root/modules/videostab/src/motion_stabilizing.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. stabilize
  2. stabilize
  3. setParams
  4. stabilize
  5. stabilize
  6. stabilize
  7. areaSign
  8. segmentsIntersect
  9. isRectInside
  10. isGoodMotion
  11. relaxMotion
  12. ensureInclusionConstraint
  13. estimateOptimalTrimRatio

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "opencv2/videostab/motion_stabilizing.hpp"
#include "opencv2/videostab/global_motion.hpp"
#include "opencv2/videostab/ring_buffer.hpp"
#include "clp.hpp"

namespace cv
{
namespace videostab
{

void MotionStabilizationPipeline::stabilize(
        int size, const std::vector<Mat> &motions, std::pair<int,int> range, Mat *stabilizationMotions)
{
    std::vector<Mat> updatedMotions(motions.size());
    for (size_t i = 0; i < motions.size(); ++i)
        updatedMotions[i] = motions[i].clone();

    std::vector<Mat> stabilizationMotions_(size);

    for (int i = 0; i < size; ++i)
        stabilizationMotions[i] = Mat::eye(3, 3, CV_32F);

    for (size_t i = 0; i < stabilizers_.size(); ++i)
    {
        stabilizers_[i]->stabilize(size, updatedMotions, range, &stabilizationMotions_[0]);

        for (int k = 0; k < size; ++k)
            stabilizationMotions[k] = stabilizationMotions_[k] * stabilizationMotions[k];

        for (int j = 0; j + 1 < size; ++j)
        {
            Mat S0 = stabilizationMotions[j];
            Mat S1 = stabilizationMotions[j+1];
            at(j, updatedMotions) = S1 * at(j, updatedMotions) * S0.inv();
        }
    }
}


void MotionFilterBase::stabilize(
        int size, const std::vector<Mat> &motions, std::pair<int,int> range, Mat *stabilizationMotions)
{
    for (int i = 0; i < size; ++i)
        stabilizationMotions[i] = stabilize(i, motions, range);
}


void GaussianMotionFilter::setParams(int _radius, float _stdev)
{
    radius_ = _radius;
    stdev_ = _stdev > 0.f ? _stdev : std::sqrt(static_cast<float>(_radius));

    float sum = 0;
    weight_.resize(2*radius_ + 1);
    for (int i = -radius_; i <= radius_; ++i)
        sum += weight_[radius_ + i] = std::exp(-i*i/(stdev_*stdev_));
    for (int i = -radius_; i <= radius_; ++i)
        weight_[radius_ + i] /= sum;
}


Mat GaussianMotionFilter::stabilize(int idx, const std::vector<Mat> &motions, std::pair<int,int> range)
{
    const Mat &cur = at(idx, motions);
    Mat res = Mat::zeros(cur.size(), cur.type());
    float sum = 0.f;
    int iMin = std::max(idx - radius_, range.first);
    int iMax = std::min(idx + radius_, range.second);
    for (int i = iMin; i <= iMax; ++i)
    {
        res += weight_[radius_ + i - idx] * getMotion(idx, i, motions);
        sum += weight_[radius_ + i - idx];
    }
    return sum > 0.f ? res / sum : Mat::eye(cur.size(), cur.type());
}


LpMotionStabilizer::LpMotionStabilizer(MotionModel model)
{
    setMotionModel(model);
    setFrameSize(Size(0,0));
    setTrimRatio(0.1f);
    setWeight1(1);
    setWeight2(10);
    setWeight3(100);
    setWeight4(100);
}


#ifndef HAVE_CLP

void LpMotionStabilizer::stabilize(int, const std::vector<Mat>&, std::pair<int,int>, Mat*)
{
    CV_Error(Error::StsError, "The library is built without Clp support");
}

#else

void LpMotionStabilizer::stabilize(
        int size, const std::vector<Mat> &motions, std::pair<int,int> /*range*/, Mat *stabilizationMotions)
{
    CV_Assert(model_ <= MM_AFFINE);

    int N = size;
    const std::vector<Mat> &M = motions;
    Mat *S = stabilizationMotions;

    double w = frameSize_.width, h = frameSize_.height;
    double tw = w * trimRatio_, th = h * trimRatio_;

    int ncols = 4*N + 6*(N-1) + 6*(N-2) + 6*(N-3);
    int nrows = 8*N + 2*6*(N-1) + 2*6*(N-2) + 2*6*(N-3);

    rows_.clear();
    cols_.clear();
    elems_.clear();

    obj_.assign(ncols, 0);
    collb_.assign(ncols, -INF);
    colub_.assign(ncols, INF);
    int c = 4*N;

