root/modules/cudastereo/src/stereocsbp.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. estimateRecommendedParams
  2. createStereoConstantSpaceBP
  3. getMinDisparity
  4. setMinDisparity
  5. getNumDisparities
  6. setNumDisparities
  7. getBlockSize
  8. setBlockSize
  9. getSpeckleWindowSize
  10. setSpeckleWindowSize
  11. getSpeckleRange
  12. setSpeckleRange
  13. getDisp12MaxDiff
  14. setDisp12MaxDiff
  15. getNumIters
  16. setNumIters
  17. getNumLevels
  18. setNumLevels
  19. getMaxDataTerm
  20. setMaxDataTerm
  21. getDataWeight
  22. setDataWeight
  23. getMaxDiscTerm
  24. setMaxDiscTerm
  25. getDiscSingleJump
  26. setDiscSingleJump
  27. getMsgType
  28. setMsgType
  29. getNrPlane
  30. setNrPlane
  31. getUseLocalInitDataCost
  32. setUseLocalInitDataCost
  33. use_local_init_data_cost_
  34. compute
  35. compute
  36. compute
  37. createStereoConstantSpaceBP
  38. estimateRecommendedParams

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

void cv::cuda::StereoConstantSpaceBP::estimateRecommendedParams(int, int, int&, int&, int&, int&) { throw_no_cuda(); }

Ptr<cuda::StereoConstantSpaceBP> cv::cuda::createStereoConstantSpaceBP(int, int, int, int, int) { throw_no_cuda(); return Ptr<cuda::StereoConstantSpaceBP>(); }

#else /* !defined (HAVE_CUDA) */

#include "cuda/stereocsbp.hpp"

namespace
{
    class StereoCSBPImpl : public cuda::StereoConstantSpaceBP
    {
    public:
        StereoCSBPImpl(int ndisp, int iters, int levels, int nr_plane, int msg_type);

        void compute(InputArray left, InputArray right, OutputArray disparity);
        void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream);
        void compute(InputArray data, OutputArray disparity, Stream& stream);

        int getMinDisparity() const { return min_disp_th_; }
        void setMinDisparity(int minDisparity) { min_disp_th_ = minDisparity; }

        int getNumDisparities() const { return ndisp_; }
        void setNumDisparities(int numDisparities) { ndisp_ = numDisparities; }

        int getBlockSize() const { return 0; }
        void setBlockSize(int /*blockSize*/) {}

        int getSpeckleWindowSize() const { return 0; }
        void setSpeckleWindowSize(int /*speckleWindowSize*/) {}

        int getSpeckleRange() const { return 0; }
        void setSpeckleRange(int /*speckleRange*/) {}

        int getDisp12MaxDiff() const { return 0; }
        void setDisp12MaxDiff(int /*disp12MaxDiff*/) {}

        int getNumIters() const { return iters_; }
        void setNumIters(int iters) { iters_ = iters; }

        int getNumLevels() const { return levels_; }
        void setNumLevels(int levels) { levels_ = levels; }

        double getMaxDataTerm() const { return max_data_term_; }
        void setMaxDataTerm(double max_data_term) { max_data_term_ = (float) max_data_term; }

        double getDataWeight() const { return data_weight_; }
        void setDataWeight(double data_weight) { data_weight_ = (float) data_weight; }

        double getMaxDiscTerm() const { return max_disc_term_; }
        void setMaxDiscTerm(double max_disc_term) { max_disc_term_ = (float) max_disc_term; }

        double getDiscSingleJump() const { return disc_single_jump_; }
        void setDiscSingleJump(double disc_single_jump) { disc_single_jump_ = (float) disc_single_jump; }

        int getMsgType() const { return msg_type_; }
        void setMsgType(int msg_type) { msg_type_ = msg_type; }

        int getNrPlane() const { return nr_plane_; }
        void setNrPlane(int nr_plane) { nr_plane_ = nr_plane; }

        bool getUseLocalInitDataCost() const { return use_local_init_data_cost_; }
        void setUseLocalInitDataCost(bool use_local_init_data_cost) { use_local_init_data_cost_ = use_local_init_data_cost; }

    private:
        int min_disp_th_;
        int ndisp_;
        int iters_;
        int levels_;
        float max_data_term_;
        float data_weight_;
        float max_disc_term_;
        float disc_single_jump_;
        int msg_type_;
        int nr_plane_;
        bool use_local_init_data_cost_;

