root/ext/sqlite/libsqlite/src/build.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sqliteBeginParse
  2. sqliteExec
  3. sqliteFindTable
  4. sqliteLocateTable
  5. sqliteFindIndex
  6. sqliteDeleteIndex
  7. sqliteUnlinkAndDeleteIndex
  8. sqliteResetInternalSchema
  9. sqliteRollbackInternalChanges
  10. sqliteCommitInternalChanges
  11. sqliteDeleteTable
  12. sqliteUnlinkAndDeleteTable
  13. sqliteTableNameFromToken
  14. sqliteOpenMasterTable
  15. sqliteStartTable
  16. sqliteAddColumn
  17. sqliteAddNotNull
  18. sqliteAddColumnType
  19. sqliteAddDefaultValue
  20. sqliteAddPrimaryKey
  21. sqliteCollateType
  22. sqliteAddCollateType
  23. sqliteChangeCookie
  24. identLength
  25. identPut
  26. createTableStmt
  27. sqliteEndTable
  28. sqliteCreateView
  29. sqliteViewGetColumnNames
  30. sqliteViewResetColumnNames
  31. sqliteViewResetAll
  32. sqliteTableFromToken
  33. sqliteDropTable
  34. sqliteAddIdxKeyType
  35. sqliteCreateForeignKey
  36. sqliteDeferForeignKey
  37. sqliteCreateIndex
  38. sqliteDropIndex
  39. sqliteIdListAppend
  40. sqliteSrcListAppend
  41. sqliteSrcListAssignCursors
  42. sqliteSrcListAddAlias
  43. sqliteIdListDelete
  44. sqliteIdListIndex
  45. sqliteSrcListDelete
  46. sqliteBeginTransaction
  47. sqliteCommitTransaction
  48. sqliteRollbackTransaction
  49. sqliteCodeVerifySchema
  50. sqliteBeginWriteOperation
  51. sqliteEndWriteOperation

/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the SQLite parser
** when syntax rules are reduced.  The routines in this file handle the
** following kinds of SQL syntax:
**
**     CREATE TABLE
**     DROP TABLE
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**     PRAGMA
**
** $Id: build.c,v 1.6.4.1 2005/09/07 15:11:31 iliaa Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Check to see if the schema for the database needs
** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
** If it does, then read it.
*/
void sqliteBeginParse(Parse *pParse, int explainFlag){
  sqlite *db = pParse->db;
  int i;
  pParse->explain = explainFlag;
  if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){
    int rc = sqliteInit(db, &pParse->zErrMsg);
    if( rc!=SQLITE_OK ){
      pParse->rc = rc;
      pParse->nErr++;
    }
  }
  for(i=0; i<db->nDb; i++){
    DbClearProperty(db, i, DB_Locked);
    if( !db->aDb[i].inTrans ){
      DbClearProperty(db, i, DB_Cookie);
    }
  }
  pParse->nVar = 0;
}

/*
** This routine is called after a single SQL statement has been
** parsed and we want to execute the VDBE code to implement 
** that statement.  Prior action routines should have already
** constructed VDBE code to do the work of the SQL statement.
** This routine just has to execute the VDBE code.
**
** Note that if an error occurred, it might be the case that
** no VDBE code was generated.
*/
void sqliteExec(Parse *pParse){
  sqlite *db = pParse->db;
  Vdbe *v = pParse->pVdbe;

  if( v==0 && (v = sqliteGetVdbe(pParse))!=0 ){
    sqliteVdbeAddOp(v, OP_Halt, 0, 0);
  }
  if( sqlite_malloc_failed ) return;
  if( v && pParse->nErr==0 ){
    FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
    sqliteVdbeTrace(v, trace);
    sqliteVdbeMakeReady(v, pParse->nVar, pParse->explain);
    pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
    pParse->colNamesSet = 0;
  }else if( pParse->rc==SQLITE_OK ){
    pParse->rc = SQLITE_ERROR;
  }
  pParse->nTab = 0;
  pParse->nMem = 0;
  pParse->nSet = 0;
  pParse->nAgg = 0;
  pParse->nVar = 0;
}

/*
** Locate the in-memory structure that describes 
** a particular database table given the name
** of that table and (optionally) the name of the database
** containing the table.  Return NULL if not found.
**
** If zDatabase is 0, all databases are searched for the
** table and the first matching table is returned.  (No checking
** for duplicate table names is done.)  The search order is
** TEMP first, then MAIN, then any auxiliary databases added
** using the ATTACH command.
**
** See also sqliteLocateTable().
*/
Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){
  Table *p = 0;
  int i;
  for(i=0; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
    if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue;
    p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
    if( p ) break;
  }
  return p;
}

/*
** Locate the in-memory structure that describes 
** a particular database table given the name
** of that table and (optionally) the name of the database
** containing the table.  Return NULL if not found.
** Also leave an error message in pParse->zErrMsg.
**
** The difference between this routine and sqliteFindTable()
** is that this routine leaves an error message in pParse->zErrMsg
** where sqliteFindTable() does not.
*/
Table *sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase){
  Table *p;

  p = sqliteFindTable(pParse->db, zName, zDbase);
  if( p==0 ){
    if( zDbase ){
      sqliteErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
    }else if( sqliteFindTable(pParse->db, zName, 0)!=0 ){
      sqliteErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
         zName, zDbase);
    }else{
      sqliteErrorMsg(pParse, "no such table: %s", zName);
    }
  }
  return p;
}

/*
** Locate the in-memory structure that describes 
** a particular index given the name of that index
** and the name of the database that contains the index.
** Return NULL if not found.
**
** If zDatabase is 0, all databases are searched for the
** table and the first matching index is returned.  (No checking
** for duplicate index names is done.)  The search order is
** TEMP first, then MAIN, then any auxiliary databases added
** using the ATTACH command.
*/
Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){
  Index *p = 0;
  int i;
  for(i=0; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
    if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue;
    p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
    if( p ) break;
  }
  return p;
}

/*
** Remove the given index from the index hash table, and free
** its memory structures.
**
** The index is removed from the database hash tables but
** it is not unlinked from the Table that it indexes.
** Unlinking from the Table must be done by the calling function.
*/
static void sqliteDeleteIndex(sqlite *db, Index *p){
  Index *pOld;

  assert( db!=0 && p->zName!=0 );
  pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName,
                          strlen(p->zName)+1, 0);
  if( pOld!=0 && pOld!=p ){
    sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
                     strlen(pOld->zName)+1, pOld);
  }
  sqliteFree(p);
}

/*
** Unlink the given index from its table, then remove
** the index from the index hash table and free its memory
** structures.
*/
void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
  if( pIndex->pTable->pIndex==pIndex ){
    pIndex->pTable->pIndex = pIndex->pNext;
  }else{
    Index *p;
    for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
    if( p && p->pNext==pIndex ){
      p->pNext = pIndex->pNext;
    }
  }
  sqliteDeleteIndex(db, pIndex);
}

/*
** Erase all schema information from the in-memory hash tables of
** database connection.  This routine is called to reclaim memory
** before the connection closes.  It is also called during a rollback
** if there were schema changes during the transaction.
**
** If iDb<=0 then reset the internal schema tables for all database
** files.  If iDb>=2 then reset the internal schema for only the
** single file indicated.
*/
void sqliteResetInternalSchema(sqlite *db, int iDb){
  HashElem *pElem;
  Hash temp1;
  Hash temp2;
  int i, j;

  assert( iDb>=0 && iDb<db->nDb );
  db->flags &= ~SQLITE_Initialized;
  for(i=iDb; i<db->nDb; i++){
    Db *pDb = &db->aDb[i];
    temp1 = pDb->tblHash;
    temp2 = pDb->trigHash;
    sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
    sqliteHashClear(&pDb->aFKey);
    sqliteHashClear(&pDb->idxHash);
    for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
      Trigger *pTrigger = sqliteHashData(pElem);
      sqliteDeleteTrigger(pTrigger);
    }
    sqliteHashClear(&temp2);
    sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
    for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
      Table *pTab = sqliteHashData(pElem);
      sqliteDeleteTable(db, pTab);
    }
    sqliteHashClear(&temp1);
    DbClearProperty(db, i, DB_SchemaLoaded);
    if( iDb>0 ) return;
  }
  assert( iDb==0 );
  db->flags &= ~SQLITE_InternChanges;