    // for each slack variable e[t] (error bound)
    for (int t = 0; t < N-1; ++t, c += 6)
    {
        // e[t](0,0)
        obj_[c] = w4_*w1_;
        collb_[c] = 0;

        // e[t](0,1)
        obj_[c+1] = w4_*w1_;
        collb_[c+1] = 0;

        // e[t](0,2)
        obj_[c+2] = w1_;
        collb_[c+2] = 0;

        // e[t](1,0)
        obj_[c+3] = w4_*w1_;
        collb_[c+3] = 0;

        // e[t](1,1)
        obj_[c+4] = w4_*w1_;
        collb_[c+4] = 0;

        // e[t](1,2)
        obj_[c+5] = w1_;
        collb_[c+5] = 0;
    }
    for (int t = 0; t < N-2; ++t, c += 6)
    {
        // e[t](0,0)
        obj_[c] = w4_*w2_;
        collb_[c] = 0;

        // e[t](0,1)
        obj_[c+1] = w4_*w2_;
        collb_[c+1] = 0;

        // e[t](0,2)
        obj_[c+2] = w2_;
        collb_[c+2] = 0;

        // e[t](1,0)
        obj_[c+3] = w4_*w2_;
        collb_[c+3] = 0;

        // e[t](1,1)
        obj_[c+4] = w4_*w2_;
        collb_[c+4] = 0;

        // e[t](1,2)
        obj_[c+5] = w2_;
        collb_[c+5] = 0;
    }
    for (int t = 0; t < N-3; ++t, c += 6)
    {
        // e[t](0,0)
        obj_[c] = w4_*w3_;
        collb_[c] = 0;

        // e[t](0,1)
        obj_[c+1] = w4_*w3_;
        collb_[c+1] = 0;

        // e[t](0,2)
        obj_[c+2] = w3_;
        collb_[c+2] = 0;

        // e[t](1,0)
        obj_[c+3] = w4_*w3_;
        collb_[c+3] = 0;

        // e[t](1,1)
        obj_[c+4] = w4_*w3_;
        collb_[c+4] = 0;

        // e[t](1,2)
        obj_[c+5] = w3_;
        collb_[c+5] = 0;
    }

    elems_.clear();
    rowlb_.assign(nrows, -INF);
    rowub_.assign(nrows, INF);

    int r = 0;

    // frame corners
    const Point2d pt[] = {Point2d(0,0), Point2d(w,0), Point2d(w,h), Point2d(0,h)};

    // for each frame
    for (int t = 0; t < N; ++t)
    {
        c = 4*t;

        // for each frame corner
        for (int i = 0; i < 4; ++i, r += 2)
        {
            set(r, c, pt[i].x); set(r, c+1, pt[i].y); set(r, c+2, 1);
            set(r+1, c, pt[i].y); set(r+1, c+1, -pt[i].x); set(r+1, c+3, 1);
            rowlb_[r] = pt[i].x-tw;
            rowub_[r] = pt[i].x+tw;
            rowlb_[r+1] = pt[i].y-th;
            rowub_[r+1] = pt[i].y+th;
        }
    }

    // for each S[t+1]M[t] - S[t] - e[t] <= 0 condition
    for (int t = 0; t < N-1; ++t, r += 6)
    {
        Mat_<float> M0 = at(t,M);

        c = 4*t;
        set(r, c, -1);
        set(r+1, c+1, -1);
        set(r+2, c+2, -1);
        set(r+3, c+1, 1);
        set(r+4, c, -1);
        set(r+5, c+3, -1);

        c = 4*(t+1);
        set(r, c, M0(0,0)); set(r, c+1, M0(1,0));
        set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1));
        set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 1);
        set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0));
        set(r+4, c, M0(1,1)); set(r+4, c+1, -M0(0,1));
        set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 1);

        c = 4*N + 6*t;
        for (int i = 0; i < 6; ++i)
            set(r+i, c+i, -1);

        rowub_[r] = 0;
        rowub_[r+1] = 0;
        rowub_[r+2] = 0;
        rowub_[r+3] = 0;
        rowub_[r+4] = 0;
        rowub_[r+5] = 0;
    }

