/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- sqliteSelectNew
- sqliteJoinType
- columnIndex
- addWhereTerm
- setJoinExpr
- sqliteProcessJoin
- sqliteSelectDelete
- sqliteAggregateInfoReset
- pushOntoSorter
- sqliteAddKeyType
- codeLimiter
- selectInnerLoop
- generateSortTail
- generateColumnTypes
- generateColumnNames
- selectOpName
- sqliteResultSetOfSelect
- fillInColumnList
- sqliteSelectUnbind
- matchOrderbyToColumn
- sqliteGetVdbe
- multiSelectSortOrder
- computeLimitRegisters
- multiSelect
- substExpr
- substExprList
- flattenSubquery
- simpleMinMaxQuery
- sqliteSelect
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.6.4.1 2005/09/07 15:11:32 iliaa Exp $
*/
#include "sqliteInt.h"
/*
** Allocate a new Select structure and return a pointer to that
** structure.
*/
Select *sqliteSelectNew(
ExprList *pEList, /* which columns to include in the result */
SrcList *pSrc, /* the FROM clause -- which tables to scan */
Expr *pWhere, /* the WHERE clause */
ExprList *pGroupBy, /* the GROUP BY clause */
Expr *pHaving, /* the HAVING clause */
ExprList *pOrderBy, /* the ORDER BY clause */
int isDistinct, /* true if the DISTINCT keyword is present */
int nLimit, /* LIMIT value. -1 means not used */
int nOffset /* OFFSET value. 0 means no offset */
){
Select *pNew;
pNew = sqliteMalloc( sizeof(*pNew) );
if( pNew==0 ){
sqliteExprListDelete(pEList);
sqliteSrcListDelete(pSrc);
sqliteExprDelete(pWhere);
sqliteExprListDelete(pGroupBy);
sqliteExprDelete(pHaving);
sqliteExprListDelete(pOrderBy);
}else{
if( pEList==0 ){
pEList = sqliteExprListAppend(0, sqliteExpr(TK_ALL,0,0,0), 0);
}
pNew->pEList = pEList;
pNew->pSrc = pSrc;
pNew->pWhere = pWhere;
pNew->pGroupBy = pGroupBy;
pNew->pHaving = pHaving;
pNew->pOrderBy = pOrderBy;
pNew->isDistinct = isDistinct;
pNew->op = TK_SELECT;
pNew->nLimit = nLimit;
pNew->nOffset = nOffset;
pNew->iLimit = -1;
pNew->iOffset = -1;
}
return pNew;
}
/*
** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
** type of join. Return an integer constant that expresses that type
** in terms of the following bit values:
**
** JT_INNER
** JT_OUTER
** JT_NATURAL
** JT_LEFT
** JT_RIGHT
**
** A full outer join is the combination of JT_LEFT and JT_RIGHT.
**
** If an illegal or unsupported join type is seen, then still return
** a join type, but put an error in the pParse structure.
*/
int sqliteJoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
int jointype = 0;
Token *apAll[3];
Token *p;
static struct {
const char *zKeyword;
int nChar;
int code;
} keywords[] = {
{ "natural", 7, JT_NATURAL },
{ "left", 4, JT_LEFT|JT_OUTER },
{ "right", 5, JT_RIGHT|JT_OUTER },
{ "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
{ "outer", 5, JT_OUTER },
{ "inner", 5, JT_INNER },
{ "cross", 5, JT_INNER },
};
int i, j;
apAll[0] = pA;
apAll[1] = pB;
apAll[2] = pC;
for(i=0; i<3 && apAll[i]; i++){
p = apAll[i];
for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
if( p->n==keywords[j].nChar
&& sqliteStrNICmp(p->z, keywords[j].zKeyword, p->n)==0 ){
jointype |= keywords[j].code;
break;
}
}
if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
jointype |= JT_ERROR;
break;
}
}
if(
(jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
(jointype & JT_ERROR)!=0
){
static Token dummy = { 0, 0 };
char *zSp1 = " ", *zSp2 = " ";
if( pB==0 ){ pB = &dummy; zSp1 = 0; }
if( pC==0 ){ pC = &dummy; zSp2 = 0; }
sqliteSetNString(&pParse->zErrMsg, "unknown or unsupported join type: ", 0,
pA->z, pA->n, zSp1, 1, pB->z, pB->n, zSp2, 1, pC->z, pC->n, 0);
pParse->nErr++;
jointype = JT_INNER;
}else if( jointype & JT_RIGHT ){
sqliteErrorMsg(pParse,
"RIGHT and FULL OUTER JOINs are not currently supported");
jointype = JT_INNER;
}
return jointype;
}
/*
** Return the index of a column in a table. Return -1 if the column
** is not contained in the table.
*/
static int columnIndex(Table *pTab, const char *zCol){
int i;
for(i=0; i<pTab->nCol; i++){
if( sqliteStrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
}
return -1;
}
/*
** Add a term to the WHERE expression in *ppExpr that requires the
** zCol column to be equal in the two tables pTab1 and pTab2.
*/
static void addWhereTerm(
const char *zCol, /* Name of the column */
const Table *pTab1, /* First table */
const Table *pTab2, /* Second table */
Expr **ppExpr /* Add the equality term to this expression */
){
Token dummy;
Expr *pE1a, *pE1b, *pE1c;
Expr *pE2a, *pE2b, *pE2c;
Expr *pE;
dummy.z = zCol;
dummy.n = strlen(zCol);
dummy.dyn = 0;
pE1a = sqliteExpr(TK_ID, 0, 0, &dummy);
pE2a = sqliteExpr(TK_ID, 0, 0, &dummy);
dummy.z = pTab1->zName;
dummy.n = strlen(dummy.z);
pE1b = sqliteExpr(TK_ID, 0, 0, &dummy);
dummy.z = pTab2->zName;
dummy.n = strlen(dummy.z);
pE2b = sqliteExpr(TK_ID, 0, 0, &dummy);
pE1c = sqliteExpr(TK_DOT, pE1b, pE1a, 0);
pE2c = sqliteExpr(TK_DOT, pE2b, pE2a, 0);
pE = sqliteExpr(TK_EQ, pE1c, pE2c, 0);
ExprSetProperty(pE, EP_FromJoin);
if( *ppExpr ){
*ppExpr = sqliteExpr(TK_AND, *ppExpr, pE, 0);
}else{
*ppExpr = pE;
}
}
/*
** Set the EP_FromJoin property on all terms of the given expression.
**
** The EP_FromJoin property is used on terms of an expression to tell
** the LEFT OUTER JOIN processing logic that this term is part of the
** join restriction specified in the ON or USING clause and not a part
** of the more general WHERE clause. These terms are moved over to the
** WHERE clause during join processing but we need to remember that they
** originated in the ON or USING clause.
*/
static void setJoinExpr(Expr *p){
while( p ){
ExprSetProperty(p, EP_FromJoin);
setJoinExpr(p->pLeft);
p = p->pRight;
}
}
/*
** This routine processes the join information for a SELECT statement.
** ON and USING clauses are converted into extra terms of the WHERE clause.
** NATURAL joins also create extra WHERE clause terms.
**
** This routine returns the number of errors encountered.
*/
static int sqliteProcessJoin(Parse *pParse, Select *p){
SrcList *pSrc;
int i, j;
pSrc = p->pSrc;
for(i=0; i<pSrc->nSrc-1; i++){
struct SrcList_item *pTerm = &pSrc->a[i];
struct SrcList_item *pOther = &pSrc->a[i+1];
if( pTerm->pTab==0 || pOther->pTab==0 ) continue;
/* When the NATURAL keyword is present, add WHERE clause terms for
** every column that the two tables have in common.
*/
if( pTerm->jointype & JT_NATURAL ){
Table *pTab;
if( pTerm->pOn || pTerm->pUsing ){
sqliteErrorMsg(pParse, "a NATURAL join may not have "
"an ON or USING clause", 0);
return 1;
}
pTab = pTerm->pTab;
for(j=0; j<pTab->nCol; j++){
if( columnIndex(pOther->pTab, pTab->aCol[j].zName)>=0 ){
addWhereTerm(pTab->aCol[j].zName, pTab, pOther->pTab, &p->pWhere);
}
}
}
/* Disallow both ON and USING clauses in the same join
*/
if( pTerm->pOn && pTerm->pUsing ){
sqliteErrorMsg(pParse, "cannot have both ON and USING "
"clauses in the same join");
return 1;