        GpuMat mbuf_;
        GpuMat temp_;
        GpuMat outBuf_;
    };

    const float DEFAULT_MAX_DATA_TERM = 30.0f;
    const float DEFAULT_DATA_WEIGHT = 1.0f;
    const float DEFAULT_MAX_DISC_TERM = 160.0f;
    const float DEFAULT_DISC_SINGLE_JUMP = 10.0f;

    StereoCSBPImpl::StereoCSBPImpl(int ndisp, int iters, int levels, int nr_plane, int msg_type) :
        min_disp_th_(0), ndisp_(ndisp), iters_(iters), levels_(levels),
        max_data_term_(DEFAULT_MAX_DATA_TERM), data_weight_(DEFAULT_DATA_WEIGHT),
        max_disc_term_(DEFAULT_MAX_DISC_TERM), disc_single_jump_(DEFAULT_DISC_SINGLE_JUMP),
        msg_type_(msg_type), nr_plane_(nr_plane), use_local_init_data_cost_(true)
    {
    }

    void StereoCSBPImpl::compute(InputArray left, InputArray right, OutputArray disparity)
    {
        compute(left, right, disparity, Stream::Null());
    }

    void StereoCSBPImpl::compute(InputArray _left, InputArray _right, OutputArray disp, Stream& _stream)
    {
        using namespace cv::cuda::device::stereocsbp;

        CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
        CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ && 0 < nr_plane_ && levels_ <= 8 );

        GpuMat left = _left.getGpuMat();
        GpuMat right = _right.getGpuMat();

        CV_Assert( left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4 );
        CV_Assert( left.size() == right.size() && left.type() == right.type() );

        cudaStream_t stream = StreamAccessor::getStream(_stream);

        ////////////////////////////////////////////////////////////////////////////////////////////
        // Init

        int rows = left.rows;
        int cols = left.cols;

        levels_ = std::min(levels_, int(log((double)ndisp_) / log(2.0)));

        // compute sizes
        AutoBuffer<int> buf(levels_ * 3);
        int* cols_pyr = buf;
        int* rows_pyr = cols_pyr + levels_;
        int* nr_plane_pyr = rows_pyr + levels_;

        cols_pyr[0]     = cols;
        rows_pyr[0]     = rows;
        nr_plane_pyr[0] = nr_plane_;

        for (int i = 1; i < levels_; i++)
        {
            cols_pyr[i]     = cols_pyr[i-1] / 2;
            rows_pyr[i]     = rows_pyr[i-1] / 2;
            nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;
        }

        GpuMat u[2], d[2], l[2], r[2], disp_selected_pyr[2], data_cost, data_cost_selected;

        //allocate buffers
        int buffers_count = 10; // (up + down + left + right + disp_selected_pyr) * 2
        buffers_count += 2; //  data_cost has twice more rows than other buffers, what's why +2, not +1;
        buffers_count += 1; //  data_cost_selected
        mbuf_.create(rows * nr_plane_ * buffers_count, cols, msg_type_);

        data_cost          = mbuf_.rowRange(0, rows * nr_plane_ * 2);
        data_cost_selected = mbuf_.rowRange(data_cost.rows, data_cost.rows + rows * nr_plane_);

        for(int k = 0; k < 2; ++k) // in/out
        {
            GpuMat sub1 = mbuf_.rowRange(data_cost.rows + data_cost_selected.rows, mbuf_.rows);
            GpuMat sub2 = sub1.rowRange((k+0)*sub1.rows/2, (k+1)*sub1.rows/2);

