/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_CUDALEGACY_HPP__ #define __OPENCV_CUDALEGACY_HPP__ #include "opencv2/core/cuda.hpp" #include "opencv2/cudalegacy/NCV.hpp" #include "opencv2/cudalegacy/NPP_staging.hpp" #include "opencv2/cudalegacy/NCVPyramid.hpp" #include "opencv2/cudalegacy/NCVHaarObjectDetection.hpp" #include "opencv2/cudalegacy/NCVBroxOpticalFlow.hpp" #include "opencv2/video/background_segm.hpp" /** @addtogroup cuda @{ @defgroup cudalegacy Legacy support @} */ namespace cv { namespace cuda { //! @addtogroup cudalegacy //! @{ // // ImagePyramid // class CV_EXPORTS ImagePyramid : public Algorithm { public: virtual void getLayer(OutputArray outImg, Size outRoi, Stream& stream = Stream::Null()) const = 0; }; CV_EXPORTS Ptr<ImagePyramid> createImagePyramid(InputArray img, int nLayers = -1, Stream& stream = Stream::Null()); // // GMG // /** @brief Background/Foreground Segmentation Algorithm. The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in @cite Gold2012 . */ class CV_EXPORTS BackgroundSubtractorGMG : public cv::BackgroundSubtractor { public: using cv::BackgroundSubtractor::apply; virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0; virtual int getMaxFeatures() const = 0; virtual void setMaxFeatures(int maxFeatures) = 0; virtual double getDefaultLearningRate() const = 0; virtual void setDefaultLearningRate(double lr) = 0; virtual int getNumFrames() const = 0; virtual void setNumFrames(int nframes) = 0; virtual int getQuantizationLevels() const = 0; virtual void setQuantizationLevels(int nlevels) = 0; virtual double getBackgroundPrior() const = 0; virtual void setBackgroundPrior(double bgprior) = 0; virtual int getSmoothingRadius() const = 0; virtual void setSmoothingRadius(int radius) = 0; virtual double getDecisionThreshold() const = 0; virtual void setDecisionThreshold(double thresh) = 0; virtual bool getUpdateBackgroundModel() const = 0; virtual void setUpdateBackgroundModel(bool update) = 0; virtual double getMinVal() const = 0; virtual void setMinVal(double val) = 0; virtual double getMaxVal() const = 0; virtual void setMaxVal(double val) = 0; }; /** @brief Creates GMG Background Subtractor @param initializationFrames Number of frames of video to use to initialize histograms. @param decisionThreshold Value above which pixel is determined to be FG. */ CV_EXPORTS Ptr<cuda::BackgroundSubtractorGMG> createBackgroundSubtractorGMG(int initializationFrames = 120, double decisionThreshold = 0.8); // // FGD // /** @brief The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in @cite FGD2003 . @sa BackgroundSubtractor */ class CV_EXPORTS BackgroundSubtractorFGD : public cv::BackgroundSubtractor { public: /** @brief Returns the output foreground regions calculated by findContours. @param foreground_regions Output array (CPU memory). */ virtual void getForegroundRegions(OutputArrayOfArrays foreground_regions) = 0; }; struct CV_EXPORTS FGDParams { int Lc; //!< Quantized levels per 'color' component. Power of two, typically 32, 64 or 128. int N1c; //!< Number of color vectors used to model normal background color variation at a given pixel. int N2c; //!< Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c. //!< Used to allow the first N1c vectors to adapt over time to changing background. int Lcc; //!< Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64. int N1cc; //!< Number of color co-occurrence vectors used to model normal background color variation at a given pixel. int N2cc; //!< Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc. //!< Used to allow the first N1cc vectors to adapt over time to changing background. bool is_obj_without_holes; //!< If TRUE we ignore holes within foreground blobs. Defaults to TRUE. int perform_morphing; //!< Number of erode-dilate-erode foreground-blob cleanup iterations. //!< These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1. float alpha1; //!< How quickly we forget old background pixel values seen. Typically set to 0.1. float alpha2; //!< "Controls speed of feature learning". Depends on T. Typical value circa 0.005. float alpha3; //!< Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1. float delta; //!< Affects color and color co-occurrence quantization, typically set to 2. float T; //!< A percentage value which determines when new features can be recognized as new background. (Typically 0.9). float minArea; //!< Discard foreground blobs whose bounding box is smaller than this threshold. //! default Params FGDParams(); }; /** @brief Creates FGD Background Subtractor @param params Algorithm's parameters. See @cite FGD2003 for explanation. */ CV_EXPORTS Ptr<cuda::BackgroundSubtractorFGD> createBackgroundSubtractorFGD(const FGDParams& params = FGDParams()); // // Optical flow // //! Calculates optical flow for 2 images using block matching algorithm */ CV_EXPORTS void calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr, Size block_size, Size shift_size, Size max_range, bool use_previous, GpuMat& velx, GpuMat& vely, GpuMat& buf, Stream& stream = Stream::Null()); class CV_EXPORTS FastOpticalFlowBM { public: void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window = 21, int block_window = 7, Stream& s = Stream::Null()); private: GpuMat buffer; GpuMat extended_I0; GpuMat extended_I1; }; /** @brief Interpolates frames (images) using provided optical flow (displacement field). @param frame0 First frame (32-bit floating point images, single channel). @param frame1 Second frame. Must have the same type and size as frame0 . @param fu Forward horizontal displacement. @param fv Forward vertical displacement. @param bu Backward horizontal displacement. @param bv Backward vertical displacement. @param pos New frame position. @param newFrame Output image. @param buf Temporary buffer, will have width x 6\*height size, CV_32FC1 type and contain 6 GpuMat: occlusion masks for first frame, occlusion masks for second, interpolated forward horizontal flow, interpolated forward vertical flow, interpolated backward horizontal flow, interpolated backward vertical flow. @param stream Stream for the asynchronous version. */ CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, const GpuMat& fu, const GpuMat& fv, const GpuMat& bu, const GpuMat& bv, float pos, GpuMat& newFrame, GpuMat& buf, Stream& stream = Stream::Null()); CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors); // // Labeling // //!performs labeling via graph cuts of a 2D regular 4-connected graph. CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels, GpuMat& buf, Stream& stream = Stream::Null()); //!performs labeling via graph cuts of a 2D regular 8-connected graph. CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight, GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight, GpuMat& labels, GpuMat& buf, Stream& stream = Stream::Null()); //! compute mask for Generalized Flood fill componetns labeling. CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null()); //! performs connected componnents labeling. CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null()); // // Calib3d // CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, Stream& stream = Stream::Null()); CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, Stream& stream = Stream::Null()); /** @brief Finds the object pose from 3D-2D point correspondences. @param object Single-row matrix of object points. @param image Single-row matrix of image points. @param camera_mat 3x3 matrix of intrinsic camera parameters. @param dist_coef Distortion coefficients. See undistortPoints for details. @param rvec Output 3D rotation vector. @param tvec Output 3D translation vector. @param use_extrinsic_guess Flag to indicate that the function must use rvec and tvec as an initial transformation guess. It is not supported for now. @param num_iters Maximum number of RANSAC iterations. @param max_dist Euclidean distance threshold to detect whether point is inlier or not. @param min_inlier_count Flag to indicate that the function must stop if greater or equal number of inliers is achieved. It is not supported for now. @param inliers Output vector of inlier indices. */ CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false, int num_iters=100, float max_dist=8.0, int min_inlier_count=100, std::vector<int>* inliers=NULL); //! @} }} #endif /* __OPENCV_CUDALEGACY_HPP__ */