}
/* Add the ON clause to the end of the WHERE clause, connected by
** and AND operator.
*/
if( pTerm->pOn ){
setJoinExpr(pTerm->pOn);
if( p->pWhere==0 ){
p->pWhere = pTerm->pOn;
}else{
p->pWhere = sqliteExpr(TK_AND, p->pWhere, pTerm->pOn, 0);
}
pTerm->pOn = 0;
}
/* Create extra terms on the WHERE clause for each column named
** in the USING clause. Example: If the two tables to be joined are
** A and B and the USING clause names X, Y, and Z, then add this
** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
** Report an error if any column mentioned in the USING clause is
** not contained in both tables to be joined.
*/
if( pTerm->pUsing ){
IdList *pList;
int j;
assert( i<pSrc->nSrc-1 );
pList = pTerm->pUsing;
for(j=0; j<pList->nId; j++){
if( columnIndex(pTerm->pTab, pList->a[j].zName)<0 ||
columnIndex(pOther->pTab, pList->a[j].zName)<0 ){
sqliteErrorMsg(pParse, "cannot join using column %s - column "
"not present in both tables", pList->a[j].zName);
return 1;
}
addWhereTerm(pList->a[j].zName, pTerm->pTab, pOther->pTab, &p->pWhere);
}
}
}
return 0;
}
/*
** Delete the given Select structure and all of its substructures.
*/
void sqliteSelectDelete(Select *p){
if( p==0 ) return;
sqliteExprListDelete(p->pEList);
sqliteSrcListDelete(p->pSrc);
sqliteExprDelete(p->pWhere);
sqliteExprListDelete(p->pGroupBy);
sqliteExprDelete(p->pHaving);
sqliteExprListDelete(p->pOrderBy);
sqliteSelectDelete(p->pPrior);
sqliteFree(p->zSelect);
sqliteFree(p);
}
/*
** Delete the aggregate information from the parse structure.
*/
static void sqliteAggregateInfoReset(Parse *pParse){
sqliteFree(pParse->aAgg);
pParse->aAgg = 0;
pParse->nAgg = 0;
pParse->useAgg = 0;
}
/*
** Insert code into "v" that will push the record on the top of the
** stack into the sorter.
*/
static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){
char *zSortOrder;
int i;
zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
if( zSortOrder==0 ) return;
for(i=0; i<pOrderBy->nExpr; i++){
int order = pOrderBy->a[i].sortOrder;
int type;
int c;
if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
type = SQLITE_SO_TEXT;
}else if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_NUM ){
type = SQLITE_SO_NUM;
}else if( pParse->db->file_format>=4 ){
type = sqliteExprType(pOrderBy->a[i].pExpr);
}else{
type = SQLITE_SO_NUM;
}
if( (order & SQLITE_SO_DIRMASK)==SQLITE_SO_ASC ){
c = type==SQLITE_SO_TEXT ? 'A' : '+';
}else{
c = type==SQLITE_SO_TEXT ? 'D' : '-';
}
zSortOrder[i] = c;
sqliteExprCode(pParse, pOrderBy->a[i].pExpr);
}
zSortOrder[pOrderBy->nExpr] = 0;
sqliteVdbeOp3(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, P3_DYNAMIC);
sqliteVdbeAddOp(v, OP_SortPut, 0, 0);
}
/*
** This routine adds a P3 argument to the last VDBE opcode that was
** inserted. The P3 argument added is a string suitable for the
** OP_MakeKey or OP_MakeIdxKey opcodes. The string consists of
** characters 't' or 'n' depending on whether or not the various
** fields of the key to be generated should be treated as numeric
** or as text. See the OP_MakeKey and OP_MakeIdxKey opcode
** documentation for additional information about the P3 string.
** See also the sqliteAddIdxKeyType() routine.
*/
void sqliteAddKeyType(Vdbe *v, ExprList *pEList){
int nColumn = pEList->nExpr;
char *zType = sqliteMalloc( nColumn+1 );
int i;
if( zType==0 ) return;
for(i=0; i<nColumn; i++){
zType[i] = sqliteExprType(pEList->a[i].pExpr)==SQLITE_SO_NUM ? 'n' : 't';
}
zType[i] = 0;
sqliteVdbeChangeP3(v, -1, zType, P3_DYNAMIC);
}
/*
** Add code to implement the OFFSET and LIMIT
*/
static void codeLimiter(
Vdbe *v, /* Generate code into this VM */
Select *p, /* The SELECT statement being coded */
int iContinue, /* Jump here to skip the current record */
int iBreak, /* Jump here to end the loop */
int nPop /* Number of times to pop stack when jumping */
){
if( p->iOffset>=0 ){
int addr = sqliteVdbeCurrentAddr(v) + 2;
if( nPop>0 ) addr++;
sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr);
if( nPop>0 ){
sqliteVdbeAddOp(v, OP_Pop, nPop, 0);
}
sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
}
if( p->iLimit>=0 ){
sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak);
}
}
/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab and nColumn are both zero, then the pEList expressions
** are evaluated in order to get the data for this row. If nColumn>0
** then data is pulled from srcTab and pEList is used only to get the
** datatypes for each column.
*/
static int selectInnerLoop(
Parse *pParse, /* The parser context */
Select *p, /* The complete select statement being coded */
ExprList *pEList, /* List of values being extracted */
int srcTab, /* Pull data from this table */
int nColumn, /* Number of columns in the source table */
ExprList *pOrderBy, /* If not NULL, sort results using this key */
int distinct, /* If >=0, make sure results are distinct */
int eDest, /* How to dispose of the results */
int iParm, /* An argument to the disposal method */
int iContinue, /* Jump here to continue with next row */
int iBreak /* Jump here to break out of the inner loop */
){
Vdbe *v = pParse->pVdbe;
int i;
int hasDistinct; /* True if the DISTINCT keyword is present */
if( v==0 ) return 0;
assert( pEList!=0 );
/* If there was a LIMIT clause on the SELECT statement, then do the check
** to see if this row should be output.
*/
hasDistinct = distinct>=0 && pEList && pEList->nExpr>0;
if( pOrderBy==0 && !hasDistinct ){
codeLimiter(v, p, iContinue, iBreak, 0);
}
/* Pull the requested columns.
*/
if( nColumn>0 ){
for(i=0; i<nColumn; i++){
sqliteVdbeAddOp(v, OP_Column, srcTab, i);
}
}else{
nColumn = pEList->nExpr;
for(i=0; i<pEList->nExpr; i++){
sqliteExprCode(pParse, pEList->a[i].pExpr);
}
}
/* If the DISTINCT keyword was present on the SELECT statement
** and this row has been seen before, then do not make this row
** part of the result.
*/
if( hasDistinct ){
#if NULL_ALWAYS_DISTINCT
sqliteVdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqliteVdbeCurrentAddr(v)+7);
#endif
sqliteVdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1);
if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pEList);
sqliteVdbeAddOp(v, OP_Distinct, distinct, sqliteVdbeCurrentAddr(v)+3);
sqliteVdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_PutStrKey, distinct, 0);
if( pOrderBy==0 ){
codeLimiter(v, p, iContinue, iBreak, nColumn);
}
}
switch( eDest ){
/* In this mode, write each query result to the key of the temporary
** table iParm.
*/
case SRT_Union: {
sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
break;
}
/* Store the result as data using a unique key.
*/
case SRT_Table:
case SRT_TempTable: {
sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
if( pOrderBy ){
pushOntoSorter(pParse, v, pOrderBy);
}else{
sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
sqliteVdbeAddOp(v, OP_Pull, 1, 0);
sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
}
break;
}
/* Construct a record from the query result, but instead of
** saving that record, use it as a key to delete elements from
** the temporary table iParm.
*/
case SRT_Except: {
int addr;
addr = sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
sqliteVdbeAddOp(v, OP_NotFound, iParm, addr+3);
sqliteVdbeAddOp(v, OP_Delete, iParm, 0);
break;
}
/* If we are creating a set for an "expr IN (SELECT ...)" construct,
** then there should be a single item on the stack. Write this
** item into the set table with bogus data.
*/
case SRT_Set: {
int addr1 = sqliteVdbeCurrentAddr(v);
int addr2;
assert( nColumn==1 );
sqliteVdbeAddOp(v, OP_NotNull, -1, addr1+3);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
addr2 = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
if( pOrderBy ){
pushOntoSorter(pParse, v, pOrderBy);
}else{
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
}
sqliteVdbeChangeP2(v, addr2, sqliteVdbeCurrentAddr(v));
break;
}
/* If this is a scalar select that is part of an expression, then
** store the results in the appropriate memory cell and break out
** of the scan loop.
*/
case SRT_Mem: {
assert( nColumn==1 );
if( pOrderBy ){
pushOntoSorter(pParse, v, pOrderBy);
}else{
sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
sqliteVdbeAddOp(v, OP_Goto, 0, iBreak);
}
break;
}
/* Send the data to the callback function.