  /* If one or more of the auxiliary database files has been closed,
  ** then remove then from the auxiliary database list.  We take the
  ** opportunity to do this here since we have just deleted all of the
  ** schema hash tables and therefore do not have to make any changes
  ** to any of those tables.
  */
  for(i=0; i<db->nDb; i++){
    struct Db *pDb = &db->aDb[i];
    if( pDb->pBt==0 ){
      if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
      pDb->pAux = 0;
    }
  }
  for(i=j=2; i<db->nDb; i++){
    struct Db *pDb = &db->aDb[i];
    if( pDb->pBt==0 ){
      sqliteFree(pDb->zName);
      pDb->zName = 0;
      continue;
    }
    if( j<i ){
      db->aDb[j] = db->aDb[i];
    }
    j++;
  }
  memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
  db->nDb = j;
  if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
    memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
    sqliteFree(db->aDb);
    db->aDb = db->aDbStatic;
  }
}

/*
** This routine is called whenever a rollback occurs.  If there were
** schema changes during the transaction, then we have to reset the
** internal hash tables and reload them from disk.
*/
void sqliteRollbackInternalChanges(sqlite *db){
  if( db->flags & SQLITE_InternChanges ){
    sqliteResetInternalSchema(db, 0);
  }
}

/*
** This routine is called when a commit occurs.
*/
void sqliteCommitInternalChanges(sqlite *db){
  db->aDb[0].schema_cookie = db->next_cookie;
  db->flags &= ~SQLITE_InternChanges;
}

/*
** Remove the memory data structures associated with the given
** Table.  No changes are made to disk by this routine.
**
** This routine just deletes the data structure.  It does not unlink
** the table data structure from the hash table.  Nor does it remove
** foreign keys from the sqlite.aFKey hash table.  But it does destroy
** memory structures of the indices and foreign keys associated with 
** the table.
**
** Indices associated with the table are unlinked from the "db"
** data structure if db!=NULL.  If db==NULL, indices attached to
** the table are deleted, but it is assumed they have already been
** unlinked.
*/
void sqliteDeleteTable(sqlite *db, Table *pTable){
  int i;
  Index *pIndex, *pNext;
  FKey *pFKey, *pNextFKey;

  if( pTable==0 ) return;

  /* Delete all indices associated with this table
  */
  for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
    pNext = pIndex->pNext;
    assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
    sqliteDeleteIndex(db, pIndex);
  }

  /* Delete all foreign keys associated with this table.  The keys
  ** should have already been unlinked from the db->aFKey hash table 
  */
  for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
    pNextFKey = pFKey->pNextFrom;
    assert( pTable->iDb<db->nDb );
    assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey,
                           pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
    sqliteFree(pFKey);
  }

  /* Delete the Table structure itself.
  */
  for(i=0; i<pTable->nCol; i++){
    sqliteFree(pTable->aCol[i].zName);
    sqliteFree(pTable->aCol[i].zDflt);
    sqliteFree(pTable->aCol[i].zType);
  }
  sqliteFree(pTable->zName);
  sqliteFree(pTable->aCol);
  sqliteSelectDelete(pTable->pSelect);
  sqliteFree(pTable);
}

/*
** Unlink the given table from the hash tables and the delete the
** table structure with all its indices and foreign keys.
*/
static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
  Table *pOld;
  FKey *pF1, *pF2;
  int i = p->iDb;
  assert( db!=0 );
  pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0);
  assert( pOld==0 || pOld==p );
  for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
    int nTo = strlen(pF1->zTo) + 1;
    pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo);
    if( pF2==pF1 ){
      sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo);
    }else{
      while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
      if( pF2 ){
        pF2->pNextTo = pF1->pNextTo;
      }
    }
  }
  sqliteDeleteTable(db, p);
}

/*
** Construct the name of a user table or index from a token.
**
** Space to hold the name is obtained from sqliteMalloc() and must
** be freed by the calling function.
*/
char *sqliteTableNameFromToken(Token *pName){
  char *zName = sqliteStrNDup(pName->z, pName->n);
  sqliteDequote(zName);
  return zName;
}

/*
** Generate code to open the appropriate master table.  The table
** opened will be SQLITE_MASTER for persistent tables and 
** SQLITE_TEMP_MASTER for temporary tables.  The table is opened
** on cursor 0.
*/
void sqliteOpenMasterTable(Vdbe *v, int isTemp){
  sqliteVdbeAddOp(v, OP_Integer, isTemp, 0);
  sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
}

/*
** Begin constructing a new table representation in memory.  This is
** the first of several action routines that get called in response
** to a CREATE TABLE statement.  In particular, this routine is called
** after seeing tokens "CREATE" and "TABLE" and the table name.  The
** pStart token is the CREATE and pName is the table name.  The isTemp
** flag is true if the table should be stored in the auxiliary database
** file instead of in the main database file.  This is normally the case
** when the "TEMP" or "TEMPORARY" keyword occurs in between
** CREATE and TABLE.
**
** The new table record is initialized and put in pParse->pNewTable.
** As more of the CREATE TABLE statement is parsed, additional action
** routines will be called to add more information to this record.
** At the end of the CREATE TABLE statement, the sqliteEndTable() routine
** is called to complete the construction of the new table record.
*/
void sqliteStartTable(
  Parse *pParse,   /* Parser context */
  Token *pStart,   /* The "CREATE" token */
  Token *pName,    /* Name of table or view to create */
  int isTemp,      /* True if this is a TEMP table */
  int isView       /* True if this is a VIEW */
){
  Table *pTable;
  Index *pIdx;
  char *zName;
  sqlite *db = pParse->db;
  Vdbe *v;
  int iDb;

  pParse->sFirstToken = *pStart;
  zName = sqliteTableNameFromToken(pName);
  if( zName==0 ) return;
  if( db->init.iDb==1 ) isTemp = 1;
#ifndef SQLITE_OMIT_AUTHORIZATION
  assert( (isTemp & 1)==isTemp );
  {
    int code;
    char *zDb = isTemp ? "temp" : "main";
    if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
      sqliteFree(zName);
      return;
    }
    if( isView ){
      if( isTemp ){
        code = SQLITE_CREATE_TEMP_VIEW;
      }else{
        code = SQLITE_CREATE_VIEW;
      }
    }else{
      if( isTemp ){
        code = SQLITE_CREATE_TEMP_TABLE;
      }else{
        code = SQLITE_CREATE_TABLE;
      }
    }
    if( sqliteAuthCheck(pParse, code, zName, 0, zDb) ){
      sqliteFree(zName);
      return;
    }
  }
#endif
 

  /* Before trying to create a temporary table, make sure the Btree for
  ** holding temporary tables is open.
  */
  if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){
    int rc = sqliteBtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
    if( rc!=SQLITE_OK ){
      sqliteErrorMsg(pParse, "unable to open a temporary database "
        "file for storing temporary tables");
      pParse->nErr++;
      return;
    }
    if( db->flags & SQLITE_InTrans ){
      rc = sqliteBtreeBeginTrans(db->aDb[1].pBt);
      if( rc!=SQLITE_OK ){
        sqliteErrorMsg(pParse, "unable to get a write lock on "
          "the temporary database file");
        return;
      }
    }
  }

  /* Make sure the new table name does not collide with an existing
  ** index or table name.  Issue an error message if it does.
  **
  ** If we are re-reading the sqlite_master table because of a schema
  ** change and a new permanent table is found whose name collides with
  ** an existing temporary table, that is not an error.
  */
  pTable = sqliteFindTable(db, zName, 0);
  iDb = isTemp ? 1 : db->init.iDb;
  if( pTable!=0 && (pTable->iDb==iDb || !db->init.busy) ){
    sqliteErrorMsg(pParse, "table %T already exists", pName);
    sqliteFree(zName);
    return;
  }
  if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 &&
          (pIdx->iDb==0 || !db->init.busy) ){
    sqliteErrorMsg(pParse, "there is already an index named %s", zName);
    sqliteFree(zName);
    return;
  }
  pTable = sqliteMalloc( sizeof(Table) );
  if( pTable==0 ){
    sqliteFree(zName);
    return;
  }
  pTable->zName = zName;
  pTable->nCol = 0;
  pTable->aCol = 0;
  pTable->iPKey = -1;
  pTable->pIndex = 0;
  pTable->iDb = iDb;
  if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
  pParse->pNewTable = pTable;

