


void
TaskGroup::Data::removeTask ()
{
    if (--numPending == 0)
    isEmpty.post ();
}


//
// struct ThreadPool::Data
//

ThreadPool::Data::Data (): numTasks (0), numThreads (0), stopping (false)
{
    // empty
}


ThreadPool::Data::~Data()
{
    Lock lock (threadMutex);
    finish ();
}


void
ThreadPool::Data::finish ()
{
    stop();

    //
    // Signal enough times to allow all threads to stop.
    //
    // Wait until all threads have started their run functions.
    // If we do not wait before we destroy the threads then it's
    // possible that the threads have not yet called their run
    // functions.
    // If this happens then the run function will be called off
    // of an invalid object and we will crash, most likely with
    // an error like: "pure virtual method called"
    //

    for (size_t i = 0; i < numThreads; i++)
    {
    taskSemaphore.post();
    threadSemaphore.wait();
    }

    //
    // Join all the threads
    //

    for (list<WorkerThread*>::iterator i = threads.begin();
     i != threads.end();
     ++i)
    {
    delete (*i);
    }

    Lock lock1 (taskMutex);
    Lock lock2 (stopMutex);
    threads.clear();
    tasks.clear();
    numThreads = 0;
    numTasks = 0;
    stopping = false;
}


bool
ThreadPool::Data::stopped () const
{
    Lock lock (stopMutex);
    return stopping;
}


void
ThreadPool::Data::stop ()
{
    Lock lock (stopMutex);
    stopping = true;
}


//
// class Task
//

Task::Task (TaskGroup* g): _group(g)
{
    // empty
}


Task::~Task()
{
    // empty
}


TaskGroup*
Task::group ()
{
    return _group;
}


TaskGroup::TaskGroup ():
    _data (new Data())
{
    // empty
}


TaskGroup::~TaskGroup ()
{
    delete _data;
}


//
// class ThreadPool
//

ThreadPool::ThreadPool (unsigned nthreads):
    _data (new Data())
{
    setNumThreads (nthreads);
}


ThreadPool::~ThreadPool ()
{
    delete _data;
}


int
ThreadPool::numThreads () const
{
    Lock lock (_data->threadMutex);
    return _data->numThreads;
}


void
ThreadPool::setNumThreads (int count)
{
    if (count < 0)
        throw Iex::ArgExc ("Attempt to set the number of threads "
               "in a thread pool to a negative value.");

    //
    // Lock access to thread list and size
    //

    Lock lock (_data->threadMutex);

    if ((size_t)count > _data->numThreads)
    {
    //
        // Add more threads
    //

        while (_data->numThreads < (size_t)count)
        {
            _data->threads.push_back (new WorkerThread (_data));
            _data->numThreads++;
        }
    }
    else if ((size_t)count < _data->numThreads)
    {
    //
    // Wait until all existing threads are finished processing,
    // then delete all threads.
    //

        _data->finish ();

    //
        // Add in new threads
    //

        while (_data->numThreads < (size_t)count)
        {
            _data->threads.push_back (new WorkerThread (_data));
            _data->numThreads++;
        }
    }
}


void
ThreadPool::addTask (Task* task)
{
    //
    // Lock the threads, needed to access numThreads
    //

    Lock lock (_data->threadMutex);

    if (_data->numThreads == 0)
    {
        task->execute ();
        delete task;
    }
    else
    {
    //
        // Get exclusive access to the tasks queue
    //

        {
            Lock taskLock (_data->taskMutex);

        //
            // Push the new task into the FIFO
        //

            _data->tasks.push_back (task);
            _data->numTasks++;
            task->group()->_data->addTask();
        }

    //
        // Signal that we have a new task to process
    //

        _data->taskSemaphore.post ();
    }
}


ThreadPool&
ThreadPool::globalThreadPool ()
{
    //
    // The global thread pool
    //

    static ThreadPool gThreadPool (0);

    return gThreadPool;
}


void
ThreadPool::addGlobalTask (Task* task)
{
    globalThreadPool().addTask (task);
}


} // namespace IlmThread

/* [<][>][^][v][top][bottom][index][help] */