*/
case SRT_Callback:
case SRT_Sorter: {
if( pOrderBy ){
sqliteVdbeAddOp(v, OP_SortMakeRec, nColumn, 0);
pushOntoSorter(pParse, v, pOrderBy);
}else{
assert( eDest==SRT_Callback );
sqliteVdbeAddOp(v, OP_Callback, nColumn, 0);
}
break;
}
/* Invoke a subroutine to handle the results. The subroutine itself
** is responsible for popping the results off of the stack.
*/
case SRT_Subroutine: {
if( pOrderBy ){
sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
pushOntoSorter(pParse, v, pOrderBy);
}else{
sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
}
break;
}
/* Discard the results. This is used for SELECT statements inside
** the body of a TRIGGER. The purpose of such selects is to call
** user-defined functions that have side effects. We do not care
** about the actual results of the select.
*/
default: {
assert( eDest==SRT_Discard );
sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
break;
}
}
return 0;
}
/*
** If the inner loop was generated using a non-null pOrderBy argument,
** then the results were placed in a sorter. After the loop is terminated
** we need to run the sorter and output the results. The following
** routine generates the code needed to do that.
*/
static void generateSortTail(
Select *p, /* The SELECT statement */
Vdbe *v, /* Generate code into this VDBE */
int nColumn, /* Number of columns of data */
int eDest, /* Write the sorted results here */
int iParm /* Optional parameter associated with eDest */
){
int end1 = sqliteVdbeMakeLabel(v);
int end2 = sqliteVdbeMakeLabel(v);
int addr;
if( eDest==SRT_Sorter ) return;
sqliteVdbeAddOp(v, OP_Sort, 0, 0);
addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end1);
codeLimiter(v, p, addr, end2, 1);
switch( eDest ){
case SRT_Callback: {
sqliteVdbeAddOp(v, OP_SortCallback, nColumn, 0);
break;
}
case SRT_Table:
case SRT_TempTable: {
sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
sqliteVdbeAddOp(v, OP_Pull, 1, 0);
sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
break;
}
case SRT_Set: {
assert( nColumn==1 );
sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
sqliteVdbeAddOp(v, OP_Goto, 0, sqliteVdbeCurrentAddr(v)+3);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
break;
}
case SRT_Mem: {
assert( nColumn==1 );
sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
sqliteVdbeAddOp(v, OP_Goto, 0, end1);
break;
}
case SRT_Subroutine: {
int i;
for(i=0; i<nColumn; i++){
sqliteVdbeAddOp(v, OP_Column, -1-i, i);
}
sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
break;
}
default: {
/* Do nothing */
break;
}
}
sqliteVdbeAddOp(v, OP_Goto, 0, addr);
sqliteVdbeResolveLabel(v, end2);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
sqliteVdbeResolveLabel(v, end1);
sqliteVdbeAddOp(v, OP_SortReset, 0, 0);
}
/*
** Generate code that will tell the VDBE the datatypes of
** columns in the result set.
**
** This routine only generates code if the "PRAGMA show_datatypes=on"
** has been executed. The datatypes are reported out in the azCol
** parameter to the callback function. The first N azCol[] entries
** are the names of the columns, and the second N entries are the
** datatypes for the columns.
**
** The "datatype" for a result that is a column of a type is the
** datatype definition extracted from the CREATE TABLE statement.
** The datatype for an expression is either TEXT or NUMERIC. The
** datatype for a ROWID field is INTEGER.
*/
static void generateColumnTypes(
Parse *pParse, /* Parser context */
SrcList *pTabList, /* List of tables */
ExprList *pEList /* Expressions defining the result set */
){
Vdbe *v = pParse->pVdbe;
int i, j;
for(i=0; i<pEList->nExpr; i++){
Expr *p = pEList->a[i].pExpr;
char *zType = 0;
if( p==0 ) continue;
if( p->op==TK_COLUMN && pTabList ){
Table *pTab;
int iCol = p->iColumn;
for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
assert( j<pTabList->nSrc );
pTab = pTabList->a[j].pTab;
if( iCol<0 ) iCol = pTab->iPKey;
assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
if( iCol<0 ){
zType = "INTEGER";
}else{
zType = pTab->aCol[iCol].zType;
}
}else{
if( sqliteExprType(p)==SQLITE_SO_TEXT ){
zType = "TEXT";
}else{
zType = "NUMERIC";
}
}
sqliteVdbeOp3(v, OP_ColumnName, i + pEList->nExpr, 0, zType, 0);
}
}
/*
** Generate code that will tell the VDBE the names of columns
** in the result set. This information is used to provide the
** azCol[] values in the callback.
*/
static void generateColumnNames(
Parse *pParse, /* Parser context */
SrcList *pTabList, /* List of tables */
ExprList *pEList /* Expressions defining the result set */
){
Vdbe *v = pParse->pVdbe;
int i, j;
sqlite *db = pParse->db;
int fullNames, shortNames;
assert( v!=0 );
if( pParse->colNamesSet || v==0 || sqlite_malloc_failed ) return;
pParse->colNamesSet = 1;
fullNames = (db->flags & SQLITE_FullColNames)!=0;
shortNames = (db->flags & SQLITE_ShortColNames)!=0;
for(i=0; i<pEList->nExpr; i++){
Expr *p;
int p2 = i==pEList->nExpr-1;
p = pEList->a[i].pExpr;
if( p==0 ) continue;
if( pEList->a[i].zName ){
char *zName = pEList->a[i].zName;
sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
continue;
}
if( p->op==TK_COLUMN && pTabList ){
Table *pTab;
char *zCol;
int iCol = p->iColumn;
for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
assert( j<pTabList->nSrc );
pTab = pTabList->a[j].pTab;
if( iCol<0 ) iCol = pTab->iPKey;
assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
if( iCol<0 ){
zCol = "_ROWID_";
}else{
zCol = pTab->aCol[iCol].zName;
}
if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
sqliteVdbeCompressSpace(v, addr);
}else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
char *zName = 0;
char *zTab;
zTab = pTabList->a[j].zAlias;
if( fullNames || zTab==0 ) zTab = pTab->zName;
sqliteSetString(&zName, zTab, ".", zCol, 0);
sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, P3_DYNAMIC);
}else{
sqliteVdbeOp3(v, OP_ColumnName, i, p2, zCol, 0);
}
}else if( p->span.z && p->span.z[0] ){
int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
sqliteVdbeCompressSpace(v, addr);
}else{
char zName[30];
assert( p->op!=TK_COLUMN || pTabList==0 );
sprintf(zName, "column%d", i+1);
sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
}
}
}
/*
** Name of the connection operator, used for error messages.
*/
static const char *selectOpName(int id){
char *z;
switch( id ){
case TK_ALL: z = "UNION ALL"; break;
case TK_INTERSECT: z = "INTERSECT"; break;
case TK_EXCEPT: z = "EXCEPT"; break;
default: z = "UNION"; break;
}
return z;
}
/*
** Forward declaration
*/
static int fillInColumnList(Parse*, Select*);
/*
** Given a SELECT statement, generate a Table structure that describes
** the result set of that SELECT.
*/
Table *sqliteResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
Table *pTab;
int i, j;
ExprList *pEList;
Column *aCol;
if( fillInColumnList(pParse, pSelect) ){
return 0;
}
pTab = sqliteMalloc( sizeof(Table) );
if( pTab==0 ){
return 0;
}
pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
pEList = pSelect->pEList;
pTab->nCol = pEList->nExpr;
assert( pTab->nCol>0 );
pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
for(i=0; i<pTab->nCol; i++){
Expr *p, *pR;
if( pEList->a[i].zName ){
aCol[i].zName = sqliteStrDup(pEList->a[i].zName);
}else if( (p=pEList->a[i].pExpr)->op==TK_DOT
&& (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
int cnt;
sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, 0);
for(j=cnt=0; j<i; j++){
if( sqliteStrICmp(aCol[j].zName, aCol[i].zName)==0 ){
int n;
char zBuf[30];
sprintf(zBuf,"_%d",++cnt);
n = strlen(zBuf);
sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, zBuf, n,0);
j = -1;
}
}
}else if( p->span.z && p->span.z[0] ){
sqliteSetNString(&pTab->aCol[i].zName, p->span.z, p->span.n, 0);
}else{
char zBuf[30];
sprintf(zBuf, "column%d", i+1);
aCol[i].zName = sqliteStrDup(zBuf);
}
sqliteDequote(aCol[i].zName);
}
pTab->iPKey = -1;
return pTab;
}
/*
** For the given SELECT statement, do three things.
**
** (1) Fill in the pTabList->a[].pTab fields in the SrcList that
** defines the set of tables that should be scanned. For views,
** fill pTabList->a[].pSelect with a copy of the SELECT statement
** that implements the view. A copy is made of the view's SELECT
** statement so that we can freely modify or delete that statement
** without worrying about messing up the presistent representation
** of the view.
**
** (2) Add terms to the WHERE clause to accomodate the NATURAL keyword
** on joins and the ON and USING clause of joins.
**
** (3) Scan the list of columns in the result set (pEList) looking
** for instances of the "*" operator or the TABLE.* operator.
** If found, expand each "*" to be every column in every table
** and TABLE.* to be every column in TABLE.
**
** Return 0 on success. If there are problems, leave an error message
** in pParse and return non-zero.
*/
static int fillInColumnList(Parse *pParse, Select *p){
int i, j, k, rc;
SrcList *pTabList;
ExprList *pEList;
Table *pTab;
if( p==0 || p->pSrc==0 ) return 1;
pTabList = p->pSrc;
pEList = p->pEList;
/* Look up every table in the table list.
