This source file includes following definitions.
- IMPLEMENT_PARAM_CLASS
- getInnerROI
- PARAM_TEST_CASE
- CUDA_TEST_P
- PARAM_TEST_CASE
- CUDA_TEST_P
- PARAM_TEST_CASE
- CUDA_TEST_P
- PARAM_TEST_CASE
- CUDA_TEST_P
- PARAM_TEST_CASE
- CUDA_TEST_P
- PARAM_TEST_CASE
- CUDA_TEST_P
- PARAM_TEST_CASE
- CUDA_TEST_P
- PARAM_TEST_CASE
- CUDA_TEST_P
- PARAM_TEST_CASE
- CUDA_TEST_P
- CV_ENUM
- CUDA_TEST_P
#include "test_precomp.hpp"
#ifdef HAVE_CUDA
using namespace cvtest;
namespace
{
IMPLEMENT_PARAM_CLASS(KSize, cv::Size)
IMPLEMENT_PARAM_CLASS(Anchor, cv::Point)
IMPLEMENT_PARAM_CLASS(Deriv_X, int)
IMPLEMENT_PARAM_CLASS(Deriv_Y, int)
IMPLEMENT_PARAM_CLASS(Iterations, int)
cv::Mat getInnerROI(cv::InputArray m_, cv::Size ksize)
{
cv::Mat m = getMat(m_);
cv::Rect roi(ksize.width, ksize.height, m.cols - 2 * ksize.width, m.rows - 2 * ksize.height);
return m(roi);
}
cv::Mat getInnerROI(cv::InputArray m, int ksize)
{
return getInnerROI(m, cv::Size(ksize, ksize));
}
}
PARAM_TEST_CASE(Blur, cv::cuda::DeviceInfo, cv::Size, MatType, KSize, Anchor, BorderType, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int type;
cv::Size ksize;
cv::Point anchor;
int borderType;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
ksize = GET_PARAM(3);
anchor = GET_PARAM(4);
borderType = GET_PARAM(5);
useRoi = GET_PARAM(6);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(Blur, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Ptr<cv::cuda::Filter> blurFilter = cv::cuda::createBoxFilter(src.type(), -1, ksize, anchor, borderType);
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
blurFilter->apply(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::blur(src, dst_gold, ksize, anchor, borderType);
EXPECT_MAT_NEAR(dst_gold, dst, 1.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_Filters, Blur, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
testing::Values(KSize(cv::Size(3, 3)), KSize(cv::Size(5, 5)), KSize(cv::Size(7, 7))),
testing::Values(Anchor(cv::Point(-1, -1)), Anchor(cv::Point(0, 0)), Anchor(cv::Point(2, 2))),
testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_CONSTANT), BorderType(cv::BORDER_REFLECT)),
WHOLE_SUBMAT));
PARAM_TEST_CASE(Filter2D, cv::cuda::DeviceInfo, cv::Size, MatType, KSize, Anchor, BorderType, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int type;
cv::Size ksize;
cv::Point anchor;
int borderType;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
ksize = GET_PARAM(3);
anchor = GET_PARAM(4);
borderType = GET_PARAM(5);
useRoi = GET_PARAM(6);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(Filter2D, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Mat kernel = randomMat(cv::Size(ksize.width, ksize.height), CV_32FC1, 0.0, 1.0);
cv::Ptr<cv::cuda::Filter> filter2D = cv::cuda::createLinearFilter(src.type(), -1, kernel, anchor, borderType);
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
filter2D->apply(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::filter2D(src, dst_gold, -1, kernel, anchor, 0, borderType);
EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) == CV_32F ? 1e-1 : 1.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_Filters, Filter2D, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC4)),
testing::Values(KSize(cv::Size(3, 3)), KSize(cv::Size(5, 5)), KSize(cv::Size(7, 7)), KSize(cv::Size(11, 11)), KSize(cv::Size(13, 13)), KSize(cv::Size(15, 15))),
testing::Values(Anchor(cv::Point(-1, -1)), Anchor(cv::Point(0, 0)), Anchor(cv::Point(2, 2))),
testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_CONSTANT), BorderType(cv::BORDER_REFLECT)),
WHOLE_SUBMAT));
PARAM_TEST_CASE(Laplacian, cv::cuda::DeviceInfo, cv::Size, MatType, KSize, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int type;