    // for each 0 <= S[t+1]M[t] - S[t] + e[t] condition
    for (int t = 0; t < N-1; ++t, r += 6)
    {
        Mat_<float> M0 = at(t,M);

        c = 4*t;
        set(r, c, -1);
        set(r+1, c+1, -1);
        set(r+2, c+2, -1);
        set(r+3, c+1, 1);
        set(r+4, c, -1);
        set(r+5, c+3, -1);

        c = 4*(t+1);
        set(r, c, M0(0,0)); set(r, c+1, M0(1,0));
        set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1));
        set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 1);
        set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0));
        set(r+4, c, M0(1,1)); set(r+4, c+1, -M0(0,1));
        set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 1);

        c = 4*N + 6*t;
        for (int i = 0; i < 6; ++i)
            set(r+i, c+i, 1);

        rowlb_[r] = 0;
        rowlb_[r+1] = 0;
        rowlb_[r+2] = 0;
        rowlb_[r+3] = 0;
        rowlb_[r+4] = 0;
        rowlb_[r+5] = 0;
    }

    // for each S[t+2]M[t+1] - S[t+1]*(I+M[t]) + S[t] - e[t] <= 0 condition
    for (int t = 0; t < N-2; ++t, r += 6)
    {
        Mat_<float> M0 = at(t,M), M1 = at(t+1,M);

        c = 4*t;
        set(r, c, 1);
        set(r+1, c+1, 1);
        set(r+2, c+2, 1);
        set(r+3, c+1, -1);
        set(r+4, c, 1);
        set(r+5, c+3, 1);

        c = 4*(t+1);
        set(r, c, -M0(0,0)-1); set(r, c+1, -M0(1,0));
        set(r+1, c, -M0(0,1)); set(r+1, c+1, -M0(1,1)-1);
        set(r+2, c, -M0(0,2)); set(r+2, c+1, -M0(1,2)); set(r+2, c+2, -2);
        set(r+3, c, -M0(1,0)); set(r+3, c+1, M0(0,0)+1);
        set(r+4, c, -M0(1,1)-1); set(r+4, c+1, M0(0,1));
        set(r+5, c, -M0(1,2)); set(r+5, c+1, M0(0,2)); set(r+5, c+3, -2);

        c = 4*(t+2);
        set(r, c, M1(0,0)); set(r, c+1, M1(1,0));
        set(r+1, c, M1(0,1)); set(r+1, c+1, M1(1,1));
        set(r+2, c, M1(0,2)); set(r+2, c+1, M1(1,2)); set(r+2, c+2, 1);
        set(r+3, c, M1(1,0)); set(r+3, c+1, -M1(0,0));
        set(r+4, c, M1(1,1)); set(r+4, c+1, -M1(0,1));
        set(r+5, c, M1(1,2)); set(r+5, c+1, -M1(0,2)); set(r+5, c+3, 1);

        c = 4*N + 6*(N-1) + 6*t;
        for (int i = 0; i < 6; ++i)
            set(r+i, c+i, -1);

        rowub_[r] = 0;
        rowub_[r+1] = 0;
        rowub_[r+2] = 0;
        rowub_[r+3] = 0;
        rowub_[r+4] = 0;
        rowub_[r+5] = 0;
    }

    // for each 0 <= S[t+2]M[t+1]] - S[t+1]*(I+M[t]) + S[t] + e[t] condition
    for (int t = 0; t < N-2; ++t, r += 6)
    {
        Mat_<float> M0 = at(t,M), M1 = at(t+1,M);

        c = 4*t;
        set(r, c, 1);
        set(r+1, c+1, 1);
        set(r+2, c+2, 1);
        set(r+3, c+1, -1);
        set(r+4, c, 1);
        set(r+5, c+3, 1);

        c = 4*(t+1);
        set(r, c, -M0(0,0)-1); set(r, c+1, -M0(1,0));
        set(r+1, c, -M0(0,1)); set(r+1, c+1, -M0(1,1)-1);
        set(r+2, c, -M0(0,2)); set(r+2, c+1, -M0(1,2)); set(r+2, c+2, -2);
        set(r+3, c, -M0(1,0)); set(r+3, c+1, M0(0,0)+1);
        set(r+4, c, -M0(1,1)-1); set(r+4, c+1, M0(0,1));
        set(r+5, c, -M0(1,2)); set(r+5, c+1, M0(0,2)); set(r+5, c+3, -2);

