root/modules/superres/src/btv_l1_cuda.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. createSuperResolution_BTVL1_CUDA
  2. calcRelativeMotions
  3. upscaleMotions
  4. buildMotionMaps
  5. upscale
  6. diffSign
  7. calcBtvWeights
  8. calcBtvRegularization
  9. process
  10. collectGarbage
  11. collectGarbage
  12. initImpl
  13. processImpl
  14. readNextFrame
  15. processFrame
  16. createSuperResolution_BTVL1_CUDA

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

// S. Farsiu , D. Robinson, M. Elad, P. Milanfar. Fast and robust multiframe super resolution.
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow.

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;
using namespace cv::superres;
using namespace cv::superres::detail;

#if !defined(HAVE_CUDA) || !defined(HAVE_OPENCV_CUDAARITHM) || !defined(HAVE_OPENCV_CUDAWARPING) || !defined(HAVE_OPENCV_CUDAFILTERS)

Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1_CUDA()
{
    CV_Error(Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
    return Ptr<SuperResolution>();
}

#else // HAVE_CUDA

namespace btv_l1_cudev
{
    void buildMotionMaps(PtrStepSzf forwardMotionX, PtrStepSzf forwardMotionY,
                         PtrStepSzf backwardMotionX, PtrStepSzf bacwardMotionY,
                         PtrStepSzf forwardMapX, PtrStepSzf forwardMapY,
                         PtrStepSzf backwardMapX, PtrStepSzf backwardMapY);

    template <int cn>
    void upscale(const PtrStepSzb src, PtrStepSzb dst, int scale, cudaStream_t stream);

    void diffSign(PtrStepSzf src1, PtrStepSzf src2, PtrStepSzf dst, cudaStream_t stream);

    void loadBtvWeights(const float* weights, size_t count);
    template <int cn> void calcBtvRegularization(PtrStepSzb src, PtrStepSzb dst, int ksize);
}

namespace
{
    void calcRelativeMotions(const std::vector<std::pair<GpuMat, GpuMat> >& forwardMotions, const std::vector<std::pair<GpuMat, GpuMat> >& backwardMotions,
                             std::vector<std::pair<GpuMat, GpuMat> >& relForwardMotions, std::vector<std::pair<GpuMat, GpuMat> >& relBackwardMotions,
                             int baseIdx, Size size)
    {
        const int count = static_cast<int>(forwardMotions.size());

        relForwardMotions.resize(count);
        relForwardMotions[baseIdx].first.create(size, CV_32FC1);
        relForwardMotions[baseIdx].first.setTo(Scalar::all(0));
        relForwardMotions[baseIdx].second.create(size, CV_32FC1);
        relForwardMotions[baseIdx].second.setTo(Scalar::all(0));

        relBackwardMotions.resize(count);
        relBackwardMotions[baseIdx].first.create(size, CV_32FC1);
        relBackwardMotions[baseIdx].first.setTo(Scalar::all(0));
        relBackwardMotions[baseIdx].second.create(size, CV_32FC1);
        relBackwardMotions[baseIdx].second.setTo(Scalar::all(0));

        for (int i = baseIdx - 1; i >= 0; --i)
        {
            cuda::add(relForwardMotions[i + 1].first, forwardMotions[i].first, relForwardMotions[i].first);
            cuda::add(relForwardMotions[i + 1].second, forwardMotions[i].second, relForwardMotions[i].second);

            cuda::add(relBackwardMotions[i + 1].first, backwardMotions[i + 1].first, relBackwardMotions[i].first);
            cuda::add(relBackwardMotions[i + 1].second, backwardMotions[i + 1].second, relBackwardMotions[i].second);
        }

        for (int i = baseIdx + 1; i < count; ++i)
        {
            cuda::add(relForwardMotions[i - 1].first, backwardMotions[i].first, relForwardMotions[i].first);
            cuda::add(relForwardMotions[i - 1].second, backwardMotions[i].second, relForwardMotions[i].second);

            cuda::add(relBackwardMotions[i - 1].first, forwardMotions[i - 1].first, relBackwardMotions[i].first);
            cuda::add(relBackwardMotions[i - 1].second, forwardMotions[i - 1].second, relBackwardMotions[i].second);
        }
    }