  /* Begin generating the code that will insert the table record into
  ** the SQLITE_MASTER table.  Note in particular that we must go ahead
  ** and allocate the record number for the table entry now.  Before any
  ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
  ** indices to be created and the table record must come before the 
  ** indices.  Hence, the record number for the table must be allocated
  ** now.
  */
  if( !db->init.busy && (v = sqliteGetVdbe(pParse))!=0 ){
    sqliteBeginWriteOperation(pParse, 0, isTemp);
    if( !isTemp ){
      sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
      sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
    }
    sqliteOpenMasterTable(v, isTemp);
    sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
    sqliteVdbeAddOp(v, OP_Dup, 0, 0);
    sqliteVdbeAddOp(v, OP_String, 0, 0);
    sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
  }
}

/*
** Add a new column to the table currently being constructed.
**
** The parser calls this routine once for each column declaration
** in a CREATE TABLE statement.  sqliteStartTable() gets called
** first to get things going.  Then this routine is called for each
** column.
*/
void sqliteAddColumn(Parse *pParse, Token *pName){
  Table *p;
  int i;
  char *z = 0;
  Column *pCol;
  if( (p = pParse->pNewTable)==0 ) return;
  sqliteSetNString(&z, pName->z, pName->n, 0);
  if( z==0 ) return;
  sqliteDequote(z);
  for(i=0; i<p->nCol; i++){
    if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
      sqliteErrorMsg(pParse, "duplicate column name: %s", z);
      sqliteFree(z);
      return;
    }
  }
  if( (p->nCol & 0x7)==0 ){
    Column *aNew;
    aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
    if( aNew==0 ) return;
    p->aCol = aNew;
  }
  pCol = &p->aCol[p->nCol];
  memset(pCol, 0, sizeof(p->aCol[0]));
  pCol->zName = z;
  pCol->sortOrder = SQLITE_SO_NUM;
  p->nCol++;
}

/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
** been seen on a column.  This routine sets the notNull flag on
** the column currently under construction.
*/
void sqliteAddNotNull(Parse *pParse, int onError){
  Table *p;
  int i;
  if( (p = pParse->pNewTable)==0 ) return;
  i = p->nCol-1;
  if( i>=0 ) p->aCol[i].notNull = onError;
}

/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.  The pFirst token is the first
** token in the sequence of tokens that describe the type of the
** column currently under construction.   pLast is the last token
** in the sequence.  Use this information to construct a string
** that contains the typename of the column and store that string
** in zType.
*/ 
void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
  Table *p;
  int i, j;
  int n;
  char *z, **pz;
  Column *pCol;
  if( (p = pParse->pNewTable)==0 ) return;
  i = p->nCol-1;
  if( i<0 ) return;
  pCol = &p->aCol[i];
  pz = &pCol->zType;
  n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
  sqliteSetNString(pz, pFirst->z, n, 0);
  z = *pz;
  if( z==0 ) return;
  for(i=j=0; z[i]; i++){
    int c = z[i];
    if( isspace(c) ) continue;
    z[j++] = c;
  }
  z[j] = 0;
  if( pParse->db->file_format>=4 ){
    pCol->sortOrder = sqliteCollateType(z, n);
  }else{
    pCol->sortOrder = SQLITE_SO_NUM;
  }
}

/*
** The given token is the default value for the last column added to
** the table currently under construction.  If "minusFlag" is true, it
** means the value token was preceded by a minus sign.
**
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.
*/
void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
  Table *p;
  int i;
  char **pz;
  if( (p = pParse->pNewTable)==0 ) return;
  i = p->nCol-1;
  if( i<0 ) return;
  pz = &p->aCol[i].zDflt;
  if( minusFlag ){
    sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
  }else{
    sqliteSetNString(pz, pVal->z, pVal->n, 0);
  }
  sqliteDequote(*pz);
}

/*
** Designate the PRIMARY KEY for the table.  pList is a list of names 
** of columns that form the primary key.  If pList is NULL, then the
** most recently added column of the table is the primary key.
**
** A table can have at most one primary key.  If the table already has
** a primary key (and this is the second primary key) then create an
** error.
**
** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
** then we will try to use that column as the row id.  (Exception:
** For backwards compatibility with older databases, do not do this
** if the file format version number is less than 1.)  Set the Table.iPKey
** field of the table under construction to be the index of the
** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
** no INTEGER PRIMARY KEY.
**
** If the key is not an INTEGER PRIMARY KEY, then create a unique
** index for the key.  No index is created for INTEGER PRIMARY KEYs.
*/
void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
  Table *pTab = pParse->pNewTable;
  char *zType = 0;
  int iCol = -1, i;
  if( pTab==0 ) goto primary_key_exit;
  if( pTab->hasPrimKey ){
    sqliteErrorMsg(pParse, 
      "table \"%s\" has more than one primary key", pTab->zName);
    goto primary_key_exit;
  }
  pTab->hasPrimKey = 1;
  if( pList==0 ){
    iCol = pTab->nCol - 1;
    pTab->aCol[iCol].isPrimKey = 1;
  }else{
    for(i=0; i<pList->nId; i++){
      for(iCol=0; iCol<pTab->nCol; iCol++){
        if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break;
      }
      if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
    }
    if( pList->nId>1 ) iCol = -1;
  }
  if( iCol>=0 && iCol<pTab->nCol ){
    zType = pTab->aCol[iCol].zType;
  }
  if( pParse->db->file_format>=1 && 
           zType && sqliteStrICmp(zType, "INTEGER")==0 ){
    pTab->iPKey = iCol;
    pTab->keyConf = onError;
  }else{
    sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
    pList = 0;
  }

primary_key_exit:
  sqliteIdListDelete(pList);
  return;
}

/*
** Return the appropriate collating type given a type name.
**
** The collation type is text (SQLITE_SO_TEXT) if the type
** name contains the character stream "text" or "blob" or
** "clob".  Any other type name is collated as numeric
** (SQLITE_SO_NUM).
*/
int sqliteCollateType(const char *zType, int nType){
  int i;
  for(i=0; i<nType-3; i++){
    int c = *(zType++) | 0x60;
    if( (c=='b' || c=='c') && sqliteStrNICmp(zType, "lob", 3)==0 ){
      return SQLITE_SO_TEXT;
    }
    if( c=='c' && sqliteStrNICmp(zType, "har", 3)==0 ){
      return SQLITE_SO_TEXT;
    }
    if( c=='t' && sqliteStrNICmp(zType, "ext", 3)==0 ){
      return SQLITE_SO_TEXT;
    }
  }
  return SQLITE_SO_NUM;
}

/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.  A "COLLATE" clause has
** been seen on a column.  This routine sets the Column.sortOrder on
** the column currently under construction.
*/
void sqliteAddCollateType(Parse *pParse, int collType){
  Table *p;
  int i;
  if( (p = pParse->pNewTable)==0 ) return;
  i = p->nCol-1;
  if( i>=0 ) p->aCol[i].sortOrder = collType;
}

/*
** Come up with a new random value for the schema cookie.  Make sure
** the new value is different from the old.
**
** The schema cookie is used to determine when the schema for the
** database changes.  After each schema change, the cookie value
** changes.  When a process first reads the schema it records the
** cookie.  Thereafter, whenever it goes to access the database,
** it checks the cookie to make sure the schema has not changed
** since it was last read.
**
** This plan is not completely bullet-proof.  It is possible for
** the schema to change multiple times and for the cookie to be
** set back to prior value.  But schema changes are infrequent
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32.  So we're safe enough.
*/
void sqliteChangeCookie(sqlite *db, Vdbe *v){
  if( db->next_cookie==db->aDb[0].schema_cookie ){
    unsigned char r;
    sqliteRandomness(1, &r);
    db->next_cookie = db->aDb[0].schema_cookie + r + 1;
    db->flags |= SQLITE_InternChanges;
    sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
    sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
  }
}

/*
** Measure the number of characters needed to output the given
** identifier.  The number returned includes any quotes used
** but does not include the null terminator.
*/
static int identLength(const char *z){
  int n;
  int needQuote = 0;
  for(n=0; *z; n++, z++){
    if( *z=='\'' ){ n++; needQuote=1; }
  }
  return n + needQuote*2;
}