        c = 4*(t+2);
        set(r, c, M1(0,0)); set(r, c+1, M1(1,0));
        set(r+1, c, M1(0,1)); set(r+1, c+1, M1(1,1));
        set(r+2, c, M1(0,2)); set(r+2, c+1, M1(1,2)); set(r+2, c+2, 1);
        set(r+3, c, M1(1,0)); set(r+3, c+1, -M1(0,0));
        set(r+4, c, M1(1,1)); set(r+4, c+1, -M1(0,1));
        set(r+5, c, M1(1,2)); set(r+5, c+1, -M1(0,2)); set(r+5, c+3, 1);

        c = 4*N + 6*(N-1) + 6*t;
        for (int i = 0; i < 6; ++i)
            set(r+i, c+i, 1);

        rowlb_[r] = 0;
        rowlb_[r+1] = 0;
        rowlb_[r+2] = 0;
        rowlb_[r+3] = 0;
        rowlb_[r+4] = 0;
        rowlb_[r+5] = 0;
    }

    // for each S[t+3]M[t+2] - S[t+2]*(I+2M[t+1]) + S[t+1]*(2*I+M[t]) - S[t] - e[t] <= 0 condition
    for (int t = 0; t < N-3; ++t, r += 6)
    {
        Mat_<float> M0 = at(t,M), M1 = at(t+1,M), M2 = at(t+2,M);

        c = 4*t;
        set(r, c, -1);
        set(r+1, c+1, -1);
        set(r+2, c+2, -1);
        set(r+3, c+1, 1);
        set(r+4, c, -1);
        set(r+5, c+3, -1);

        c = 4*(t+1);
        set(r, c, M0(0,0)+2); set(r, c+1, M0(1,0));
        set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)+2);
        set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 3);
        set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)-2);
        set(r+4, c, M0(1,1)+2); set(r+4, c+1, -M0(0,1));
        set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 3);

        c = 4*(t+2);
        set(r, c, -2*M1(0,0)-1); set(r, c+1, -2*M1(1,0));
        set(r+1, c, -2*M1(0,1)); set(r+1, c+1, -2*M1(1,1)-1);
        set(r+2, c, -2*M1(0,2)); set(r+2, c+1, -2*M1(1,2)); set(r+2, c+2, -3);
        set(r+3, c, -2*M1(1,0)); set(r+3, c+1, 2*M1(0,0)+1);
        set(r+4, c, -2*M1(1,1)-1); set(r+4, c+1, 2*M1(0,1));
        set(r+5, c, -2*M1(1,2)); set(r+5, c+1, 2*M1(0,2)); set(r+5, c+3, -3);

        c = 4*(t+3);
        set(r, c, M2(0,0)); set(r, c+1, M2(1,0));
        set(r+1, c, M2(0,1)); set(r+1, c+1, M2(1,1));
        set(r+2, c, M2(0,2)); set(r+2, c+1, M2(1,2)); set(r+2, c+2, 1);
        set(r+3, c, M2(1,0)); set(r+3, c+1, -M2(0,0));
        set(r+4, c, M2(1,1)); set(r+4, c+1, -M2(0,1));
        set(r+5, c, M2(1,2)); set(r+5, c+1, -M2(0,2)); set(r+5, c+3, 1);

        c = 4*N + 6*(N-1) + 6*(N-2) + 6*t;
        for (int i = 0; i < 6; ++i)
            set(r+i, c+i, -1);

        rowub_[r] = 0;
        rowub_[r+1] = 0;
        rowub_[r+2] = 0;
        rowub_[r+3] = 0;
        rowub_[r+4] = 0;
        rowub_[r+5] = 0;
    }

    // for each 0 <= S[t+3]M[t+2] - S[t+2]*(I+2M[t+1]) + S[t+1]*(2*I+M[t]) + e[t] condition
    for (int t = 0; t < N-3; ++t, r += 6)
    {
        Mat_<float> M0 = at(t,M), M1 = at(t+1,M), M2 = at(t+2,M);

        c = 4*t;
        set(r, c, -1);
        set(r+1, c+1, -1);
        set(r+2, c+2, -1);
        set(r+3, c+1, 1);
        set(r+4, c, -1);
        set(r+5, c+3, -1);

        c = 4*(t+1);
        set(r, c, M0(0,0)+2); set(r, c+1, M0(1,0));
        set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)+2);
        set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 3);
        set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)-2);
        set(r+4, c, M0(1,1)+2); set(r+4, c+1, -M0(0,1));
        set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 3);

