root/modules/core/include/opencv2/core/cuda/block.hpp

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. id
  2. stride
  3. sync
  4. flattenedThreadId
  5. fill
  6. yota
  7. copy
  8. transfrom
  9. transfrom
  10. reduce
  11. reduce
  12. reduce_n

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_CUDA_DEVICE_BLOCK_HPP__
#define __OPENCV_CUDA_DEVICE_BLOCK_HPP__

/** @file
 * @deprecated Use @ref cudev instead.
 */

//! @cond IGNORED

namespace cv { namespace cuda { namespace device
{
    struct Block
    {
        static __device__ __forceinline__ unsigned int id()
        {
            return blockIdx.x;
        }

        static __device__ __forceinline__ unsigned int stride()
        {
            return blockDim.x * blockDim.y * blockDim.z;
        }

        static __device__ __forceinline__ void sync()
        {
            __syncthreads();
        }

        static __device__ __forceinline__ int flattenedThreadId()
        {
            return threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
        }

        template<typename It, typename T>
        static __device__ __forceinline__ void fill(It beg, It end, const T& value)
        {
            int STRIDE = stride();
            It t = beg + flattenedThreadId();

            for(; t < end; t += STRIDE)
                *t = value;
        }

        template<typename OutIt, typename T>
        static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value)
        {
            int STRIDE = stride();
            int tid = flattenedThreadId();
            value += tid;

            for(OutIt t = beg + tid; t < end; t += STRIDE, value += STRIDE)
                *t = value;
        }

        template<typename InIt, typename OutIt>
        static __device__ __forceinline__ void copy(InIt beg, InIt end, OutIt out)
        {
            int STRIDE = stride();
            InIt  t = beg + flattenedThreadId();
            OutIt o = out + (t - beg);

            for(; t < end; t += STRIDE, o += STRIDE)
                *o = *t;
        }

        template<typename InIt, typename OutIt, class UnOp>
        static __device__ __forceinline__ void transfrom(InIt beg, InIt end, OutIt out, UnOp op)
        {
            int STRIDE = stride();
            InIt  t = beg + flattenedThreadId();
            OutIt o = out + (t - beg);

            for(; t < end; t += STRIDE, o += STRIDE)
                *o = op(*t);
        }

        template<typename InIt1, typename InIt2, typename OutIt, class BinOp>
        static __device__ __forceinline__ void transfrom(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op)
        {
            int STRIDE = stride();
            InIt1 t1 = beg1 + flattenedThreadId();
            InIt2 t2 = beg2 + flattenedThreadId();
            OutIt o  = out + (t1 - beg1);

            for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE)
                *o = op(*t1, *t2);
        }

        template<int CTA_SIZE, typename T, class BinOp>
        static __device__ __forceinline__ void reduce(volatile T* buffer, BinOp op)
        {
            int tid = flattenedThreadId();
            T val =  buffer[tid];

            if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
            if (CTA_SIZE >=  512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
            if (CTA_SIZE >=  256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
            if (CTA_SIZE >=  128) { if (tid <  64) buffer[tid] = val = op(val, buffer[tid +  64]); __syncthreads(); }

            if (tid < 32)
            {
                if (CTA_SIZE >=   64) { buffer[tid] = val = op(val, buffer[tid +  32]); }
                if (CTA_SIZE >=   32) { buffer[tid] = val = op(val, buffer[tid +  16]); }
                if (CTA_SIZE >=   16) { buffer[tid] = val = op(val, buffer[tid +   8]); }
                if (CTA_SIZE >=    8) { buffer[tid] = val = op(val, buffer[tid +   4]); }
                if (CTA_SIZE >=    4) { buffer[tid] = val = op(val, buffer[tid +   2]); }
                if (CTA_SIZE >=    2) { buffer[tid] = val = op(val, buffer[tid +   1]); }
            }
        }

        template<int CTA_SIZE, typename T, class BinOp>
        static __device__ __forceinline__ T reduce(volatile T* buffer, T init, BinOp op)
        {
            int tid = flattenedThreadId();
            T val =  buffer[tid] = init;
            __syncthreads();

            if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
            if (CTA_SIZE >=  512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
            if (CTA_SIZE >=  256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
            if (CTA_SIZE >=  128) { if (tid <  64) buffer[tid] = val = op(val, buffer[tid +  64]); __syncthreads(); }

            if (tid < 32)
            {
                if (CTA_SIZE >=   64) { buffer[tid] = val = op(val, buffer[tid +  32]); }
                if (CTA_SIZE >=   32) { buffer[tid] = val = op(val, buffer[tid +  16]); }
                if (CTA_SIZE >=   16) { buffer[tid] = val = op(val, buffer[tid +   8]); }
                if (CTA_SIZE >=    8) { buffer[tid] = val = op(val, buffer[tid +   4]); }
                if (CTA_SIZE >=    4) { buffer[tid] = val = op(val, buffer[tid +   2]); }
                if (CTA_SIZE >=    2) { buffer[tid] = val = op(val, buffer[tid +   1]); }
            }
            __syncthreads();
            return buffer[0];
        }

        template <typename T, class BinOp>
        static __device__ __forceinline__ void reduce_n(T* data, unsigned int n, BinOp op)
        {
            int ftid = flattenedThreadId();
            int sft = stride();

            if (sft < n)
            {
                for (unsigned int i = sft + ftid; i < n; i += sft)
                    data[ftid] = op(data[ftid], data[i]);

                __syncthreads();

                n = sft;
            }

            while (n > 1)
            {
                unsigned int half = n/2;

                if (ftid < half)
                    data[ftid] = op(data[ftid], data[n - ftid - 1]);

                __syncthreads();

                n = n - half;
            }
        }
    };
}}}

//! @endcond

#endif /* __OPENCV_CUDA_DEVICE_BLOCK_HPP__ */

/* [<][>][^][v][top][bottom][index][help] */