*/
for(i=0; i<pTabList->nSrc; i++){
if( pTabList->a[i].pTab ){
/* This routine has run before! No need to continue */
return 0;
}
if( pTabList->a[i].zName==0 ){
/* A sub-query in the FROM clause of a SELECT */
assert( pTabList->a[i].pSelect!=0 );
if( pTabList->a[i].zAlias==0 ){
char zFakeName[60];
sprintf(zFakeName, "sqlite_subquery_%p_",
(void*)pTabList->a[i].pSelect);
sqliteSetString(&pTabList->a[i].zAlias, zFakeName, 0);
}
pTabList->a[i].pTab = pTab =
sqliteResultSetOfSelect(pParse, pTabList->a[i].zAlias,
pTabList->a[i].pSelect);
if( pTab==0 ){
return 1;
}
/* The isTransient flag indicates that the Table structure has been
** dynamically allocated and may be freed at any time. In other words,
** pTab is not pointing to a persistent table structure that defines
** part of the schema. */
pTab->isTransient = 1;
}else{
/* An ordinary table or view name in the FROM clause */
pTabList->a[i].pTab = pTab =
sqliteLocateTable(pParse,pTabList->a[i].zName,pTabList->a[i].zDatabase);
if( pTab==0 ){
return 1;
}
if( pTab->pSelect ){
/* We reach here if the named table is a really a view */
if( sqliteViewGetColumnNames(pParse, pTab) ){
return 1;
}
/* If pTabList->a[i].pSelect!=0 it means we are dealing with a
** view within a view. The SELECT structure has already been
** copied by the outer view so we can skip the copy step here
** in the inner view.
*/
if( pTabList->a[i].pSelect==0 ){
pTabList->a[i].pSelect = sqliteSelectDup(pTab->pSelect);
}
}
}
}
/* Process NATURAL keywords, and ON and USING clauses of joins.
*/
if( sqliteProcessJoin(pParse, p) ) return 1;
/* For every "*" that occurs in the column list, insert the names of
** all columns in all tables. And for every TABLE.* insert the names
** of all columns in TABLE. The parser inserted a special expression
** with the TK_ALL operator for each "*" that it found in the column list.
** The following code just has to locate the TK_ALL expressions and expand
** each one to the list of all columns in all tables.
**
** The first loop just checks to see if there are any "*" operators
** that need expanding.
*/
for(k=0; k<pEList->nExpr; k++){
Expr *pE = pEList->a[k].pExpr;
if( pE->op==TK_ALL ) break;
if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
&& pE->pLeft && pE->pLeft->op==TK_ID ) break;
}
rc = 0;
if( k<pEList->nExpr ){
/*
** If we get here it means the result set contains one or more "*"
** operators that need to be expanded. Loop through each expression
** in the result set and expand them one by one.
*/
struct ExprList_item *a = pEList->a;
ExprList *pNew = 0;
for(k=0; k<pEList->nExpr; k++){
Expr *pE = a[k].pExpr;
if( pE->op!=TK_ALL &&
(pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
/* This particular expression does not need to be expanded.
*/
pNew = sqliteExprListAppend(pNew, a[k].pExpr, 0);
pNew->a[pNew->nExpr-1].zName = a[k].zName;
a[k].pExpr = 0;
a[k].zName = 0;
}else{
/* This expression is a "*" or a "TABLE.*" and needs to be
** expanded. */
int tableSeen = 0; /* Set to 1 when TABLE matches */
char *zTName; /* text of name of TABLE */
if( pE->op==TK_DOT && pE->pLeft ){
zTName = sqliteTableNameFromToken(&pE->pLeft->token);
}else{
zTName = 0;
}
for(i=0; i<pTabList->nSrc; i++){
Table *pTab = pTabList->a[i].pTab;
char *zTabName = pTabList->a[i].zAlias;
if( zTabName==0 || zTabName[0]==0 ){
zTabName = pTab->zName;
}
if( zTName && (zTabName==0 || zTabName[0]==0 ||
sqliteStrICmp(zTName, zTabName)!=0) ){
continue;
}
tableSeen = 1;
for(j=0; j<pTab->nCol; j++){
Expr *pExpr, *pLeft, *pRight;
char *zName = pTab->aCol[j].zName;
if( i>0 && (pTabList->a[i-1].jointype & JT_NATURAL)!=0 &&
columnIndex(pTabList->a[i-1].pTab, zName)>=0 ){
/* In a NATURAL join, omit the join columns from the
** table on the right */
continue;
}
if( i>0 && sqliteIdListIndex(pTabList->a[i-1].pUsing, zName)>=0 ){
/* In a join with a USING clause, omit columns in the
** using clause from the table on the right. */
continue;
}
pRight = sqliteExpr(TK_ID, 0, 0, 0);
if( pRight==0 ) break;
pRight->token.z = zName;
pRight->token.n = strlen(zName);
pRight->token.dyn = 0;
if( zTabName && pTabList->nSrc>1 ){
pLeft = sqliteExpr(TK_ID, 0, 0, 0);
pExpr = sqliteExpr(TK_DOT, pLeft, pRight, 0);
if( pExpr==0 ) break;
pLeft->token.z = zTabName;
pLeft->token.n = strlen(zTabName);
pLeft->token.dyn = 0;
sqliteSetString((char**)&pExpr->span.z, zTabName, ".", zName, 0);
pExpr->span.n = strlen(pExpr->span.z);
pExpr->span.dyn = 1;
pExpr->token.z = 0;
pExpr->token.n = 0;
pExpr->token.dyn = 0;
}else{
pExpr = pRight;
pExpr->span = pExpr->token;
}
pNew = sqliteExprListAppend(pNew, pExpr, 0);
}
}
if( !tableSeen ){
if( zTName ){
sqliteErrorMsg(pParse, "no such table: %s", zTName);
}else{
sqliteErrorMsg(pParse, "no tables specified");
}
rc = 1;
}
sqliteFree(zTName);
}
}
sqliteExprListDelete(pEList);
p->pEList = pNew;
}
return rc;
}
/*
** This routine recursively unlinks the Select.pSrc.a[].pTab pointers
** in a select structure. It just sets the pointers to NULL. This
** routine is recursive in the sense that if the Select.pSrc.a[].pSelect
** pointer is not NULL, this routine is called recursively on that pointer.
**
** This routine is called on the Select structure that defines a
** VIEW in order to undo any bindings to tables. This is necessary
** because those tables might be DROPed by a subsequent SQL command.
** If the bindings are not removed, then the Select.pSrc->a[].pTab field
** will be left pointing to a deallocated Table structure after the
** DROP and a coredump will occur the next time the VIEW is used.
*/
void sqliteSelectUnbind(Select *p){
int i;
SrcList *pSrc = p->pSrc;
Table *pTab;
if( p==0 ) return;
for(i=0; i<pSrc->nSrc; i++){
if( (pTab = pSrc->a[i].pTab)!=0 ){
if( pTab->isTransient ){
sqliteDeleteTable(0, pTab);
}
pSrc->a[i].pTab = 0;
if( pSrc->a[i].pSelect ){
sqliteSelectUnbind(pSrc->a[i].pSelect);