/*
** Write an identifier onto the end of the given string.  Add
** quote characters as needed.
*/
static void identPut(char *z, int *pIdx, char *zIdent){
  int i, j, needQuote;
  i = *pIdx;
  for(j=0; zIdent[j]; j++){
    if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
  }
  needQuote =  zIdent[j]!=0 || isdigit(zIdent[0])
                  || sqliteKeywordCode(zIdent, j)!=TK_ID;
  if( needQuote ) z[i++] = '\'';
  for(j=0; zIdent[j]; j++){
    z[i++] = zIdent[j];
    if( zIdent[j]=='\'' ) z[i++] = '\'';
  }
  if( needQuote ) z[i++] = '\'';
  z[i] = 0;
  *pIdx = i;
}

/*
** Generate a CREATE TABLE statement appropriate for the given
** table.  Memory to hold the text of the statement is obtained
** from sqliteMalloc() and must be freed by the calling function.
*/
static char *createTableStmt(Table *p){
  int i, k, n;
  char *zStmt;
  char *zSep, *zSep2, *zEnd;
  n = 0;
  for(i=0; i<p->nCol; i++){
    n += identLength(p->aCol[i].zName);
  }
  n += identLength(p->zName);
  if( n<40 ){
    zSep = "";
    zSep2 = ",";
    zEnd = ")";
  }else{
    zSep = "\n  ";
    zSep2 = ",\n  ";
    zEnd = "\n)";
  }
  n += 35 + 6*p->nCol;
  zStmt = sqliteMallocRaw( n );
  if( zStmt==0 ) return 0;
  strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE ");
  k = strlen(zStmt);
  identPut(zStmt, &k, p->zName);
  zStmt[k++] = '(';
  for(i=0; i<p->nCol; i++){
    strcpy(&zStmt[k], zSep);
    k += strlen(&zStmt[k]);
    zSep = zSep2;
    identPut(zStmt, &k, p->aCol[i].zName);
  }
  strcpy(&zStmt[k], zEnd);
  return zStmt;
}

/*
** This routine is called to report the final ")" that terminates
** a CREATE TABLE statement.
**
** The table structure that other action routines have been building
** is added to the internal hash tables, assuming no errors have
** occurred.
**
** An entry for the table is made in the master table on disk, unless
** this is a temporary table or db->init.busy==1.  When db->init.busy==1
** it means we are reading the sqlite_master table because we just
** connected to the database or because the sqlite_master table has
** recently changes, so the entry for this table already exists in
** the sqlite_master table.  We do not want to create it again.
**
** If the pSelect argument is not NULL, it means that this routine
** was called to create a table generated from a 
** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
** the new table will match the result set of the SELECT.
*/
void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
  Table *p;
  sqlite *db = pParse->db;

  if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
  p = pParse->pNewTable;
  if( p==0 ) return;

  /* If the table is generated from a SELECT, then construct the
  ** list of columns and the text of the table.
  */
  if( pSelect ){
    Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
    if( pSelTab==0 ) return;
    assert( p->aCol==0 );
    p->nCol = pSelTab->nCol;
    p->aCol = pSelTab->aCol;
    pSelTab->nCol = 0;
    pSelTab->aCol = 0;
    sqliteDeleteTable(0, pSelTab);
  }

  /* If the db->init.busy is 1 it means we are reading the SQL off the
  ** "sqlite_master" or "sqlite_temp_master" table on the disk.
  ** So do not write to the disk again.  Extract the root page number
  ** for the table from the db->init.newTnum field.  (The page number
  ** should have been put there by the sqliteOpenCb routine.)
  */
  if( db->init.busy ){
    p->tnum = db->init.newTnum;
  }

  /* If not initializing, then create a record for the new table
  ** in the SQLITE_MASTER table of the database.  The record number
  ** for the new table entry should already be on the stack.
  **
  ** If this is a TEMPORARY table, write the entry into the auxiliary
  ** file instead of into the main database file.
  */
  if( !db->init.busy ){
    int n;
    Vdbe *v;

    v = sqliteGetVdbe(pParse);
    if( v==0 ) return;
    if( p->pSelect==0 ){
      /* A regular table */
      sqliteVdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER);
    }else{
      /* A view */
      sqliteVdbeAddOp(v, OP_Integer, 0, 0);
    }
    p->tnum = 0;
    sqliteVdbeAddOp(v, OP_Pull, 1, 0);
    sqliteVdbeOp3(v, OP_String, 0, 0, p->pSelect==0?"table":"view", P3_STATIC);
    sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
    sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
    sqliteVdbeAddOp(v, OP_Dup, 4, 0);
    sqliteVdbeAddOp(v, OP_String, 0, 0);
    if( pSelect ){
      char *z = createTableStmt(p);
      n = z ? strlen(z) : 0;
      sqliteVdbeChangeP3(v, -1, z, n);
      sqliteFree(z);
    }else{
      assert( pEnd!=0 );
      n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
      sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
    }
    sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
    sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
    if( !p->iDb ){
      sqliteChangeCookie(db, v);
    }
    sqliteVdbeAddOp(v, OP_Close, 0, 0);
    if( pSelect ){
      sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0);
      sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
      pParse->nTab = 2;
      sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
    }
    sqliteEndWriteOperation(pParse);
  }

  /* Add the table to the in-memory representation of the database.
  */
  if( pParse->explain==0 && pParse->nErr==0 ){
    Table *pOld;
    FKey *pFKey;
    pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash, 
                            p->zName, strlen(p->zName)+1, p);
    if( pOld ){
      assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
      return;
    }
    for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
      int nTo = strlen(pFKey->zTo) + 1;
      pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo);
      sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey);
    }
    pParse->pNewTable = 0;
    db->nTable++;
    db->flags |= SQLITE_InternChanges;
  }
}

/*
** The parser calls this routine in order to create a new VIEW
*/
void sqliteCreateView(
  Parse *pParse,     /* The parsing context */
  Token *pBegin,     /* The CREATE token that begins the statement */
  Token *pName,      /* The token that holds the name of the view */
  Select *pSelect,   /* A SELECT statement that will become the new view */
  int isTemp         /* TRUE for a TEMPORARY view */
){
  Table *p;
  int n;
  const char *z;
  Token sEnd;
  DbFixer sFix;

  sqliteStartTable(pParse, pBegin, pName, isTemp, 1);
  p = pParse->pNewTable;
  if( p==0 || pParse->nErr ){
    sqliteSelectDelete(pSelect);
    return;
  }
  if( sqliteFixInit(&sFix, pParse, p->iDb, "view", pName)
    && sqliteFixSelect(&sFix, pSelect)
  ){
    sqliteSelectDelete(pSelect);
    return;
  }

  /* Make a copy of the entire SELECT statement that defines the view.
  ** This will force all the Expr.token.z values to be dynamically
  ** allocated rather than point to the input string - which means that
  ** they will persist after the current sqlite_exec() call returns.
  */
  p->pSelect = sqliteSelectDup(pSelect);
  sqliteSelectDelete(pSelect);
  if( !pParse->db->init.busy ){
    sqliteViewGetColumnNames(pParse, p);
  }

  /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
  ** the end.
  */
  sEnd = pParse->sLastToken;
  if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
    sEnd.z += sEnd.n;
  }
  sEnd.n = 0;
  n = sEnd.z - pBegin->z;
  z = pBegin->z;
  while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
  sEnd.z = &z[n-1];
  sEnd.n = 1;

  /* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
  sqliteEndTable(pParse, &sEnd, 0);
  return;
}

/*
** The Table structure pTable is really a VIEW.  Fill in the names of
** the columns of the view in the pTable structure.  Return the number
** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
*/
int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
  ExprList *pEList;
  Select *pSel;
  Table *pSelTab;
  int nErr = 0;

  assert( pTable );

  /* A positive nCol means the columns names for this view are
  ** already known.
  */
  if( pTable->nCol>0 ) return 0;

  /* A negative nCol is a special marker meaning that we are currently
  ** trying to compute the column names.  If we enter this routine with
  ** a negative nCol, it means two or more views form a loop, like this:
  **
  **     CREATE VIEW one AS SELECT * FROM two;
  **     CREATE VIEW two AS SELECT * FROM one;
  **
  ** Actually, this error is caught previously and so the following test
  ** should always fail.  But we will leave it in place just to be safe.
  */
  if( pTable->nCol<0 ){
    sqliteErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
    return 1;
  }

  /* If we get this far, it means we need to compute the table names.
  */
  assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
  pSel = pTable->pSelect;