cv::Size ksize;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
ksize = GET_PARAM(3);
useRoi = GET_PARAM(4);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(Laplacian, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Ptr<cv::cuda::Filter> laplacian = cv::cuda::createLaplacianFilter(src.type(), -1, ksize.width);
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
laplacian->apply(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::Laplacian(src, dst_gold, -1, ksize.width);
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() < CV_32F ? 0.0 : 1e-3);
}
INSTANTIATE_TEST_CASE_P(CUDA_Filters, Laplacian, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)),
testing::Values(KSize(cv::Size(1, 1)), KSize(cv::Size(3, 3))),
WHOLE_SUBMAT));
PARAM_TEST_CASE(SeparableLinearFilter, cv::cuda::DeviceInfo, cv::Size, MatDepth, Channels, KSize, Anchor, BorderType, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int depth;
int cn;
cv::Size ksize;
cv::Point anchor;
int borderType;
bool useRoi;
int type;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
depth = GET_PARAM(2);
cn = GET_PARAM(3);
ksize = GET_PARAM(4);
anchor = GET_PARAM(5);
borderType = GET_PARAM(6);
useRoi = GET_PARAM(7);
cv::cuda::setDevice(devInfo.deviceID());
type = CV_MAKE_TYPE(depth, cn);
}
};
CUDA_TEST_P(SeparableLinearFilter, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Mat rowKernel = randomMat(Size(ksize.width, 1), CV_32FC1, 0.0, 1.0);
cv::Mat columnKernel = randomMat(Size(ksize.height, 1), CV_32FC1, 0.0, 1.0);
cv::Ptr<cv::cuda::Filter> filter = cv::cuda::createSeparableLinearFilter(src.type(), -1, rowKernel, columnKernel, anchor, borderType);
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
filter->apply(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::sepFilter2D(src, dst_gold, -1, rowKernel, columnKernel, anchor, 0, borderType);
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() < CV_32F ? 1.0 : 1e-2);
}
INSTANTIATE_TEST_CASE_P(CUDA_Filters, SeparableLinearFilter, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32F)),
IMAGE_CHANNELS,
testing::Values(KSize(cv::Size(3, 3)),
KSize(cv::Size(7, 7)),
KSize(cv::Size(13, 13)),
KSize(cv::Size(15, 15)),
KSize(cv::Size(17, 17)),
KSize(cv::Size(23, 15)),
KSize(cv::Size(31, 3))),
testing::Values(Anchor(cv::Point(-1, -1)), Anchor(cv::Point(0, 0)), Anchor(cv::Point(2, 2))),
testing::Values(BorderType(cv::BORDER_REFLECT101),
BorderType(cv::BORDER_REPLICATE),
BorderType(cv::BORDER_CONSTANT),
BorderType(cv::BORDER_REFLECT)),
WHOLE_SUBMAT));
PARAM_TEST_CASE(Sobel, cv::cuda::DeviceInfo, cv::Size, MatDepth, Channels, KSize, Deriv_X, Deriv_Y, BorderType, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int depth;
int cn;
cv::Size ksize;
int dx;
int dy;
int borderType;
bool useRoi;
int type;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
depth = GET_PARAM(2);
cn = GET_PARAM(3);
ksize = GET_PARAM(4);
dx = GET_PARAM(5);
dy = GET_PARAM(6);
borderType = GET_PARAM(7);
useRoi = GET_PARAM(8);
cv::cuda::setDevice(devInfo.deviceID());
type = CV_MAKE_TYPE(depth, cn);
}
};
CUDA_TEST_P(Sobel, Accuracy)
{
if (dx == 0 && dy == 0)
return;
cv::Mat src = randomMat(size, type);
cv::Ptr<cv::cuda::Filter> sobel = cv::cuda::createSobelFilter(src.type(), -1, dx, dy, ksize.width, 1.0, borderType);
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
sobel->apply(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::Sobel(src, dst_gold, -1, dx, dy, ksize.width, 1.0, 0.0, borderType);
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() < CV_32F ? 0.0 : 0.1);
}
INSTANTIATE_TEST_CASE_P(CUDA_Filters, Sobel, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32F)),