}
}
}
}
/*
** This routine associates entries in an ORDER BY expression list with
** columns in a result. For each ORDER BY expression, the opcode of
** the top-level node is changed to TK_COLUMN and the iColumn value of
** the top-level node is filled in with column number and the iTable
** value of the top-level node is filled with iTable parameter.
**
** If there are prior SELECT clauses, they are processed first. A match
** in an earlier SELECT takes precedence over a later SELECT.
**
** Any entry that does not match is flagged as an error. The number
** of errors is returned.
**
** This routine does NOT correctly initialize the Expr.dataType field
** of the ORDER BY expressions. The multiSelectSortOrder() routine
** must be called to do that after the individual select statements
** have all been analyzed. This routine is unable to compute Expr.dataType
** because it must be called before the individual select statements
** have been analyzed.
*/
static int matchOrderbyToColumn(
Parse *pParse, /* A place to leave error messages */
Select *pSelect, /* Match to result columns of this SELECT */
ExprList *pOrderBy, /* The ORDER BY values to match against columns */
int iTable, /* Insert this value in iTable */
int mustComplete /* If TRUE all ORDER BYs must match */
){
int nErr = 0;
int i, j;
ExprList *pEList;
if( pSelect==0 || pOrderBy==0 ) return 1;
if( mustComplete ){
for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
}
if( fillInColumnList(pParse, pSelect) ){
return 1;
}
if( pSelect->pPrior ){
if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
return 1;
}
}
pEList = pSelect->pEList;
for(i=0; i<pOrderBy->nExpr; i++){
Expr *pE = pOrderBy->a[i].pExpr;
int iCol = -1;
if( pOrderBy->a[i].done ) continue;
if( sqliteExprIsInteger(pE, &iCol) ){
if( iCol<=0 || iCol>pEList->nExpr ){
sqliteErrorMsg(pParse,
"ORDER BY position %d should be between 1 and %d",
iCol, pEList->nExpr);
nErr++;
break;
}
if( !mustComplete ) continue;
iCol--;
}
for(j=0; iCol<0 && j<pEList->nExpr; j++){
if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
char *zName, *zLabel;
zName = pEList->a[j].zName;
assert( pE->token.z );
zLabel = sqliteStrNDup(pE->token.z, pE->token.n);
sqliteDequote(zLabel);
if( sqliteStrICmp(zName, zLabel)==0 ){
iCol = j;
}
sqliteFree(zLabel);
}
if( iCol<0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){
iCol = j;
}
}
if( iCol>=0 ){
pE->op = TK_COLUMN;
pE->iColumn = iCol;
pE->iTable = iTable;
pOrderBy->a[i].done = 1;
}
if( iCol<0 && mustComplete ){
sqliteErrorMsg(pParse,
"ORDER BY term number %d does not match any result column", i+1);
nErr++;
break;
}
}
return nErr;
}
/*
** Get a VDBE for the given parser context. Create a new one if necessary.
** If an error occurs, return NULL and leave a message in pParse.
*/
Vdbe *sqliteGetVdbe(Parse *pParse){
Vdbe *v = pParse->pVdbe;
if( v==0 ){
v = pParse->pVdbe = sqliteVdbeCreate(pParse->db);
}
return v;
}
/*
** This routine sets the Expr.dataType field on all elements of
** the pOrderBy expression list. The pOrderBy list will have been
** set up by matchOrderbyToColumn(). Hence each expression has
** a TK_COLUMN as its root node. The Expr.iColumn refers to a
** column in the result set. The datatype is set to SQLITE_SO_TEXT
** if the corresponding column in p and every SELECT to the left of
** p has a datatype of SQLITE_SO_TEXT. If the cooressponding column
** in p or any of the left SELECTs is SQLITE_SO_NUM, then the datatype
** of the order-by expression is set to SQLITE_SO_NUM.
**
** Examples:
**
** CREATE TABLE one(a INTEGER, b TEXT);
** CREATE TABLE two(c VARCHAR(5), d FLOAT);
**
** SELECT b, b FROM one UNION SELECT d, c FROM two ORDER BY 1, 2;
**
** The primary sort key will use SQLITE_SO_NUM because the "d" in
** the second SELECT is numeric. The 1st column of the first SELECT
** is text but that does not matter because a numeric always overrides
** a text.
**
** The secondary key will use the SQLITE_SO_TEXT sort order because
** both the (second) "b" in the first SELECT and the "c" in the second
** SELECT have a datatype of text.
*/
static void multiSelectSortOrder(Select *p, ExprList *pOrderBy){
int i;
ExprList *pEList;
if( pOrderBy==0 ) return;
if( p==0 ){
for(i=0; i<pOrderBy->nExpr; i++){
pOrderBy->a[i].pExpr->dataType = SQLITE_SO_TEXT;
}
return;
}
multiSelectSortOrder(p->pPrior, pOrderBy);
pEList = p->pEList;
for(i=0; i<pOrderBy->nExpr; i++){
Expr *pE = pOrderBy->a[i].pExpr;
if( pE->dataType==SQLITE_SO_NUM ) continue;
assert( pE->iColumn>=0 );
if( pEList->nExpr>pE->iColumn ){
pE->dataType = sqliteExprType(pEList->a[pE->iColumn].pExpr);
}
}
}
/*
** Compute the iLimit and iOffset fields of the SELECT based on the
** nLimit and nOffset fields. nLimit and nOffset hold the integers
** that appear in the original SQL statement after the LIMIT and OFFSET
** keywords. Or that hold -1 and 0 if those keywords are omitted.
** iLimit and iOffset are the integer memory register numbers for
** counters used to compute the limit and offset. If there is no
** limit and/or offset, then iLimit and iOffset are negative.
**
** This routine changes the values if iLimit and iOffset only if
** a limit or offset is defined by nLimit and nOffset. iLimit and
** iOffset should have been preset to appropriate default values
** (usually but not always -1) prior to calling this routine.
** Only if nLimit>=0 or nOffset>0 do the limit registers get
** redefined. The UNION ALL operator uses this property to force
** the reuse of the same limit and offset registers across multiple
** SELECT statements.
*/
static void computeLimitRegisters(Parse *pParse, Select *p){
/*
** If the comparison is p->nLimit>0 then "LIMIT 0" shows
** all rows. It is the same as no limit. If the comparision is
** p->nLimit>=0 then "LIMIT 0" show no rows at all.
** "LIMIT -1" always shows all rows. There is some
** contraversy about what the correct behavior should be.
** The current implementation interprets "LIMIT 0" to mean
** no rows.
*/
if( p->nLimit>=0 ){
int iMem = pParse->nMem++;
Vdbe *v = sqliteGetVdbe(pParse);
if( v==0 ) return;
sqliteVdbeAddOp(v, OP_Integer, -p->nLimit, 0);
sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
p->iLimit = iMem;
}
if( p->nOffset>0 ){
int iMem = pParse->nMem++;
Vdbe *v = sqliteGetVdbe(pParse);
if( v==0 ) return;
sqliteVdbeAddOp(v, OP_Integer, -p->nOffset, 0);
sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
p->iOffset = iMem;
}
}
/*
** This routine is called to process a query that is really the union
** or intersection of two or more separate queries.
**
** "p" points to the right-most of the two queries. the query on the
** left is p->pPrior. The left query could also be a compound query
** in which case this routine will be called recursively.
**
** The results of the total query are to be written into a destination
** of type eDest with parameter iParm.
**
** Example 1: Consider a three-way compound SQL statement.
**
** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
**
** This statement is parsed up as follows:
**
** SELECT c FROM t3
** |
** `-----> SELECT b FROM t2
** |
** `------> SELECT a FROM t1
**
** The arrows in the diagram above represent the Select.pPrior pointer.
** So if this routine is called with p equal to the t3 query, then
** pPrior will be the t2 query. p->op will be TK_UNION in this case.
**
** Notice that because of the way SQLite parses compound SELECTs, the
** individual selects always group from left to right.
*/
static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){
int rc; /* Success code from a subroutine */
Select *pPrior; /* Another SELECT immediately to our left */
Vdbe *v; /* Generate code to this VDBE */
/* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
** the last SELECT in the series may have an ORDER BY or LIMIT.
*/
if( p==0 || p->pPrior==0 ) return 1;
pPrior = p->pPrior;
if( pPrior->pOrderBy ){
sqliteErrorMsg(pParse,"ORDER BY clause should come after %s not before",
selectOpName(p->op));
return 1;
}
if( pPrior->nLimit>=0 || pPrior->nOffset>0 ){
sqliteErrorMsg(pParse,"LIMIT clause should come after %s not before",
selectOpName(p->op));
return 1;
}
/* Make sure we have a valid query engine. If not, create a new one.
*/
v = sqliteGetVdbe(pParse);
if( v==0 ) return 1;
/* Create the destination temporary table if necessary
*/
if( eDest==SRT_TempTable ){
sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
eDest = SRT_Table;
}
/* Generate code for the left and right SELECT statements.