  /* Note that the call to sqliteResultSetOfSelect() will expand any
  ** "*" elements in this list.  But we will need to restore the list
  ** back to its original configuration afterwards, so we save a copy of
  ** the original in pEList.
  */
  pEList = pSel->pEList;
  pSel->pEList = sqliteExprListDup(pEList);
  if( pSel->pEList==0 ){
    pSel->pEList = pEList;
    return 1;  /* Malloc failed */
  }
  pTable->nCol = -1;
  pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
  if( pSelTab ){
    assert( pTable->aCol==0 );
    pTable->nCol = pSelTab->nCol;
    pTable->aCol = pSelTab->aCol;
    pSelTab->nCol = 0;
    pSelTab->aCol = 0;
    sqliteDeleteTable(0, pSelTab);
    DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
  }else{
    pTable->nCol = 0;
    nErr++;
  }
  sqliteSelectUnbind(pSel);
  sqliteExprListDelete(pSel->pEList);
  pSel->pEList = pEList;
  return nErr;  
}

/*
** Clear the column names from the VIEW pTable.
**
** This routine is called whenever any other table or view is modified.
** The view passed into this routine might depend directly or indirectly
** on the modified or deleted table so we need to clear the old column
** names so that they will be recomputed.
*/
static void sqliteViewResetColumnNames(Table *pTable){
  int i;
  Column *pCol;
  assert( pTable!=0 && pTable->pSelect!=0 );
  for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){
    sqliteFree(pCol->zName);
    sqliteFree(pCol->zDflt);
    sqliteFree(pCol->zType);
  }
  sqliteFree(pTable->aCol);
  pTable->aCol = 0;
  pTable->nCol = 0;
}

/*
** Clear the column names from every VIEW in database idx.
*/
static void sqliteViewResetAll(sqlite *db, int idx){
  HashElem *i;
  if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
  for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
    Table *pTab = sqliteHashData(i);
    if( pTab->pSelect ){
      sqliteViewResetColumnNames(pTab);
    }
  }
  DbClearProperty(db, idx, DB_UnresetViews);
}

/*
** Given a token, look up a table with that name.  If not found, leave
** an error for the parser to find and return NULL.
*/
Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
  char *zName;
  Table *pTab;
  zName = sqliteTableNameFromToken(pTok);
  if( zName==0 ) return 0;
  pTab = sqliteFindTable(pParse->db, zName, 0);
  sqliteFree(zName);
  if( pTab==0 ){
    sqliteErrorMsg(pParse, "no such table: %T", pTok);
  }
  return pTab;
}

/*
** This routine is called to do the work of a DROP TABLE statement.
** pName is the name of the table to be dropped.
*/
void sqliteDropTable(Parse *pParse, Token *pName, int isView){
  Table *pTable;
  Vdbe *v;
  int base;
  sqlite *db = pParse->db;
  int iDb;

  if( pParse->nErr || sqlite_malloc_failed ) return;
  pTable = sqliteTableFromToken(pParse, pName);
  if( pTable==0 ) return;
  iDb = pTable->iDb;
  assert( iDb>=0 && iDb<db->nDb );
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code;
    const char *zTab = SCHEMA_TABLE(pTable->iDb);
    const char *zDb = db->aDb[pTable->iDb].zName;
    if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
      return;
    }
    if( isView ){
      if( iDb==1 ){
        code = SQLITE_DROP_TEMP_VIEW;
      }else{
        code = SQLITE_DROP_VIEW;
      }
    }else{
      if( iDb==1 ){
        code = SQLITE_DROP_TEMP_TABLE;
      }else{
        code = SQLITE_DROP_TABLE;
      }
    }
    if( sqliteAuthCheck(pParse, code, pTable->zName, 0, zDb) ){
      return;
    }
    if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0, zDb) ){
      return;
    }
  }
#endif
  if( pTable->readOnly ){
    sqliteErrorMsg(pParse, "table %s may not be dropped", pTable->zName);
    pParse->nErr++;
    return;
  }
  if( isView && pTable->pSelect==0 ){
    sqliteErrorMsg(pParse, "use DROP TABLE to delete table %s", pTable->zName);
    return;
  }
  if( !isView && pTable->pSelect ){
    sqliteErrorMsg(pParse, "use DROP VIEW to delete view %s", pTable->zName);
    return;
  }

  /* Generate code to remove the table from the master table
  ** on disk.
  */
  v = sqliteGetVdbe(pParse);
  if( v ){
    static VdbeOpList dropTable[] = {
      { OP_Rewind,     0, ADDR(8),  0},
      { OP_String,     0, 0,        0}, /* 1 */
      { OP_MemStore,   1, 1,        0},
      { OP_MemLoad,    1, 0,        0}, /* 3 */
      { OP_Column,     0, 2,        0},
      { OP_Ne,         0, ADDR(7),  0},
      { OP_Delete,     0, 0,        0},
      { OP_Next,       0, ADDR(3),  0}, /* 7 */
    };
    Index *pIdx;
    Trigger *pTrigger;
    sqliteBeginWriteOperation(pParse, 0, pTable->iDb);

    /* Drop all triggers associated with the table being dropped */
    pTrigger = pTable->pTrigger;
    while( pTrigger ){
      assert( pTrigger->iDb==pTable->iDb || pTrigger->iDb==1 );
      sqliteDropTriggerPtr(pParse, pTrigger, 1);
      if( pParse->explain ){
        pTrigger = pTrigger->pNext;
      }else{
        pTrigger = pTable->pTrigger;
      }
    }

    /* Drop all SQLITE_MASTER entries that refer to the table */
    sqliteOpenMasterTable(v, pTable->iDb);
    base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
    sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);

    /* Drop all SQLITE_TEMP_MASTER entries that refer to the table */
    if( pTable->iDb!=1 ){
      sqliteOpenMasterTable(v, 1);
      base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
      sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
    }

    if( pTable->iDb==0 ){
      sqliteChangeCookie(db, v);
    }
    sqliteVdbeAddOp(v, OP_Close, 0, 0);
    if( !isView ){
      sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb);
      for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
        sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb);
      }
    }
    sqliteEndWriteOperation(pParse);
  }

  /* Delete the in-memory description of the table.
  **
  ** Exception: if the SQL statement began with the EXPLAIN keyword,
  ** then no changes should be made.
  */
  if( !pParse->explain ){
    sqliteUnlinkAndDeleteTable(db, pTable);
    db->flags |= SQLITE_InternChanges;
  }
  sqliteViewResetAll(db, iDb);
}

/*
** This routine constructs a P3 string suitable for an OP_MakeIdxKey
** opcode and adds that P3 string to the most recently inserted instruction
** in the virtual machine.  The P3 string consists of a single character
** for each column in the index pIdx of table pTab.  If the column uses
** a numeric sort order, then the P3 string character corresponding to
** that column is 'n'.  If the column uses a text sort order, then the
** P3 string is 't'.  See the OP_MakeIdxKey opcode documentation for
** additional information.  See also the sqliteAddKeyType() routine.
*/
void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
  char *zType;
  Table *pTab;
  int i, n;
  assert( pIdx!=0 && pIdx->pTable!=0 );
  pTab = pIdx->pTable;
  n = pIdx->nColumn;
  zType = sqliteMallocRaw( n+1 );
  if( zType==0 ) return;
  for(i=0; i<n; i++){
    int iCol = pIdx->aiColumn[i];
    assert( iCol>=0 && iCol<pTab->nCol );
    if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
      zType[i] = 't';
    }else{
      zType[i] = 'n';
    }
  }
  zType[n] = 0;
  sqliteVdbeChangeP3(v, -1, zType, n);
  sqliteFree(zType);
}