    void upscaleMotions(const std::vector<std::pair<GpuMat, GpuMat> >& lowResMotions, std::vector<std::pair<GpuMat, GpuMat> >& highResMotions, int scale)
    {
        highResMotions.resize(lowResMotions.size());

        for (size_t i = 0; i < lowResMotions.size(); ++i)
        {
            cuda::resize(lowResMotions[i].first, highResMotions[i].first, Size(), scale, scale, INTER_CUBIC);
            cuda::resize(lowResMotions[i].second, highResMotions[i].second, Size(), scale, scale, INTER_CUBIC);

            cuda::multiply(highResMotions[i].first, Scalar::all(scale), highResMotions[i].first);
            cuda::multiply(highResMotions[i].second, Scalar::all(scale), highResMotions[i].second);
        }
    }

    void buildMotionMaps(const std::pair<GpuMat, GpuMat>& forwardMotion, const std::pair<GpuMat, GpuMat>& backwardMotion,
                         std::pair<GpuMat, GpuMat>& forwardMap, std::pair<GpuMat, GpuMat>& backwardMap)
    {
        forwardMap.first.create(forwardMotion.first.size(), CV_32FC1);
        forwardMap.second.create(forwardMotion.first.size(), CV_32FC1);

        backwardMap.first.create(forwardMotion.first.size(), CV_32FC1);
        backwardMap.second.create(forwardMotion.first.size(), CV_32FC1);

        btv_l1_cudev::buildMotionMaps(forwardMotion.first, forwardMotion.second,
                                       backwardMotion.first, backwardMotion.second,
                                       forwardMap.first, forwardMap.second,
                                       backwardMap.first, backwardMap.second);
    }

    void upscale(const GpuMat& src, GpuMat& dst, int scale, Stream& stream)
    {
        typedef void (*func_t)(const PtrStepSzb src, PtrStepSzb dst, int scale, cudaStream_t stream);
        static const func_t funcs[] =
        {
            0, btv_l1_cudev::upscale<1>, 0, btv_l1_cudev::upscale<3>, btv_l1_cudev::upscale<4>
        };

        CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );

        dst.create(src.rows * scale, src.cols * scale, src.type());
        dst.setTo(Scalar::all(0));

        const func_t func = funcs[src.channels()];

        func(src, dst, scale, StreamAccessor::getStream(stream));
    }

    void diffSign(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
    {
        dst.create(src1.size(), src1.type());

        btv_l1_cudev::diffSign(src1.reshape(1), src2.reshape(1), dst.reshape(1), StreamAccessor::getStream(stream));
    }

    void calcBtvWeights(int btvKernelSize, double alpha, std::vector<float>& btvWeights)
    {
        const size_t size = btvKernelSize * btvKernelSize;

        btvWeights.resize(size);

        const int ksize = (btvKernelSize - 1) / 2;
        const float alpha_f = static_cast<float>(alpha);

        for (int m = 0, ind = 0; m <= ksize; ++m)
        {
            for (int l = ksize; l + m >= 0; --l, ++ind)
                btvWeights[ind] = pow(alpha_f, std::abs(m) + std::abs(l));
        }

        btv_l1_cudev::loadBtvWeights(&btvWeights[0], size);
    }

    void calcBtvRegularization(const GpuMat& src, GpuMat& dst, int btvKernelSize)
    {
        typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, int ksize);
        static const func_t funcs[] =
        {
            0,
            btv_l1_cudev::calcBtvRegularization<1>,
            0,
            btv_l1_cudev::calcBtvRegularization<3>,
            btv_l1_cudev::calcBtvRegularization<4>
        };

        dst.create(src.size(), src.type());
        dst.setTo(Scalar::all(0));

        const int ksize = (btvKernelSize - 1) / 2;

        funcs[src.channels()](src, dst, ksize);
    }

    class BTVL1_CUDA_Base : public cv::superres::SuperResolution
    {
    public:
        BTVL1_CUDA_Base();

        void process(const std::vector<GpuMat>& src, GpuMat& dst,
                     const std::vector<std::pair<GpuMat, GpuMat> >& forwardMotions, const std::vector<std::pair<GpuMat, GpuMat> >& backwardMotions,
                     int baseIdx);

        void collectGarbage();