        c = 4*(t+2);
        set(r, c, -2*M1(0,0)-1); set(r, c+1, -2*M1(1,0));
        set(r+1, c, -2*M1(0,1)); set(r+1, c+1, -2*M1(1,1)-1);
        set(r+2, c, -2*M1(0,2)); set(r+2, c+1, -2*M1(1,2)); set(r+2, c+2, -3);
        set(r+3, c, -2*M1(1,0)); set(r+3, c+1, 2*M1(0,0)+1);
        set(r+4, c, -2*M1(1,1)-1); set(r+4, c+1, 2*M1(0,1));
        set(r+5, c, -2*M1(1,2)); set(r+5, c+1, 2*M1(0,2)); set(r+5, c+3, -3);

        c = 4*(t+3);
        set(r, c, M2(0,0)); set(r, c+1, M2(1,0));
        set(r+1, c, M2(0,1)); set(r+1, c+1, M2(1,1));
        set(r+2, c, M2(0,2)); set(r+2, c+1, M2(1,2)); set(r+2, c+2, 1);
        set(r+3, c, M2(1,0)); set(r+3, c+1, -M2(0,0));
        set(r+4, c, M2(1,1)); set(r+4, c+1, -M2(0,1));
        set(r+5, c, M2(1,2)); set(r+5, c+1, -M2(0,2)); set(r+5, c+3, 1);

        c = 4*N + 6*(N-1) + 6*(N-2) + 6*t;
        for (int i = 0; i < 6; ++i)
            set(r+i, c+i, 1);

        rowlb_[r] = 0;
        rowlb_[r+1] = 0;
        rowlb_[r+2] = 0;
        rowlb_[r+3] = 0;
        rowlb_[r+4] = 0;
        rowlb_[r+5] = 0;
    }

    // solve

    CoinPackedMatrix A(true, &rows_[0], &cols_[0], &elems_[0], elems_.size());
    A.setDimensions(nrows, ncols);

    ClpSimplex model(false);
    model.loadProblem(A, &collb_[0], &colub_[0], &obj_[0], &rowlb_[0], &rowub_[0]);

    ClpDualRowSteepest dualSteep(1);
    model.setDualRowPivotAlgorithm(dualSteep);

    ClpPrimalColumnSteepest primalSteep(1);
    model.setPrimalColumnPivotAlgorithm(primalSteep);

    model.scaling(1);

    ClpPresolve presolveInfo;
    Ptr<ClpSimplex> presolvedModel(presolveInfo.presolvedModel(model));

    if (presolvedModel)
    {
        presolvedModel->dual();
        presolveInfo.postsolve(true);
        model.checkSolution();
        model.primal(1);
    }
    else
    {
        model.dual();
        model.checkSolution();
        model.primal(1);
    }

    // save results

    const double *sol = model.getColSolution();
    c = 0;

    for (int t = 0; t < N; ++t, c += 4)
    {
        Mat_<float> S0 = Mat::eye(3, 3, CV_32F);
        S0(1,1) = S0(0,0) = sol[c];
        S0(0,1) = sol[c+1];
        S0(1,0) = -sol[c+1];
        S0(0,2) = sol[c+2];
        S0(1,2) = sol[c+3];
        S[t] = S0;
    }
}
#endif // #ifndef HAVE_CLP


static inline int areaSign(Point2f a, Point2f b, Point2f c)
{
    double area = (b-a).cross(c-a);
    if (area < -1e-5) return -1;
    if (area > 1e-5) return 1;
    return 0;
}


static inline bool segmentsIntersect(Point2f a, Point2f b, Point2f c, Point2f d)
{
    return areaSign(a,b,c) * areaSign(a,b,d) < 0 &&
           areaSign(c,d,a) * areaSign(c,d,b) < 0;
}