*/
switch( p->op ){
case TK_ALL: {
if( p->pOrderBy==0 ){
pPrior->nLimit = p->nLimit;
pPrior->nOffset = p->nOffset;
rc = sqliteSelect(pParse, pPrior, eDest, iParm, 0, 0, 0);
if( rc ) return rc;
p->pPrior = 0;
p->iLimit = pPrior->iLimit;
p->iOffset = pPrior->iOffset;
p->nLimit = -1;
p->nOffset = 0;
rc = sqliteSelect(pParse, p, eDest, iParm, 0, 0, 0);
p->pPrior = pPrior;
if( rc ) return rc;
break;
}
/* For UNION ALL ... ORDER BY fall through to the next case */
}
case TK_EXCEPT:
case TK_UNION: {
int unionTab; /* Cursor number of the temporary table holding result */
int op; /* One of the SRT_ operations to apply to self */
int priorOp; /* The SRT_ operation to apply to prior selects */
int nLimit, nOffset; /* Saved values of p->nLimit and p->nOffset */
ExprList *pOrderBy; /* The ORDER BY clause for the right SELECT */
priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
if( eDest==priorOp && p->pOrderBy==0 && p->nLimit<0 && p->nOffset==0 ){
/* We can reuse a temporary table generated by a SELECT to our
** right.
*/
unionTab = iParm;
}else{
/* We will need to create our own temporary table to hold the
** intermediate results.
*/
unionTab = pParse->nTab++;
if( p->pOrderBy
&& matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
return 1;
}
if( p->op!=TK_ALL ){
sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 1);
sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1);
}else{
sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0);
}
}
/* Code the SELECT statements to our left
*/
rc = sqliteSelect(pParse, pPrior, priorOp, unionTab, 0, 0, 0);
if( rc ) return rc;
/* Code the current SELECT statement
*/
switch( p->op ){
case TK_EXCEPT: op = SRT_Except; break;
case TK_UNION: op = SRT_Union; break;
case TK_ALL: op = SRT_Table; break;
}
p->pPrior = 0;
pOrderBy = p->pOrderBy;
p->pOrderBy = 0;
nLimit = p->nLimit;
p->nLimit = -1;
nOffset = p->nOffset;
p->nOffset = 0;
rc = sqliteSelect(pParse, p, op, unionTab, 0, 0, 0);
p->pPrior = pPrior;
p->pOrderBy = pOrderBy;
p->nLimit = nLimit;
p->nOffset = nOffset;
if( rc ) return rc;
/* Convert the data in the temporary table into whatever form
** it is that we currently need.
*/
if( eDest!=priorOp || unionTab!=iParm ){
int iCont, iBreak, iStart;
assert( p->pEList );
if( eDest==SRT_Callback ){
generateColumnNames(pParse, 0, p->pEList);
generateColumnTypes(pParse, p->pSrc, p->pEList);
}
iBreak = sqliteVdbeMakeLabel(v);
iCont = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_Rewind, unionTab, iBreak);
computeLimitRegisters(pParse, p);
iStart = sqliteVdbeCurrentAddr(v);
multiSelectSortOrder(p, p->pOrderBy);
rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
p->pOrderBy, -1, eDest, iParm,
iCont, iBreak);
if( rc ) return 1;
sqliteVdbeResolveLabel(v, iCont);
sqliteVdbeAddOp(v, OP_Next, unionTab, iStart);
sqliteVdbeResolveLabel(v, iBreak);
sqliteVdbeAddOp(v, OP_Close, unionTab, 0);
if( p->pOrderBy ){
generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
}
}
break;
}
case TK_INTERSECT: {
int tab1, tab2;
int iCont, iBreak, iStart;
int nLimit, nOffset;
/* INTERSECT is different from the others since it requires
** two temporary tables. Hence it has its own case. Begin
** by allocating the tables we will need.
*/
tab1 = pParse->nTab++;
tab2 = pParse->nTab++;
if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
return 1;
}
sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 1);
sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1);
/* Code the SELECTs to our left into temporary table "tab1".
*/
rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1, 0, 0, 0);
if( rc ) return rc;
/* Code the current SELECT into temporary table "tab2"
*/
sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 1);
sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1);
p->pPrior = 0;
nLimit = p->nLimit;
p->nLimit = -1;
nOffset = p->nOffset;
p->nOffset = 0;
rc = sqliteSelect(pParse, p, SRT_Union, tab2, 0, 0, 0);
p->pPrior = pPrior;
p->nLimit = nLimit;
p->nOffset = nOffset;
if( rc ) return rc;
/* Generate code to take the intersection of the two temporary
** tables.
*/
assert( p->pEList );
if( eDest==SRT_Callback ){
generateColumnNames(pParse, 0, p->pEList);
generateColumnTypes(pParse, p->pSrc, p->pEList);
}
iBreak = sqliteVdbeMakeLabel(v);
iCont = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_Rewind, tab1, iBreak);
computeLimitRegisters(pParse, p);
iStart = sqliteVdbeAddOp(v, OP_FullKey, tab1, 0);
sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont);
multiSelectSortOrder(p, p->pOrderBy);
rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
p->pOrderBy, -1, eDest, iParm,
iCont, iBreak);
if( rc ) return 1;
sqliteVdbeResolveLabel(v, iCont);
sqliteVdbeAddOp(v, OP_Next, tab1, iStart);
sqliteVdbeResolveLabel(v, iBreak);
sqliteVdbeAddOp(v, OP_Close, tab2, 0);
sqliteVdbeAddOp(v, OP_Close, tab1, 0);
if( p->pOrderBy ){
generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
}
break;
}
}
assert( p->pEList && pPrior->pEList );
if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
sqliteErrorMsg(pParse, "SELECTs to the left and right of %s"
" do not have the same number of result columns", selectOpName(p->op));
return 1;
}
return 0;
}
/*
** Scan through the expression pExpr. Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList. (But leave references to the ROWID column
** unchanged.)
**
** This routine is part of the flattening procedure. A subquery
** whose result set is defined by pEList appears as entry in the
** FROM clause of a SELECT such that the VDBE cursor assigned to that
** FORM clause entry is iTable. This routine make the necessary
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */
static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
if( pExpr==0 ) return;
if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
if( pExpr->iColumn<0 ){
pExpr->op = TK_NULL;
}else{
Expr *pNew;
assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
pNew = pEList->a[pExpr->iColumn].pExpr;
assert( pNew!=0 );
pExpr->op = pNew->op;
pExpr->dataType = pNew->dataType;
assert( pExpr->pLeft==0 );
pExpr->pLeft = sqliteExprDup(pNew->pLeft);
assert( pExpr->pRight==0 );
pExpr->pRight = sqliteExprDup(pNew->pRight);
assert( pExpr->pList==0 );
pExpr->pList = sqliteExprListDup(pNew->pList);
pExpr->iTable = pNew->iTable;
pExpr->iColumn = pNew->iColumn;
pExpr->iAgg = pNew->iAgg;
sqliteTokenCopy(&pExpr->token, &pNew->token);
sqliteTokenCopy(&pExpr->span, &pNew->span);
}
}else{
substExpr(pExpr->pLeft, iTable, pEList);
substExpr(pExpr->pRight, iTable, pEList);
substExprList(pExpr->pList, iTable, pEList);
}
}
static void
substExprList(ExprList *pList, int iTable, ExprList *pEList){
int i;
if( pList==0 ) return;
for(i=0; i<pList->nExpr; i++){
substExpr(pList->a[i].pExpr, iTable, pEList);
}
}
/*
** This routine attempts to flatten subqueries in order to speed
** execution. It returns 1 if it makes changes and 0 if no flattening
** occurs.
**
** To understand the concept of flattening, consider the following
** query:
**
** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
**
** The default way of implementing this query is to execute the
** subquery first and store the results in a temporary table, then
** run the outer query on that temporary table. This requires two
** passes over the data. Furthermore, because the temporary table
** has no indices, the WHERE clause on the outer query cannot be
** optimized.
**
** This routine attempts to rewrite queries such as the above into
** a single flat select, like this:
**
** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
**
** The code generated for this simpification gives the same result
** but only has to scan the data once. And because indices might
** exist on the table t1, a complete scan of the data might be
** avoided.
**
** Flattening is only attempted if all of the following are true:
**
** (1) The subquery and the outer query do not both use aggregates.
**
** (2) The subquery is not an aggregate or the outer query is not a join.
**
** (3) The subquery is not the right operand of a left outer join, or
** the subquery is not itself a join. (Ticket #306)
**
** (4) The subquery is not DISTINCT or the outer query is not a join.
**
** (5) The subquery is not DISTINCT or the outer query does not use
** aggregates.
**
** (6) The subquery does not use aggregates or the outer query is not
** DISTINCT.
**
** (7) The subquery has a FROM clause.
**
** (8) The subquery does not use LIMIT or the outer query is not a join.
**
** (9) The subquery does not use LIMIT or the outer query does not use
** aggregates.
**
** (10) The subquery does not use aggregates or the outer query does not
** use LIMIT.
**
** (11) The subquery and the outer query do not both have ORDER BY clauses.
**
** (12) The subquery is not the right term of a LEFT OUTER JOIN or the
** subquery has no WHERE clause. (added by ticket #350)
**
** In this routine, the "p" parameter is a pointer to the outer query.
** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
**
** If flattening is not attempted, this routine is a no-op and returns 0.
** If flattening is attempted this routine returns 1.
**
** All of the expression analysis must occur on both the outer query and
** the subquery before this routine runs.
*/
static int flattenSubquery(
Parse *pParse, /* The parsing context */
Select *p, /* The parent or outer SELECT statement */
int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
int isAgg, /* True if outer SELECT uses aggregate functions */
int subqueryIsAgg /* True if the subquery uses aggregate functions */
){
Select *pSub; /* The inner query or "subquery" */
SrcList *pSrc; /* The FROM clause of the outer query */
SrcList *pSubSrc; /* The FROM clause of the subquery */
ExprList *pList; /* The result set of the outer query */
int iParent; /* VDBE cursor number of the pSub result set temp table */
int i;
Expr *pWhere;
/* Check to see if flattening is permitted. Return 0 if not.