        CV_IMPL_PROPERTY(int, Scale, scale_)
        CV_IMPL_PROPERTY(int, Iterations, iterations_)
        CV_IMPL_PROPERTY(double, Tau, tau_)
        CV_IMPL_PROPERTY(double, Labmda, lambda_)
        CV_IMPL_PROPERTY(double, Alpha, alpha_)
        CV_IMPL_PROPERTY(int, KernelSize, btvKernelSize_)
        CV_IMPL_PROPERTY(int, BlurKernelSize, blurKernelSize_)
        CV_IMPL_PROPERTY(double, BlurSigma, blurSigma_)
        CV_IMPL_PROPERTY(int, TemporalAreaRadius, temporalAreaRadius_)
        CV_IMPL_PROPERTY_S(Ptr<cv::superres::DenseOpticalFlowExt>, OpticalFlow, opticalFlow_)

    protected:
        int scale_;
        int iterations_;
        double lambda_;
        double tau_;
        double alpha_;
        int btvKernelSize_;
        int blurKernelSize_;
        double blurSigma_;
        int temporalAreaRadius_;
        Ptr<cv::superres::DenseOpticalFlowExt> opticalFlow_;

    private:
        std::vector<Ptr<cuda::Filter> > filters_;
        int curBlurKernelSize_;
        double curBlurSigma_;
        int curSrcType_;

        std::vector<float> btvWeights_;
        int curBtvKernelSize_;
        double curAlpha_;

        std::vector<std::pair<GpuMat, GpuMat> > lowResForwardMotions_;
        std::vector<std::pair<GpuMat, GpuMat> > lowResBackwardMotions_;

        std::vector<std::pair<GpuMat, GpuMat> > highResForwardMotions_;
        std::vector<std::pair<GpuMat, GpuMat> > highResBackwardMotions_;

        std::vector<std::pair<GpuMat, GpuMat> > forwardMaps_;
        std::vector<std::pair<GpuMat, GpuMat> > backwardMaps_;

        GpuMat highRes_;

        std::vector<Stream> streams_;
        std::vector<GpuMat> diffTerms_;
        std::vector<GpuMat> a_, b_, c_;
        GpuMat regTerm_;
    };

    BTVL1_CUDA_Base::BTVL1_CUDA_Base()
    {
        scale_ = 4;
        iterations_ = 180;
        lambda_ = 0.03;
        tau_ = 1.3;
        alpha_ = 0.7;
        btvKernelSize_ = 7;
        blurKernelSize_ = 5;
        blurSigma_ = 0.0;

#ifdef HAVE_OPENCV_CUDAOPTFLOW
        opticalFlow_ = createOptFlow_Farneback_CUDA();
#else
        opticalFlow_ = createOptFlow_Farneback();
#endif
        temporalAreaRadius_ = 0;

        curBlurKernelSize_ = -1;
        curBlurSigma_ = -1.0;
        curSrcType_ = -1;

        curBtvKernelSize_ = -1;
        curAlpha_ = -1.0;
    }

    void BTVL1_CUDA_Base::process(const std::vector<GpuMat>& src, GpuMat& dst,
                                 const std::vector<std::pair<GpuMat, GpuMat> >& forwardMotions, const std::vector<std::pair<GpuMat, GpuMat> >& backwardMotions,
                                 int baseIdx)
    {
        CV_Assert( scale_ > 1 );
        CV_Assert( iterations_ > 0 );
        CV_Assert( tau_ > 0.0 );
        CV_Assert( alpha_ > 0.0 );
        CV_Assert( btvKernelSize_ > 0 && btvKernelSize_ <= 16 );
        CV_Assert( blurKernelSize_ > 0 );
        CV_Assert( blurSigma_ >= 0.0 );

        // update blur filter and btv weights

        if (filters_.size() != src.size() || blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_)
        {
            filters_.resize(src.size());
            for (size_t i = 0; i < src.size(); ++i)
                filters_[i] = cuda::createGaussianFilter(src[0].type(), -1, Size(blurKernelSize_, blurKernelSize_), blurSigma_);
            curBlurKernelSize_ = blurKernelSize_;
            curBlurSigma_ = blurSigma_;
            curSrcType_ = src[0].type();
        }

        if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_)
        {
            calcBtvWeights(btvKernelSize_, alpha_, btvWeights_);
            curBtvKernelSize_ = btvKernelSize_;
            curAlpha_ = alpha_;
        }