/*
** This routine is called to create a new foreign key on the table
** currently under construction.  pFromCol determines which columns
** in the current table point to the foreign key.  If pFromCol==0 then
** connect the key to the last column inserted.  pTo is the name of
** the table referred to.  pToCol is a list of tables in the other
** pTo table that the foreign key points to.  flags contains all
** information about the conflict resolution algorithms specified
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
**
** An FKey structure is created and added to the table currently
** under construction in the pParse->pNewTable field.  The new FKey
** is not linked into db->aFKey at this point - that does not happen
** until sqliteEndTable().
**
** The foreign key is set for IMMEDIATE processing.  A subsequent call
** to sqliteDeferForeignKey() might change this to DEFERRED.
*/
void sqliteCreateForeignKey(
  Parse *pParse,       /* Parsing context */
  IdList *pFromCol,    /* Columns in this table that point to other table */
  Token *pTo,          /* Name of the other table */
  IdList *pToCol,      /* Columns in the other table */
  int flags            /* Conflict resolution algorithms. */
){
  Table *p = pParse->pNewTable;
  int nByte;
  int i;
  int nCol;
  char *z;
  FKey *pFKey = 0;

  assert( pTo!=0 );
  if( p==0 || pParse->nErr ) goto fk_end;
  if( pFromCol==0 ){
    int iCol = p->nCol-1;
    if( iCol<0 ) goto fk_end;
    if( pToCol && pToCol->nId!=1 ){
      sqliteErrorMsg(pParse, "foreign key on %s"
         " should reference only one column of table %T",
         p->aCol[iCol].zName, pTo);
      goto fk_end;
    }
    nCol = 1;
  }else if( pToCol && pToCol->nId!=pFromCol->nId ){
    sqliteErrorMsg(pParse,
        "number of columns in foreign key does not match the number of "
        "columns in the referenced table");
    goto fk_end;
  }else{
    nCol = pFromCol->nId;
  }
  nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
  if( pToCol ){
    for(i=0; i<pToCol->nId; i++){
      nByte += strlen(pToCol->a[i].zName) + 1;
    }
  }
  pFKey = sqliteMalloc( nByte );
  if( pFKey==0 ) goto fk_end;
  pFKey->pFrom = p;
  pFKey->pNextFrom = p->pFKey;
  z = (char*)&pFKey[1];
  pFKey->aCol = (struct sColMap*)z;
  z += sizeof(struct sColMap)*nCol;
  pFKey->zTo = z;
  memcpy(z, pTo->z, pTo->n);
  z[pTo->n] = 0;
  z += pTo->n+1;
  pFKey->pNextTo = 0;
  pFKey->nCol = nCol;
  if( pFromCol==0 ){
    pFKey->aCol[0].iFrom = p->nCol-1;
  }else{
    for(i=0; i<nCol; i++){
      int j;
      for(j=0; j<p->nCol; j++){
        if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
          pFKey->aCol[i].iFrom = j;
          break;
        }
      }
      if( j>=p->nCol ){
        sqliteErrorMsg(pParse, 
          "unknown column \"%s\" in foreign key definition", 
          pFromCol->a[i].zName);
        goto fk_end;
      }
    }
  }
  if( pToCol ){
    for(i=0; i<nCol; i++){
      int n = strlen(pToCol->a[i].zName);
      pFKey->aCol[i].zCol = z;
      memcpy(z, pToCol->a[i].zName, n);
      z[n] = 0;
      z += n+1;
    }
  }
  pFKey->isDeferred = 0;
  pFKey->deleteConf = flags & 0xff;
  pFKey->updateConf = (flags >> 8 ) & 0xff;
  pFKey->insertConf = (flags >> 16 ) & 0xff;

  /* Link the foreign key to the table as the last step.
  */
  p->pFKey = pFKey;
  pFKey = 0;

fk_end:
  sqliteFree(pFKey);
  sqliteIdListDelete(pFromCol);
  sqliteIdListDelete(pToCol);
}

/*
** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
** clause is seen as part of a foreign key definition.  The isDeferred
** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
** The behavior of the most recently created foreign key is adjusted
** accordingly.
*/
void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
  Table *pTab;
  FKey *pFKey;
  if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
  pFKey->isDeferred = isDeferred;
}

/*
** Create a new index for an SQL table.  pIndex is the name of the index 
** and pTable is the name of the table that is to be indexed.  Both will 
** be NULL for a primary key or an index that is created to satisfy a
** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
** as the table to be indexed.  pParse->pNewTable is a table that is
** currently being constructed by a CREATE TABLE statement.
**
** pList is a list of columns to be indexed.  pList will be NULL if this
** is a primary key or unique-constraint on the most recent column added
** to the table currently under construction.  
*/
void sqliteCreateIndex(
  Parse *pParse,   /* All information about this parse */
  Token *pName,    /* Name of the index.  May be NULL */
  SrcList *pTable, /* Name of the table to index.  Use pParse->pNewTable if 0 */
  IdList *pList,   /* A list of columns to be indexed */
  int onError,     /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  Token *pStart,   /* The CREATE token that begins a CREATE TABLE statement */
  Token *pEnd      /* The ")" that closes the CREATE INDEX statement */
){
  Table *pTab;     /* Table to be indexed */
  Index *pIndex;   /* The index to be created */
  char *zName = 0;
  int i, j;
  Token nullId;    /* Fake token for an empty ID list */
  DbFixer sFix;    /* For assigning database names to pTable */
  int isTemp;      /* True for a temporary index */
  sqlite *db = pParse->db;

  if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
  if( db->init.busy 
     && sqliteFixInit(&sFix, pParse, db->init.iDb, "index", pName)
     && sqliteFixSrcList(&sFix, pTable)
  ){
    goto exit_create_index;
  }

  /*
  ** Find the table that is to be indexed.  Return early if not found.
  */
  if( pTable!=0 ){
    assert( pName!=0 );
    assert( pTable->nSrc==1 );
    pTab =  sqliteSrcListLookup(pParse, pTable);
  }else{
    assert( pName==0 );
    pTab =  pParse->pNewTable;
  }
  if( pTab==0 || pParse->nErr ) goto exit_create_index;
  if( pTab->readOnly ){
    sqliteErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
    goto exit_create_index;
  }
  if( pTab->iDb>=2 && db->init.busy==0 ){
    sqliteErrorMsg(pParse, "table %s may not have indices added", pTab->zName);
    goto exit_create_index;
  }
  if( pTab->pSelect ){
    sqliteErrorMsg(pParse, "views may not be indexed");
    goto exit_create_index;
  }
  isTemp = pTab->iDb==1;

  /*
  ** Find the name of the index.  Make sure there is not already another
  ** index or table with the same name.  
  **
  ** Exception:  If we are reading the names of permanent indices from the
  ** sqlite_master table (because some other process changed the schema) and
  ** one of the index names collides with the name of a temporary table or
  ** index, then we will continue to process this index.
  **
  ** If pName==0 it means that we are
  ** dealing with a primary key or UNIQUE constraint.  We have to invent our
  ** own name.
  */
  if( pName && !db->init.busy ){
    Index *pISameName;    /* Another index with the same name */
    Table *pTSameName;    /* A table with same name as the index */
    zName = sqliteTableNameFromToken(pName);
    if( zName==0 ) goto exit_create_index;
    if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){
      sqliteErrorMsg(pParse, "index %s already exists", zName);
      goto exit_create_index;
    }
    if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){
      sqliteErrorMsg(pParse, "there is already a table named %s", zName);
      goto exit_create_index;
    }
  }else if( pName==0 ){
    char zBuf[30];
    int n;
    Index *pLoop;
    for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
    sprintf(zBuf,"%d)",n);
    zName = 0;
    sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, (char*)0);
    if( zName==0 ) goto exit_create_index;
  }else{
    zName = sqliteTableNameFromToken(pName);
  }

  /* Check for authorization to create an index.
  */
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    const char *zDb = db->aDb[pTab->iDb].zName;

    assert( pTab->iDb==db->init.iDb || isTemp );
    if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
      goto exit_create_index;
    }
    i = SQLITE_CREATE_INDEX;
    if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
    if( sqliteAuthCheck(pParse, i, zName, pTab->zName, zDb) ){
      goto exit_create_index;
    }
  }
#endif

  /* If pList==0, it means this routine was called to make a primary
  ** key out of the last column added to the table under construction.
  ** So create a fake list to simulate this.
  */
  if( pList==0 ){
    nullId.z = pTab->aCol[pTab->nCol-1].zName;
    nullId.n = strlen(nullId.z);
    pList = sqliteIdListAppend(0, &nullId);
    if( pList==0 ) goto exit_create_index;
  }

  /* 
  ** Allocate the index structure. 
  */
  pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
                        sizeof(int)*pList->nId );
  if( pIndex==0 ) goto exit_create_index;
  pIndex->aiColumn = (int*)&pIndex[1];
  pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
  strcpy(pIndex->zName, zName);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nId;
  pIndex->onError = onError;
  pIndex->autoIndex = pName==0;
  pIndex->iDb = isTemp ? 1 : db->init.iDb;

  /* Scan the names of the columns of the table to be indexed and
  ** load the column indices into the Index structure.  Report an error
  ** if any column is not found.
  */
  for(i=0; i<pList->nId; i++){
    for(j=0; j<pTab->nCol; j++){
      if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
    }
    if( j>=pTab->nCol ){
      sqliteErrorMsg(pParse, "table %s has no column named %s",
        pTab->zName, pList->a[i].zName);
      sqliteFree(pIndex);
      goto exit_create_index;
    }
    pIndex->aiColumn[i] = j;
  }