IMAGE_CHANNELS,
testing::Values(KSize(cv::Size(3, 3)), KSize(cv::Size(5, 5)), KSize(cv::Size(7, 7))),
testing::Values(Deriv_X(0), Deriv_X(1), Deriv_X(2)),
testing::Values(Deriv_Y(0), Deriv_Y(1), Deriv_Y(2)),
testing::Values(BorderType(cv::BORDER_REFLECT101),
BorderType(cv::BORDER_REPLICATE),
BorderType(cv::BORDER_CONSTANT),
BorderType(cv::BORDER_REFLECT)),
WHOLE_SUBMAT));
PARAM_TEST_CASE(Scharr, cv::cuda::DeviceInfo, cv::Size, MatDepth, Channels, Deriv_X, Deriv_Y, BorderType, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int depth;
int cn;
int dx;
int dy;
int borderType;
bool useRoi;
int type;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
depth = GET_PARAM(2);
cn = GET_PARAM(3);
dx = GET_PARAM(4);
dy = GET_PARAM(5);
borderType = GET_PARAM(6);
useRoi = GET_PARAM(7);
cv::cuda::setDevice(devInfo.deviceID());
type = CV_MAKE_TYPE(depth, cn);
}
};
CUDA_TEST_P(Scharr, Accuracy)
{
if (dx + dy != 1)
return;
cv::Mat src = randomMat(size, type);
cv::Ptr<cv::cuda::Filter> scharr = cv::cuda::createScharrFilter(src.type(), -1, dx, dy, 1.0, borderType);
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
scharr->apply(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::Scharr(src, dst_gold, -1, dx, dy, 1.0, 0.0, borderType);
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() < CV_32F ? 0.0 : 0.1);
}
INSTANTIATE_TEST_CASE_P(CUDA_Filters, Scharr, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32F)),
IMAGE_CHANNELS,
testing::Values(Deriv_X(0), Deriv_X(1)),
testing::Values(Deriv_Y(0), Deriv_Y(1)),
testing::Values(BorderType(cv::BORDER_REFLECT101),
BorderType(cv::BORDER_REPLICATE),
BorderType(cv::BORDER_CONSTANT),
BorderType(cv::BORDER_REFLECT)),
WHOLE_SUBMAT));
PARAM_TEST_CASE(GaussianBlur, cv::cuda::DeviceInfo, cv::Size, MatDepth, Channels, KSize, BorderType, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int depth;
int cn;
cv::Size ksize;
int borderType;
bool useRoi;
int type;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
depth = GET_PARAM(2);
cn = GET_PARAM(3);
ksize = GET_PARAM(4);
borderType = GET_PARAM(5);
useRoi = GET_PARAM(6);
cv::cuda::setDevice(devInfo.deviceID());
type = CV_MAKE_TYPE(depth, cn);
}
};
CUDA_TEST_P(GaussianBlur, Accuracy)
{
cv::Mat src = randomMat(size, type);
double sigma1 = randomDouble(0.1, 1.0);
double sigma2 = randomDouble(0.1, 1.0);
cv::Ptr<cv::cuda::Filter> gauss = cv::cuda::createGaussianFilter(src.type(), -1, ksize, sigma1, sigma2, borderType);
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
gauss->apply(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::GaussianBlur(src, dst_gold, ksize, sigma1, sigma2, borderType);
EXPECT_MAT_NEAR(dst_gold, dst, src.depth() < CV_32F ? 4.0 : 1e-4);
}
INSTANTIATE_TEST_CASE_P(CUDA_Filters, GaussianBlur, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32F)),
IMAGE_CHANNELS,
testing::Values(KSize(cv::Size(3, 3)),
KSize(cv::Size(5, 5)),
KSize(cv::Size(7, 7)),
KSize(cv::Size(9, 9)),
KSize(cv::Size(11, 11)),
KSize(cv::Size(13, 13)),
KSize(cv::Size(15, 15)),
KSize(cv::Size(17, 17)),
KSize(cv::Size(19, 19)),
KSize(cv::Size(21, 21)),
KSize(cv::Size(23, 23)),
KSize(cv::Size(25, 25)),
KSize(cv::Size(27, 27)),
KSize(cv::Size(29, 29)),
KSize(cv::Size(31, 31))),
testing::Values(BorderType(cv::BORDER_REFLECT101),
BorderType(cv::BORDER_REPLICATE),
BorderType(cv::BORDER_CONSTANT),
BorderType(cv::BORDER_REFLECT)),
WHOLE_SUBMAT));
PARAM_TEST_CASE(Erode, cv::cuda::DeviceInfo, cv::Size, MatType, Anchor, Iterations, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int type;
cv::Point anchor;
int iterations;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
anchor = GET_PARAM(3);