*/
if( p==0 ) return 0;
pSrc = p->pSrc;
assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
pSub = pSrc->a[iFrom].pSelect;
assert( pSub!=0 );
if( isAgg && subqueryIsAgg ) return 0;
if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;
pSubSrc = pSub->pSrc;
assert( pSubSrc );
if( pSubSrc->nSrc==0 ) return 0;
if( (pSub->isDistinct || pSub->nLimit>=0) && (pSrc->nSrc>1 || isAgg) ){
return 0;
}
if( (p->isDistinct || p->nLimit>=0) && subqueryIsAgg ) return 0;
if( p->pOrderBy && pSub->pOrderBy ) return 0;
/* Restriction 3: If the subquery is a join, make sure the subquery is
** not used as the right operand of an outer join. Examples of why this
** is not allowed:
**
** t1 LEFT OUTER JOIN (t2 JOIN t3)
**
** If we flatten the above, we would get
**
** (t1 LEFT OUTER JOIN t2) JOIN t3
**
** which is not at all the same thing.
*/
if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){
return 0;
}
/* Restriction 12: If the subquery is the right operand of a left outer
** join, make sure the subquery has no WHERE clause.
** An examples of why this is not allowed:
**
** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
**
** If we flatten the above, we would get
**
** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
**
** But the t2.x>0 test will always fail on a NULL row of t2, which
** effectively converts the OUTER JOIN into an INNER JOIN.
*/
if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0
&& pSub->pWhere!=0 ){
return 0;
}
/* If we reach this point, it means flattening is permitted for the
** iFrom-th entry of the FROM clause in the outer query.
*/
/* Move all of the FROM elements of the subquery into the
** the FROM clause of the outer query. Before doing this, remember
** the cursor number for the original outer query FROM element in
** iParent. The iParent cursor will never be used. Subsequent code
** will scan expressions looking for iParent references and replace
** those references with expressions that resolve to the subquery FROM
** elements we are now copying in.
*/
iParent = pSrc->a[iFrom].iCursor;
{
int nSubSrc = pSubSrc->nSrc;
int jointype = pSrc->a[iFrom].jointype;
if( pSrc->a[iFrom].pTab && pSrc->a[iFrom].pTab->isTransient ){
sqliteDeleteTable(0, pSrc->a[iFrom].pTab);
}
sqliteFree(pSrc->a[iFrom].zDatabase);
sqliteFree(pSrc->a[iFrom].zName);
sqliteFree(pSrc->a[iFrom].zAlias);
if( nSubSrc>1 ){
int extra = nSubSrc - 1;
for(i=1; i<nSubSrc; i++){
pSrc = sqliteSrcListAppend(pSrc, 0, 0);
}
p->pSrc = pSrc;
for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
pSrc->a[i] = pSrc->a[i-extra];
}
}
for(i=0; i<nSubSrc; i++){
pSrc->a[i+iFrom] = pSubSrc->a[i];
memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
}
pSrc->a[iFrom+nSubSrc-1].jointype = jointype;
}
/* Now begin substituting subquery result set expressions for
** references to the iParent in the outer query.
**
** Example:
**
** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
** \ \_____________ subquery __________/ /
** \_____________________ outer query ______________________________/
**
** We look at every expression in the outer query and every place we see
** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
*/
substExprList(p->pEList, iParent, pSub->pEList);
pList = p->pEList;
for(i=0; i<pList->nExpr; i++){
Expr *pExpr;
if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n);
}
}
if( isAgg ){
substExprList(p->pGroupBy, iParent, pSub->pEList);
substExpr(p->pHaving, iParent, pSub->pEList);
}
if( pSub->pOrderBy ){
assert( p->pOrderBy==0 );
p->pOrderBy = pSub->pOrderBy;
pSub->pOrderBy = 0;
}else if( p->pOrderBy ){
substExprList(p->pOrderBy, iParent, pSub->pEList);
}
if( pSub->pWhere ){
pWhere = sqliteExprDup(pSub->pWhere);
}else{
pWhere = 0;
}
if( subqueryIsAgg ){
assert( p->pHaving==0 );
p->pHaving = p->pWhere;
p->pWhere = pWhere;
substExpr(p->pHaving, iParent, pSub->pEList);
if( pSub->pHaving ){
Expr *pHaving = sqliteExprDup(pSub->pHaving);
if( p->pHaving ){
p->pHaving = sqliteExpr(TK_AND, p->pHaving, pHaving, 0);
}else{
p->pHaving = pHaving;
}
}
assert( p->pGroupBy==0 );
p->pGroupBy = sqliteExprListDup(pSub->pGroupBy);
}else if( p->pWhere==0 ){
p->pWhere = pWhere;
}else{
substExpr(p->pWhere, iParent, pSub->pEList);
if( pWhere ){
p->pWhere = sqliteExpr(TK_AND, p->pWhere, pWhere, 0);
}
}
/* The flattened query is distinct if either the inner or the
** outer query is distinct.
*/
p->isDistinct = p->isDistinct || pSub->isDistinct;
/* Transfer the limit expression from the subquery to the outer
** query.
*/
if( pSub->nLimit>=0 ){
if( p->nLimit<0 ){
p->nLimit = pSub->nLimit;
}else if( p->nLimit+p->nOffset > pSub->nLimit+pSub->nOffset ){
p->nLimit = pSub->nLimit + pSub->nOffset - p->nOffset;
}
}
p->nOffset += pSub->nOffset;
/* Finially, delete what is left of the subquery and return
** success.
*/
sqliteSelectDelete(pSub);
return 1;
}
/*
** Analyze the SELECT statement passed in as an argument to see if it
** is a simple min() or max() query. If it is and this query can be
** satisfied using a single seek to the beginning or end of an index,
** then generate the code for this SELECT and return 1. If this is not a
** simple min() or max() query, then return 0;
**
** A simply min() or max() query looks like this:
**
** SELECT min(a) FROM table;
** SELECT max(a) FROM table;
**
** The query may have only a single table in its FROM argument. There
** can be no GROUP BY or HAVING or WHERE clauses. The result set must
** be the min() or max() of a single column of the table. The column
** in the min() or max() function must be indexed.
**
** The parameters to this routine are the same as for sqliteSelect().
** See the header comment on that routine for additional information.
*/
static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
Expr *pExpr;
int iCol;
Table *pTab;
Index *pIdx;
int base;
Vdbe *v;
int seekOp;
int cont;
ExprList *pEList, *pList, eList;
struct ExprList_item eListItem;
SrcList *pSrc;
/* Check to see if this query is a simple min() or max() query. Return
** zero if it is not.
*/
if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
pSrc = p->pSrc;
if( pSrc->nSrc!=1 ) return 0;
pEList = p->pEList;
if( pEList->nExpr!=1 ) return 0;
pExpr = pEList->a[0].pExpr;
if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
pList = pExpr->pList;
if( pList==0 || pList->nExpr!=1 ) return 0;
if( pExpr->token.n!=3 ) return 0;
if( sqliteStrNICmp(pExpr->token.z,"min",3)==0 ){
seekOp = OP_Rewind;
}else if( sqliteStrNICmp(pExpr->token.z,"max",3)==0 ){
seekOp = OP_Last;
}else{
return 0;
}
pExpr = pList->a[0].pExpr;
if( pExpr->op!=TK_COLUMN ) return 0;
iCol = pExpr->iColumn;
pTab = pSrc->a[0].pTab;
/* If we get to here, it means the query is of the correct form.