// Checks if rect a (with sides parallel to axis) is inside rect b (arbitrary).
// Rects must be passed in the [(0,0), (w,0), (w,h), (0,h)] order.
static inline bool isRectInside(const Point2f a[4], const Point2f b[4])
{
    for (int i = 0; i < 4; ++i)
        if (b[i].x > a[0].x && b[i].x < a[2].x && b[i].y > a[0].y && b[i].y < a[2].y)
            return false;
    for (int i = 0; i < 4; ++i)
    for (int j = 0; j < 4; ++j)
        if (segmentsIntersect(a[i], a[(i+1)%4], b[j], b[(j+1)%4]))
            return false;
    return true;
}


static inline bool isGoodMotion(const float M[], float w, float h, float dx, float dy)
{
    Point2f pt[4] = {Point2f(0,0), Point2f(w,0), Point2f(w,h), Point2f(0,h)};
    Point2f Mpt[4];
    float z;

    for (int i = 0; i < 4; ++i)
    {
        Mpt[i].x = M[0]*pt[i].x + M[1]*pt[i].y + M[2];
        Mpt[i].y = M[3]*pt[i].x + M[4]*pt[i].y + M[5];
        z = M[6]*pt[i].x + M[7]*pt[i].y + M[8];
        Mpt[i].x /= z;
        Mpt[i].y /= z;
    }

    pt[0] = Point2f(dx, dy);
    pt[1] = Point2f(w - dx, dy);
    pt[2] = Point2f(w - dx, h - dy);
    pt[3] = Point2f(dx, h - dy);

    return isRectInside(pt, Mpt);
}


static inline void relaxMotion(const float M[], float t, float res[])
{
    res[0] = M[0]*(1.f-t) + t;
    res[1] = M[1]*(1.f-t);
    res[2] = M[2]*(1.f-t);
    res[3] = M[3]*(1.f-t);
    res[4] = M[4]*(1.f-t) + t;
    res[5] = M[5]*(1.f-t);
    res[6] = M[6]*(1.f-t);
    res[7] = M[7]*(1.f-t);
    res[8] = M[8]*(1.f-t) + t;
}


Mat ensureInclusionConstraint(const Mat &M, Size size, float trimRatio)
{
    CV_Assert(M.size() == Size(3,3) && M.type() == CV_32F);

    const float w = static_cast<float>(size.width);
    const float h = static_cast<float>(size.height);
    const float dx = floor(w * trimRatio);
    const float dy = floor(h * trimRatio);
    const float srcM[] =
            {M.at<float>(0,0), M.at<float>(0,1), M.at<float>(0,2),
             M.at<float>(1,0), M.at<float>(1,1), M.at<float>(1,2),
             M.at<float>(2,0), M.at<float>(2,1), M.at<float>(2,2)};

    float curM[9];
    float t = 0;
    relaxMotion(srcM, t, curM);
    if (isGoodMotion(curM, w, h, dx, dy))
        return M;

    float l = 0, r = 1;
    while (r - l > 1e-3f)
    {
        t = (l + r) * 0.5f;
        relaxMotion(srcM, t, curM);
        if (isGoodMotion(curM, w, h, dx, dy))
            r = t;
        else
            l = t;
    }

    return (1 - r) * M + r * Mat::eye(3, 3, CV_32F);
}


// TODO can be estimated for O(1) time
float estimateOptimalTrimRatio(const Mat &M, Size size)
{
    CV_Assert(M.size() == Size(3,3) && M.type() == CV_32F);

    const float w = static_cast<float>(size.width);
    const float h = static_cast<float>(size.height);
    Mat_<float> M_(M);

    Point2f pt[4] = {Point2f(0,0), Point2f(w,0), Point2f(w,h), Point2f(0,h)};
    Point2f Mpt[4];
    float z;

    for (int i = 0; i < 4; ++i)
    {
        Mpt[i].x = M_(0,0)*pt[i].x + M_(0,1)*pt[i].y + M_(0,2);
        Mpt[i].y = M_(1,0)*pt[i].x + M_(1,1)*pt[i].y + M_(1,2);
        z = M_(2,0)*pt[i].x + M_(2,1)*pt[i].y + M_(2,2);
        Mpt[i].x /= z;
        Mpt[i].y /= z;
    }

    float l = 0, r = 0.5f;
    while (r - l > 1e-3f)
    {
        float t = (l + r) * 0.5f;
        float dx = floor(w * t);
        float dy = floor(h * t);
        pt[0] = Point2f(dx, dy);
        pt[1] = Point2f(w - dx, dy);
        pt[2] = Point2f(w - dx, h - dy);
        pt[3] = Point2f(dx, h - dy);
        if (isRectInside(pt, Mpt))
            r = t;
        else
            l = t;
    }

    return r;
}

} // namespace videostab
} // namespace cv

/* [<][>][^][v][top][bottom][index][help] */