iterations = GET_PARAM(4);
useRoi = GET_PARAM(5);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(Erode, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Mat kernel = cv::Mat::ones(3, 3, CV_8U);
cv::Ptr<cv::cuda::Filter> erode = cv::cuda::createMorphologyFilter(cv::MORPH_ERODE, src.type(), kernel, anchor, iterations);
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
erode->apply(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::erode(src, dst_gold, kernel, anchor, iterations);
cv::Size ksize = cv::Size(kernel.cols + iterations * (kernel.cols - 1), kernel.rows + iterations * (kernel.rows - 1));
EXPECT_MAT_NEAR(getInnerROI(dst_gold, ksize), getInnerROI(dst, ksize), 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_Filters, Erode, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
testing::Values(Anchor(cv::Point(-1, -1)), Anchor(cv::Point(0, 0)), Anchor(cv::Point(2, 2))),
testing::Values(Iterations(1), Iterations(2), Iterations(3)),
WHOLE_SUBMAT));
PARAM_TEST_CASE(Dilate, cv::cuda::DeviceInfo, cv::Size, MatType, Anchor, Iterations, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int type;
cv::Point anchor;
int iterations;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
anchor = GET_PARAM(3);
iterations = GET_PARAM(4);
useRoi = GET_PARAM(5);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(Dilate, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Mat kernel = cv::Mat::ones(3, 3, CV_8U);
cv::Ptr<cv::cuda::Filter> dilate = cv::cuda::createMorphologyFilter(cv::MORPH_DILATE, src.type(), kernel, anchor, iterations);
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
dilate->apply(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::dilate(src, dst_gold, kernel, anchor, iterations);
cv::Size ksize = cv::Size(kernel.cols + iterations * (kernel.cols - 1), kernel.rows + iterations * (kernel.rows - 1));
EXPECT_MAT_NEAR(getInnerROI(dst_gold, ksize), getInnerROI(dst, ksize), 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_Filters, Dilate, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
testing::Values(Anchor(cv::Point(-1, -1)), Anchor(cv::Point(0, 0)), Anchor(cv::Point(2, 2))),
testing::Values(Iterations(1), Iterations(2), Iterations(3)),
WHOLE_SUBMAT));
CV_ENUM(MorphOp, MORPH_OPEN, MORPH_CLOSE, MORPH_GRADIENT, MORPH_TOPHAT, MORPH_BLACKHAT)
PARAM_TEST_CASE(MorphEx, cv::cuda::DeviceInfo, cv::Size, MatType, MorphOp, Anchor, Iterations, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int type;
int morphOp;
cv::Point anchor;
int iterations;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
morphOp = GET_PARAM(3);
anchor = GET_PARAM(4);
iterations = GET_PARAM(5);
useRoi = GET_PARAM(6);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(MorphEx, Accuracy)
{
cv::Mat src = randomMat(size, type);
cv::Mat kernel = cv::Mat::ones(3, 3, CV_8U);
cv::Ptr<cv::cuda::Filter> morph = cv::cuda::createMorphologyFilter(morphOp, src.type(), kernel, anchor, iterations);
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
morph->apply(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::morphologyEx(src, dst_gold, morphOp, kernel, anchor, iterations);
cv::Size border = cv::Size(kernel.cols + (iterations + 1) * kernel.cols + 2, kernel.rows + (iterations + 1) * kernel.rows + 2);
EXPECT_MAT_NEAR(getInnerROI(dst_gold, border), getInnerROI(dst, border), 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_Filters, MorphEx, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
MorphOp::all(),
testing::Values(Anchor(cv::Point(-1, -1)), Anchor(cv::Point(0, 0)), Anchor(cv::Point(2, 2))),
testing::Values(Iterations(1), Iterations(2), Iterations(3)),
WHOLE_SUBMAT));
#endif