        // calc motions between input frames

        calcRelativeMotions(forwardMotions, backwardMotions, lowResForwardMotions_, lowResBackwardMotions_, baseIdx, src[0].size());

        upscaleMotions(lowResForwardMotions_, highResForwardMotions_, scale_);
        upscaleMotions(lowResBackwardMotions_, highResBackwardMotions_, scale_);

        forwardMaps_.resize(highResForwardMotions_.size());
        backwardMaps_.resize(highResForwardMotions_.size());
        for (size_t i = 0; i < highResForwardMotions_.size(); ++i)
            buildMotionMaps(highResForwardMotions_[i], highResBackwardMotions_[i], forwardMaps_[i], backwardMaps_[i]);

        // initial estimation

        const Size lowResSize = src[0].size();
        const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_);

        cuda::resize(src[baseIdx], highRes_, highResSize, 0, 0, INTER_CUBIC);

        // iterations

        streams_.resize(src.size());
        diffTerms_.resize(src.size());
        a_.resize(src.size());
        b_.resize(src.size());
        c_.resize(src.size());

        for (int i = 0; i < iterations_; ++i)
        {
            for (size_t k = 0; k < src.size(); ++k)
            {
                // a = M * Ih
                cuda::remap(highRes_, a_[k], backwardMaps_[k].first, backwardMaps_[k].second, INTER_NEAREST, BORDER_REPLICATE, Scalar(), streams_[k]);
                // b = HM * Ih
                filters_[k]->apply(a_[k], b_[k], streams_[k]);
                // c = DHF * Ih
                cuda::resize(b_[k], c_[k], lowResSize, 0, 0, INTER_NEAREST, streams_[k]);

                diffSign(src[k], c_[k], c_[k], streams_[k]);

                // a = Dt * diff
                upscale(c_[k], a_[k], scale_, streams_[k]);
                // b = HtDt * diff
                filters_[k]->apply(a_[k], b_[k], streams_[k]);
                // diffTerm = MtHtDt * diff
                cuda::remap(b_[k], diffTerms_[k], forwardMaps_[k].first, forwardMaps_[k].second, INTER_NEAREST, BORDER_REPLICATE, Scalar(), streams_[k]);
            }

            if (lambda_ > 0)
            {
                calcBtvRegularization(highRes_, regTerm_, btvKernelSize_);
                cuda::addWeighted(highRes_, 1.0, regTerm_, -tau_ * lambda_, 0.0, highRes_);
            }

            for (size_t k = 0; k < src.size(); ++k)
            {
                streams_[k].waitForCompletion();
                cuda::addWeighted(highRes_, 1.0, diffTerms_[k], tau_, 0.0, highRes_);
            }
        }

        Rect inner(btvKernelSize_, btvKernelSize_, highRes_.cols - 2 * btvKernelSize_, highRes_.rows - 2 * btvKernelSize_);
        highRes_(inner).copyTo(dst);
    }

    void BTVL1_CUDA_Base::collectGarbage()
    {
        filters_.clear();

        lowResForwardMotions_.clear();
        lowResBackwardMotions_.clear();

        highResForwardMotions_.clear();
        highResBackwardMotions_.clear();

        forwardMaps_.clear();
        backwardMaps_.clear();

        highRes_.release();

        diffTerms_.clear();
        a_.clear();
        b_.clear();
        c_.clear();
        regTerm_.release();
    }

////////////////////////////////////////////////////////////

    class BTVL1_CUDA : public BTVL1_CUDA_Base
    {
    public:
        BTVL1_CUDA();

        void collectGarbage();

    protected:
        void initImpl(Ptr<FrameSource>& frameSource);
        void processImpl(Ptr<FrameSource>& frameSource, OutputArray output);

    private:
        void readNextFrame(Ptr<FrameSource>& frameSource);
        void processFrame(int idx);

        GpuMat curFrame_;
        GpuMat prevFrame_;

        std::vector<GpuMat> frames_;
        std::vector<std::pair<GpuMat, GpuMat> > forwardMotions_;
        std::vector<std::pair<GpuMat, GpuMat> > backwardMotions_;
        std::vector<GpuMat> outputs_;

        int storePos_;
        int procPos_;
        int outPos_;

        std::vector<GpuMat> srcFrames_;
        std::vector<std::pair<GpuMat, GpuMat> > srcForwardMotions_;
        std::vector<std::pair<GpuMat, GpuMat> > srcBackwardMotions_;
        GpuMat finalOutput_;
    };