  /* Link the new Index structure to its table and to the other
  ** in-memory database structures. 
  */
  if( !pParse->explain ){
    Index *p;
    p = sqliteHashInsert(&db->aDb[pIndex->iDb].idxHash, 
                         pIndex->zName, strlen(pIndex->zName)+1, pIndex);
    if( p ){
      assert( p==pIndex );  /* Malloc must have failed */
      sqliteFree(pIndex);
      goto exit_create_index;
    }
    db->flags |= SQLITE_InternChanges;
  }

  /* When adding an index to the list of indices for a table, make
  ** sure all indices labeled OE_Replace come after all those labeled
  ** OE_Ignore.  This is necessary for the correct operation of UPDATE
  ** and INSERT.
  */
  if( onError!=OE_Replace || pTab->pIndex==0
       || pTab->pIndex->onError==OE_Replace){
    pIndex->pNext = pTab->pIndex;
    pTab->pIndex = pIndex;
  }else{
    Index *pOther = pTab->pIndex;
    while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
      pOther = pOther->pNext;
    }
    pIndex->pNext = pOther->pNext;
    pOther->pNext = pIndex;
  }

  /* If the db->init.busy is 1 it means we are reading the SQL off the
  ** "sqlite_master" table on the disk.  So do not write to the disk
  ** again.  Extract the table number from the db->init.newTnum field.
  */
  if( db->init.busy && pTable!=0 ){
    pIndex->tnum = db->init.newTnum;
  }

  /* If the db->init.busy is 0 then create the index on disk.  This
  ** involves writing the index into the master table and filling in the
  ** index with the current table contents.
  **
  ** The db->init.busy is 0 when the user first enters a CREATE INDEX 
  ** command.  db->init.busy is 1 when a database is opened and 
  ** CREATE INDEX statements are read out of the master table.  In
  ** the latter case the index already exists on disk, which is why
  ** we don't want to recreate it.
  **
  ** If pTable==0 it means this index is generated as a primary key
  ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
  ** has just been created, it contains no data and the index initialization
  ** step can be skipped.
  */
  else if( db->init.busy==0 ){
    int n;
    Vdbe *v;
    int lbl1, lbl2;
    int i;
    int addr;

    v = sqliteGetVdbe(pParse);
    if( v==0 ) goto exit_create_index;
    if( pTable!=0 ){
      sqliteBeginWriteOperation(pParse, 0, isTemp);
      sqliteOpenMasterTable(v, isTemp);
    }
    sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
    sqliteVdbeOp3(v, OP_String, 0, 0, "index", P3_STATIC);
    sqliteVdbeOp3(v, OP_String, 0, 0, pIndex->zName, 0);
    sqliteVdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
    sqliteVdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
    pIndex->tnum = 0;
    if( pTable ){
      sqliteVdbeCode(v,
          OP_Dup,       0,      0,
          OP_Integer,   isTemp, 0,
          OP_OpenWrite, 1,      0,
      0);
    }
    addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
    if( pStart && pEnd ){
      n = Addr(pEnd->z) - Addr(pStart->z) + 1;
      sqliteVdbeChangeP3(v, addr, pStart->z, n);
    }
    sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
    sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
    if( pTable ){
      sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
      sqliteVdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0);
      lbl2 = sqliteVdbeMakeLabel(v);
      sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
      lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
      for(i=0; i<pIndex->nColumn; i++){
        int iCol = pIndex->aiColumn[i];
        if( pTab->iPKey==iCol ){
          sqliteVdbeAddOp(v, OP_Dup, i, 0);
        }else{
          sqliteVdbeAddOp(v, OP_Column, 2, iCol);
        }
      }
      sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
      if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
      sqliteVdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None,
                      "indexed columns are not unique", P3_STATIC);
      sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
      sqliteVdbeResolveLabel(v, lbl2);
      sqliteVdbeAddOp(v, OP_Close, 2, 0);
      sqliteVdbeAddOp(v, OP_Close, 1, 0);
    }
    if( pTable!=0 ){
      if( !isTemp ){
        sqliteChangeCookie(db, v);
      }
      sqliteVdbeAddOp(v, OP_Close, 0, 0);
      sqliteEndWriteOperation(pParse);
    }
  }

  /* Clean up before exiting */
exit_create_index:
  sqliteIdListDelete(pList);
  sqliteSrcListDelete(pTable);
  sqliteFree(zName);
  return;
}

/*
** This routine will drop an existing named index.  This routine
** implements the DROP INDEX statement.
*/
void sqliteDropIndex(Parse *pParse, SrcList *pName){
  Index *pIndex;
  Vdbe *v;
  sqlite *db = pParse->db;

  if( pParse->nErr || sqlite_malloc_failed ) return;
  assert( pName->nSrc==1 );
  pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
  if( pIndex==0 ){
    sqliteErrorMsg(pParse, "no such index: %S", pName, 0);
    goto exit_drop_index;
  }
  if( pIndex->autoIndex ){
    sqliteErrorMsg(pParse, "index associated with UNIQUE "
      "or PRIMARY KEY constraint cannot be dropped", 0);
    goto exit_drop_index;
  }
  if( pIndex->iDb>1 ){
    sqliteErrorMsg(pParse, "cannot alter schema of attached "
       "databases", 0);
    goto exit_drop_index;
  }
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code = SQLITE_DROP_INDEX;
    Table *pTab = pIndex->pTable;
    const char *zDb = db->aDb[pIndex->iDb].zName;
    const char *zTab = SCHEMA_TABLE(pIndex->iDb);
    if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
      goto exit_drop_index;
    }
    if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
    if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
      goto exit_drop_index;
    }
  }
#endif

  /* Generate code to remove the index and from the master table */
  v = sqliteGetVdbe(pParse);
  if( v ){
    static VdbeOpList dropIndex[] = {
      { OP_Rewind,     0, ADDR(9), 0}, 
      { OP_String,     0, 0,       0}, /* 1 */
      { OP_MemStore,   1, 1,       0},
      { OP_MemLoad,    1, 0,       0}, /* 3 */
      { OP_Column,     0, 1,       0},
      { OP_Eq,         0, ADDR(8), 0},
      { OP_Next,       0, ADDR(3), 0},
      { OP_Goto,       0, ADDR(9), 0},
      { OP_Delete,     0, 0,       0}, /* 8 */
    };
    int base;

    sqliteBeginWriteOperation(pParse, 0, pIndex->iDb);
    sqliteOpenMasterTable(v, pIndex->iDb);
    base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
    sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
    if( pIndex->iDb==0 ){
      sqliteChangeCookie(db, v);
    }
    sqliteVdbeAddOp(v, OP_Close, 0, 0);
    sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb);
    sqliteEndWriteOperation(pParse);
  }

  /* Delete the in-memory description of this index.
  */
  if( !pParse->explain ){
    sqliteUnlinkAndDeleteIndex(db, pIndex);
    db->flags |= SQLITE_InternChanges;
  }

exit_drop_index:
  sqliteSrcListDelete(pName);
}

/*
** Append a new element to the given IdList.  Create a new IdList if
** need be.
**
** A new IdList is returned, or NULL if malloc() fails.
*/
IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
  if( pList==0 ){
    pList = sqliteMalloc( sizeof(IdList) );
    if( pList==0 ) return 0;
    pList->nAlloc = 0;
  }
  if( pList->nId>=pList->nAlloc ){
    struct IdList_item *a;
    pList->nAlloc = pList->nAlloc*2 + 5;
    a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
    if( a==0 ){
      sqliteIdListDelete(pList);
      return 0;
    }
    pList->a = a;
  }
  memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
  if( pToken ){
    char **pz = &pList->a[pList->nId].zName;
    sqliteSetNString(pz, pToken->z, pToken->n, 0);
    if( *pz==0 ){
      sqliteIdListDelete(pList);
      return 0;
    }else{
      sqliteDequote(*pz);
    }
  }
  pList->nId++;
  return pList;
}