            GpuMat *buf_ptrs[] = { &u[k], &d[k], &l[k], &r[k], &disp_selected_pyr[k] };
            for(int _r = 0; _r < 5; ++_r)
            {
                *buf_ptrs[_r] = sub2.rowRange(_r * sub2.rows/5, (_r+1) * sub2.rows/5);
                CV_DbgAssert( buf_ptrs[_r]->cols == cols && buf_ptrs[_r]->rows == rows * nr_plane_ );
            }
        };

        size_t elem_step = mbuf_.step / mbuf_.elemSize();

        Size temp_size = data_cost.size();
        if ((size_t)temp_size.area() < elem_step * rows_pyr[levels_ - 1] * ndisp_)
            temp_size = Size(static_cast<int>(elem_step), rows_pyr[levels_ - 1] * ndisp_);

        temp_.create(temp_size, msg_type_);

        ////////////////////////////////////////////////////////////////////////////
        // Compute

        l[0].setTo(0, _stream);
        d[0].setTo(0, _stream);
        r[0].setTo(0, _stream);
        u[0].setTo(0, _stream);

        l[1].setTo(0, _stream);
        d[1].setTo(0, _stream);
        r[1].setTo(0, _stream);
        u[1].setTo(0, _stream);

        data_cost.setTo(0, _stream);
        data_cost_selected.setTo(0, _stream);

        int cur_idx = 0;

        if (msg_type_ == CV_32F)
        {
            for (int i = levels_ - 1; i >= 0; i--)
            {
                if (i == levels_ - 1)
                {
                    init_data_cost(left.ptr<uchar>(), right.ptr<uchar>(), temp_.ptr<uchar>(), left.step, left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<float>(), data_cost_selected.ptr<float>(),
                        elem_step, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], ndisp_, left.channels(), data_weight_, max_data_term_, min_disp_th_, use_local_init_data_cost_, stream);
                }
                else
                {
                    compute_data_cost(left.ptr<uchar>(), right.ptr<uchar>(), left.step, disp_selected_pyr[cur_idx].ptr<float>(), data_cost.ptr<float>(), elem_step,
                        left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), data_weight_, max_data_term_, min_disp_th_, stream);

                    int new_idx = (cur_idx + 1) & 1;

                    init_message(temp_.ptr<uchar>(),
                                 u[new_idx].ptr<float>(), d[new_idx].ptr<float>(), l[new_idx].ptr<float>(), r[new_idx].ptr<float>(),
                                 u[cur_idx].ptr<float>(), d[cur_idx].ptr<float>(), l[cur_idx].ptr<float>(), r[cur_idx].ptr<float>(),
                                 disp_selected_pyr[new_idx].ptr<float>(), disp_selected_pyr[cur_idx].ptr<float>(),
                                 data_cost_selected.ptr<float>(), data_cost.ptr<float>(), elem_step, rows_pyr[i],
                                 cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], stream);

                    cur_idx = new_idx;
                }

                calc_all_iterations(temp_.ptr<uchar>(), u[cur_idx].ptr<float>(), d[cur_idx].ptr<float>(), l[cur_idx].ptr<float>(), r[cur_idx].ptr<float>(),
                                    data_cost_selected.ptr<float>(), disp_selected_pyr[cur_idx].ptr<float>(), elem_step,
                                    rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], iters_, max_disc_term_, disc_single_jump_, stream);
            }
        }
        else
        {
            for (int i = levels_ - 1; i >= 0; i--)
            {
                if (i == levels_ - 1)
                {
                    init_data_cost(left.ptr<uchar>(), right.ptr<uchar>(), temp_.ptr<uchar>(), left.step, left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<short>(), data_cost_selected.ptr<short>(),
                        elem_step, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], ndisp_, left.channels(), data_weight_, max_data_term_, min_disp_th_, use_local_init_data_cost_, stream);
                }
                else
                {
                    compute_data_cost(left.ptr<uchar>(), right.ptr<uchar>(), left.step, disp_selected_pyr[cur_idx].ptr<short>(), data_cost.ptr<short>(), elem_step,
                        left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), data_weight_, max_data_term_, min_disp_th_, stream);