    BTVL1_CUDA::BTVL1_CUDA()
    {
        temporalAreaRadius_ = 4;
    }

    void BTVL1_CUDA::collectGarbage()
    {
        curFrame_.release();
        prevFrame_.release();

        frames_.clear();
        forwardMotions_.clear();
        backwardMotions_.clear();
        outputs_.clear();

        srcFrames_.clear();
        srcForwardMotions_.clear();
        srcBackwardMotions_.clear();
        finalOutput_.release();

        SuperResolution::collectGarbage();
        BTVL1_CUDA_Base::collectGarbage();
    }

    void BTVL1_CUDA::initImpl(Ptr<FrameSource>& frameSource)
    {
        const int cacheSize = 2 * temporalAreaRadius_ + 1;

        frames_.resize(cacheSize);
        forwardMotions_.resize(cacheSize);
        backwardMotions_.resize(cacheSize);
        outputs_.resize(cacheSize);

        storePos_ = -1;

        for (int t = -temporalAreaRadius_; t <= temporalAreaRadius_; ++t)
            readNextFrame(frameSource);

        for (int i = 0; i <= temporalAreaRadius_; ++i)
            processFrame(i);

        procPos_ = temporalAreaRadius_;
        outPos_ = -1;
    }

    void BTVL1_CUDA::processImpl(Ptr<FrameSource>& frameSource, OutputArray _output)
    {
        if (outPos_ >= storePos_)
        {
            _output.release();
            return;
        }

        readNextFrame(frameSource);

        if (procPos_ < storePos_)
        {
            ++procPos_;
            processFrame(procPos_);
        }

        ++outPos_;
        const GpuMat& curOutput = at(outPos_, outputs_);

        if (_output.kind() == _InputArray::CUDA_GPU_MAT)
            curOutput.convertTo(_output.getGpuMatRef(), CV_8U);
        else
        {
            curOutput.convertTo(finalOutput_, CV_8U);
            arrCopy(finalOutput_, _output);
        }
    }

    void BTVL1_CUDA::readNextFrame(Ptr<FrameSource>& frameSource)
    {
        frameSource->nextFrame(curFrame_);

        if (curFrame_.empty())
            return;

        ++storePos_;
        curFrame_.convertTo(at(storePos_, frames_), CV_32F);

        if (storePos_ > 0)
        {
            std::pair<GpuMat, GpuMat>& forwardMotion = at(storePos_ - 1, forwardMotions_);
            std::pair<GpuMat, GpuMat>& backwardMotion = at(storePos_, backwardMotions_);

            opticalFlow_->calc(prevFrame_, curFrame_, forwardMotion.first, forwardMotion.second);
            opticalFlow_->calc(curFrame_, prevFrame_, backwardMotion.first, backwardMotion.second);
        }

        curFrame_.copyTo(prevFrame_);
    }

    void BTVL1_CUDA::processFrame(int idx)
    {
        const int startIdx = std::max(idx - temporalAreaRadius_, 0);
        const int procIdx = idx;
        const int endIdx = std::min(startIdx + 2 * temporalAreaRadius_, storePos_);

        const int count = endIdx - startIdx + 1;

        srcFrames_.resize(count);
        srcForwardMotions_.resize(count);
        srcBackwardMotions_.resize(count);

        int baseIdx = -1;

        for (int i = startIdx, k = 0; i <= endIdx; ++i, ++k)
        {
            if (i == procIdx)
                baseIdx = k;

            srcFrames_[k] = at(i, frames_);

            if (i < endIdx)
                srcForwardMotions_[k] = at(i, forwardMotions_);
            if (i > startIdx)
                srcBackwardMotions_[k] = at(i, backwardMotions_);
        }

        process(srcFrames_, at(idx, outputs_), srcForwardMotions_, srcBackwardMotions_, baseIdx);
    }
}

Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1_CUDA()
{
    return makePtr<BTVL1_CUDA>();
}

#endif // HAVE_CUDA

/* [<][>][^][v][top][bottom][index][help] */