/*
** Append a new table name to the given SrcList.  Create a new SrcList if
** need be.  A new entry is created in the SrcList even if pToken is NULL.
**
** A new SrcList is returned, or NULL if malloc() fails.
**
** If pDatabase is not null, it means that the table has an optional
** database name prefix.  Like this:  "database.table".  The pDatabase
** points to the table name and the pTable points to the database name.
** The SrcList.a[].zName field is filled with the table name which might
** come from pTable (if pDatabase is NULL) or from pDatabase.  
** SrcList.a[].zDatabase is filled with the database name from pTable,
** or with NULL if no database is specified.
**
** In other words, if call like this:
**
**         sqliteSrcListAppend(A,B,0);
**
** Then B is a table name and the database name is unspecified.  If called
** like this:
**
**         sqliteSrcListAppend(A,B,C);
**
** Then C is the table name and B is the database name.
*/
SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
  if( pList==0 ){
    pList = sqliteMalloc( sizeof(SrcList) );
    if( pList==0 ) return 0;
    pList->nAlloc = 1;
  }
  if( pList->nSrc>=pList->nAlloc ){
    SrcList *pNew;
    pList->nAlloc *= 2;
    pNew = sqliteRealloc(pList,
               sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
    if( pNew==0 ){
      sqliteSrcListDelete(pList);
      return 0;
    }
    pList = pNew;
  }
  memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
  if( pDatabase && pDatabase->z==0 ){
    pDatabase = 0;
  }
  if( pDatabase && pTable ){
    Token *pTemp = pDatabase;
    pDatabase = pTable;
    pTable = pTemp;
  }
  if( pTable ){
    char **pz = &pList->a[pList->nSrc].zName;
    sqliteSetNString(pz, pTable->z, pTable->n, 0);
    if( *pz==0 ){
      sqliteSrcListDelete(pList);
      return 0;
    }else{
      sqliteDequote(*pz);
    }
  }
  if( pDatabase ){
    char **pz = &pList->a[pList->nSrc].zDatabase;
    sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0);
    if( *pz==0 ){
      sqliteSrcListDelete(pList);
      return 0;
    }else{
      sqliteDequote(*pz);
    }
  }
  pList->a[pList->nSrc].iCursor = -1;
  pList->nSrc++;
  return pList;
}

/*
** Assign cursors to all tables in a SrcList
*/
void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){
  int i;
  for(i=0; i<pList->nSrc; i++){
    if( pList->a[i].iCursor<0 ){
      pList->a[i].iCursor = pParse->nTab++;
    }
  }
}

/*
** Add an alias to the last identifier on the given identifier list.
*/
void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
  if( pList && pList->nSrc>0 ){
    int i = pList->nSrc - 1;
    sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
    sqliteDequote(pList->a[i].zAlias);
  }
}

/*
** Delete an IdList.
*/
void sqliteIdListDelete(IdList *pList){
  int i;
  if( pList==0 ) return;
  for(i=0; i<pList->nId; i++){
    sqliteFree(pList->a[i].zName);
  }
  sqliteFree(pList->a);
  sqliteFree(pList);
}

/*
** Return the index in pList of the identifier named zId.  Return -1
** if not found.
*/
int sqliteIdListIndex(IdList *pList, const char *zName){
  int i;
  if( pList==0 ) return -1;
  for(i=0; i<pList->nId; i++){
    if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
  }
  return -1;
}

/*
** Delete an entire SrcList including all its substructure.
*/
void sqliteSrcListDelete(SrcList *pList){
  int i;
  if( pList==0 ) return;
  for(i=0; i<pList->nSrc; i++){
    sqliteFree(pList->a[i].zDatabase);
    sqliteFree(pList->a[i].zName);
    sqliteFree(pList->a[i].zAlias);
    if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
      sqliteDeleteTable(0, pList->a[i].pTab);
    }
    sqliteSelectDelete(pList->a[i].pSelect);
    sqliteExprDelete(pList->a[i].pOn);
    sqliteIdListDelete(pList->a[i].pUsing);
  }
  sqliteFree(pList);
}

/*
** Begin a transaction
*/
void sqliteBeginTransaction(Parse *pParse, int onError){
  sqlite *db;

  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  if( pParse->nErr || sqlite_malloc_failed ) return;
  if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
  if( db->flags & SQLITE_InTrans ){
    sqliteErrorMsg(pParse, "cannot start a transaction within a transaction");
    return;
  }
  sqliteBeginWriteOperation(pParse, 0, 0);
  if( !pParse->explain ){
    db->flags |= SQLITE_InTrans;
    db->onError = onError;
  }
}

/*
** Commit a transaction
*/
void sqliteCommitTransaction(Parse *pParse){
  sqlite *db;

  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  if( pParse->nErr || sqlite_malloc_failed ) return;
  if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
  if( (db->flags & SQLITE_InTrans)==0 ){
    sqliteErrorMsg(pParse, "cannot commit - no transaction is active");
    return;
  }
  if( !pParse->explain ){
    db->flags &= ~SQLITE_InTrans;
  }
  sqliteEndWriteOperation(pParse);
  if( !pParse->explain ){
    db->onError = OE_Default;
  }
}

/*
** Rollback a transaction
*/
void sqliteRollbackTransaction(Parse *pParse){
  sqlite *db;
  Vdbe *v;

  if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  if( pParse->nErr || sqlite_malloc_failed ) return;
  if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
  if( (db->flags & SQLITE_InTrans)==0 ){
    sqliteErrorMsg(pParse, "cannot rollback - no transaction is active");
    return; 
  }
  v = sqliteGetVdbe(pParse);
  if( v ){
    sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
  }
  if( !pParse->explain ){
    db->flags &= ~SQLITE_InTrans;
    db->onError = OE_Default;
  }
}

/*
** Generate VDBE code that will verify the schema cookie for all
** named database files.
*/
void sqliteCodeVerifySchema(Parse *pParse, int iDb){
  sqlite *db = pParse->db;
  Vdbe *v = sqliteGetVdbe(pParse);
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
  if( iDb!=1 && !DbHasProperty(db, iDb, DB_Cookie) ){
    sqliteVdbeAddOp(v, OP_VerifyCookie, iDb, db->aDb[iDb].schema_cookie);
    DbSetProperty(db, iDb, DB_Cookie);
  }
}

/*
** Generate VDBE code that prepares for doing an operation that
** might change the database.
**
** This routine starts a new transaction if we are not already within
** a transaction.  If we are already within a transaction, then a checkpoint
** is set if the setCheckpoint parameter is true.  A checkpoint should
** be set for operations that might fail (due to a constraint) part of
** the way through and which will need to undo some writes without having to
** rollback the whole transaction.  For operations where all constraints
** can be checked before any changes are made to the database, it is never
** necessary to undo a write and the checkpoint should not be set.
**
** Only database iDb and the temp database are made writable by this call.
** If iDb==0, then the main and temp databases are made writable.   If
** iDb==1 then only the temp database is made writable.  If iDb>1 then the
** specified auxiliary database and the temp database are made writable.
*/
void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb){
  Vdbe *v;
  sqlite *db = pParse->db;
  if( DbHasProperty(db, iDb, DB_Locked) ) return;
  v = sqliteGetVdbe(pParse);
  if( v==0 ) return;
  if( !db->aDb[iDb].inTrans ){
    sqliteVdbeAddOp(v, OP_Transaction, iDb, 0);
    DbSetProperty(db, iDb, DB_Locked);
    sqliteCodeVerifySchema(pParse, iDb);
    if( iDb!=1 ){
      sqliteBeginWriteOperation(pParse, setCheckpoint, 1);
    }
  }else if( setCheckpoint ){
    sqliteVdbeAddOp(v, OP_Checkpoint, iDb, 0);
    DbSetProperty(db, iDb, DB_Locked);
  }
}

/*
** Generate code that concludes an operation that may have changed
** the database.  If a statement transaction was started, then emit
** an OP_Commit that will cause the changes to be committed to disk.
**
** Note that checkpoints are automatically committed at the end of
** a statement.  Note also that there can be multiple calls to 
** sqliteBeginWriteOperation() but there should only be a single
** call to sqliteEndWriteOperation() at the conclusion of the statement.
*/
void sqliteEndWriteOperation(Parse *pParse){
  Vdbe *v;
  sqlite *db = pParse->db;
  if( pParse->trigStack ) return; /* if this is in a trigger */
  v = sqliteGetVdbe(pParse);
  if( v==0 ) return;
  if( db->flags & SQLITE_InTrans ){
    /* A BEGIN has executed.  Do not commit until we see an explicit
    ** COMMIT statement. */
  }else{
    sqliteVdbeAddOp(v, OP_Commit, 0, 0);
  }
}

/* [<][>][^][v][top][bottom][index][help] */