                    int new_idx = (cur_idx + 1) & 1;

                    init_message(temp_.ptr<uchar>(),
                                 u[new_idx].ptr<short>(), d[new_idx].ptr<short>(), l[new_idx].ptr<short>(), r[new_idx].ptr<short>(),
                                 u[cur_idx].ptr<short>(), d[cur_idx].ptr<short>(), l[cur_idx].ptr<short>(), r[cur_idx].ptr<short>(),
                                 disp_selected_pyr[new_idx].ptr<short>(), disp_selected_pyr[cur_idx].ptr<short>(),
                                 data_cost_selected.ptr<short>(), data_cost.ptr<short>(), elem_step, rows_pyr[i],
                                 cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], stream);

                    cur_idx = new_idx;
                }

                calc_all_iterations(temp_.ptr<uchar>(), u[cur_idx].ptr<short>(), d[cur_idx].ptr<short>(), l[cur_idx].ptr<short>(), r[cur_idx].ptr<short>(),
                                    data_cost_selected.ptr<short>(), disp_selected_pyr[cur_idx].ptr<short>(), elem_step,
                                    rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], iters_, max_disc_term_, disc_single_jump_, stream);
            }
        }

        const int dtype = disp.fixedType() ? disp.type() : CV_16SC1;

        disp.create(rows, cols, dtype);
        GpuMat out = disp.getGpuMat();

        if (dtype != CV_16SC1)
        {
            outBuf_.create(rows, cols, CV_16SC1);
            out = outBuf_;
        }

        out.setTo(0, _stream);

        if (msg_type_ == CV_32F)
        {
            compute_disp(u[cur_idx].ptr<float>(), d[cur_idx].ptr<float>(), l[cur_idx].ptr<float>(), r[cur_idx].ptr<float>(),
                         data_cost_selected.ptr<float>(), disp_selected_pyr[cur_idx].ptr<float>(), elem_step, out, nr_plane_pyr[0], stream);
        }
        else
        {
            compute_disp(u[cur_idx].ptr<short>(), d[cur_idx].ptr<short>(), l[cur_idx].ptr<short>(), r[cur_idx].ptr<short>(),
                         data_cost_selected.ptr<short>(), disp_selected_pyr[cur_idx].ptr<short>(), elem_step, out, nr_plane_pyr[0], stream);
        }

        if (dtype != CV_16SC1)
            out.convertTo(disp, dtype, _stream);
    }

    void StereoCSBPImpl::compute(InputArray /*data*/, OutputArray /*disparity*/, Stream& /*stream*/)
    {
        CV_Error(Error::StsNotImplemented, "Not implemented");
    }
}

Ptr<cuda::StereoConstantSpaceBP> cv::cuda::createStereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, int msg_type)
{
    return makePtr<StereoCSBPImpl>(ndisp, iters, levels, nr_plane, msg_type);
}

void cv::cuda::StereoConstantSpaceBP::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane)
{
    ndisp = (int) ((float) width / 3.14f);
    if ((ndisp & 1) != 0)
        ndisp++;

    int mm = std::max(width, height);
    iters = mm / 100 + ((mm > 1200)? - 4 : 4);

    levels = (int)::log(static_cast<double>(mm)) * 2 / 3;
    if (levels == 0) levels++;

    nr_plane = (int) ((float) ndisp / std::pow(2.0, levels + 1));
}

#endif /* !defined (HAVE_CUDA) */

/* [<][>][^][v][top][bottom][index][help] */