** Check to make sure we have an index and make pIdx point to the
** appropriate index. If the min() or max() is on an INTEGER PRIMARY
** key column, no index is necessary so set pIdx to NULL. If no
** usable index is found, return 0.
*/
if( iCol<0 ){
pIdx = 0;
}else{
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
assert( pIdx->nColumn>=1 );
if( pIdx->aiColumn[0]==iCol ) break;
}
if( pIdx==0 ) return 0;
}
/* Identify column types if we will be using the callback. This
** step is skipped if the output is going to a table or a memory cell.
** The column names have already been generated in the calling function.
*/
v = sqliteGetVdbe(pParse);
if( v==0 ) return 0;
if( eDest==SRT_Callback ){
generateColumnTypes(pParse, p->pSrc, p->pEList);
}
/* If the output is destined for a temporary table, open that table.
*/
if( eDest==SRT_TempTable ){
sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
}
/* Generating code to find the min or the max. Basically all we have
** to do is find the first or the last entry in the chosen index. If
** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
** or last entry in the main table.
*/
sqliteCodeVerifySchema(pParse, pTab->iDb);
base = pSrc->a[0].iCursor;
computeLimitRegisters(pParse, p);
if( pSrc->a[0].pSelect==0 ){
sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
sqliteVdbeOp3(v, OP_OpenRead, base, pTab->tnum, pTab->zName, 0);
}
cont = sqliteVdbeMakeLabel(v);
if( pIdx==0 ){
sqliteVdbeAddOp(v, seekOp, base, 0);
}else{
sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
sqliteVdbeOp3(v, OP_OpenRead, base+1, pIdx->tnum, pIdx->zName, P3_STATIC);
if( seekOp==OP_Rewind ){
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_MakeKey, 1, 0);
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
seekOp = OP_MoveTo;
}
sqliteVdbeAddOp(v, seekOp, base+1, 0);
sqliteVdbeAddOp(v, OP_IdxRecno, base+1, 0);
sqliteVdbeAddOp(v, OP_Close, base+1, 0);
sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
}
eList.nExpr = 1;
memset(&eListItem, 0, sizeof(eListItem));
eList.a = &eListItem;
eList.a[0].pExpr = pExpr;
selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, cont, cont);
sqliteVdbeResolveLabel(v, cont);
sqliteVdbeAddOp(v, OP_Close, base, 0);
return 1;
}
/*
** Generate code for the given SELECT statement.
**
** The results are distributed in various ways depending on the
** value of eDest and iParm.
**
** eDest Value Result
** ------------ -------------------------------------------
** SRT_Callback Invoke the callback for each row of the result.
**
** SRT_Mem Store first result in memory cell iParm
**
** SRT_Set Store results as keys of a table with cursor iParm
**
** SRT_Union Store results as a key in a temporary table iParm
**
** SRT_Except Remove results from the temporary table iParm.
**
** SRT_Table Store results in temporary table iParm
**
** The table above is incomplete. Additional eDist value have be added
** since this comment was written. See the selectInnerLoop() function for
** a complete listing of the allowed values of eDest and their meanings.
**
** This routine returns the number of errors. If any errors are
** encountered, then an appropriate error message is left in
** pParse->zErrMsg.
**
** This routine does NOT free the Select structure passed in. The
** calling function needs to do that.
**
** The pParent, parentTab, and *pParentAgg fields are filled in if this
** SELECT is a subquery. This routine may try to combine this SELECT
** with its parent to form a single flat query. In so doing, it might
** change the parent query from a non-aggregate to an aggregate query.
** For that reason, the pParentAgg flag is passed as a pointer, so it
** can be changed.
**
** Example 1: The meaning of the pParent parameter.
**
** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
** \ \_______ subquery _______/ /
** \ /
** \____________________ outer query ___________________/
**
** This routine is called for the outer query first. For that call,
** pParent will be NULL. During the processing of the outer query, this
** routine is called recursively to handle the subquery. For the recursive
** call, pParent will point to the outer query. Because the subquery is
** the second element in a three-way join, the parentTab parameter will
** be 1 (the 2nd value of a 0-indexed array.)
*/
int sqliteSelect(
Parse *pParse, /* The parser context */
Select *p, /* The SELECT statement being coded. */
int eDest, /* How to dispose of the results */
int iParm, /* A parameter used by the eDest disposal method */
Select *pParent, /* Another SELECT for which this is a sub-query */
int parentTab, /* Index in pParent->pSrc of this query */
int *pParentAgg /* True if pParent uses aggregate functions */
){
int i;
WhereInfo *pWInfo;
Vdbe *v;
int isAgg = 0; /* True for select lists like "count(*)" */
ExprList *pEList; /* List of columns to extract. */
SrcList *pTabList; /* List of tables to select from */
Expr *pWhere; /* The WHERE clause. May be NULL */
ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
Expr *pHaving; /* The HAVING clause. May be NULL */
int isDistinct; /* True if the DISTINCT keyword is present */
int distinct; /* Table to use for the distinct set */
int rc = 1; /* Value to return from this function */
if( sqlite_malloc_failed || pParse->nErr || p==0 ) return 1;
if( sqliteAuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
/* If there is are a sequence of queries, do the earlier ones first.
*/
if( p->pPrior ){
return multiSelect(pParse, p, eDest, iParm);
}
/* Make local copies of the parameters for this query.
*/
pTabList = p->pSrc;
pWhere = p->pWhere;
pOrderBy = p->pOrderBy;
pGroupBy = p->pGroupBy;
pHaving = p->pHaving;
isDistinct = p->isDistinct;
/* Allocate VDBE cursors for each table in the FROM clause
*/
sqliteSrcListAssignCursors(pParse, pTabList);
/*
** Do not even attempt to generate any code if we have already seen
** errors before this routine starts.
*/
if( pParse->nErr>0 ) goto select_end;
/* Expand any "*" terms in the result set. (For example the "*" in
** "SELECT * FROM t1") The fillInColumnlist() routine also does some
** other housekeeping - see the header comment for details.
*/
if( fillInColumnList(pParse, p) ){
goto select_end;
}
pWhere = p->pWhere;
pEList = p->pEList;
if( pEList==0 ) goto select_end;
/* If writing to memory or generating a set
** only a single column may be output.
*/
if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
sqliteErrorMsg(pParse, "only a single result allowed for "
"a SELECT that is part of an expression");
goto select_end;
}
/* ORDER BY is ignored for some destinations.
*/
switch( eDest ){
case SRT_Union:
case SRT_Except:
case SRT_Discard:
pOrderBy = 0;
break;
default:
break;
}
/* At this point, we should have allocated all the cursors that we
** need to handle subquerys and temporary tables.
**
** Resolve the column names and do a semantics check on all the expressions.
*/
for(i=0; i<pEList->nExpr; i++){
if( sqliteExprResolveIds(pParse, pTabList, 0, pEList->a[i].pExpr) ){
goto select_end;
}
if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){
goto select_end;
}
}
if( pWhere ){
if( sqliteExprResolveIds(pParse, pTabList, pEList, pWhere) ){
goto select_end;
}
if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
goto select_end;
}
}
if( pHaving ){
if( pGroupBy==0 ){
sqliteErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
goto select_end;
}
if( sqliteExprResolveIds(pParse, pTabList, pEList, pHaving) ){
goto select_end;
}
if( sqliteExprCheck(pParse, pHaving, 1, &isAgg) ){
goto select_end;
}
}
if( pOrderBy ){
for(i=0; i<pOrderBy->nExpr; i++){
int iCol;
Expr *pE = pOrderBy->a[i].pExpr;
if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
sqliteExprDelete(pE);
pE = pOrderBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
}
if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
goto select_end;
}
if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
goto select_end;
}
if( sqliteExprIsConstant(pE) ){
if( sqliteExprIsInteger(pE, &iCol)==0 ){
sqliteErrorMsg(pParse,
"ORDER BY terms must not be non-integer constants");
goto select_end;
}else if( iCol<=0 || iCol>pEList->nExpr ){
sqliteErrorMsg(pParse,
"ORDER BY column number %d out of range - should be "
"between 1 and %d", iCol, pEList->nExpr);
goto select_end;
}
}
}
}
if( pGroupBy ){
for(i=0; i<pGroupBy->nExpr; i++){
int iCol;
Expr *pE = pGroupBy->a[i].pExpr;
if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
sqliteExprDelete(pE);
pE = pGroupBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
}
if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
goto select_end;
}
if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
goto select_end;
}
if( sqliteExprIsConstant(pE) ){
if( sqliteExprIsInteger(pE, &iCol)==0 ){
sqliteErrorMsg(pParse,
"GROUP BY terms must not be non-integer constants");
goto select_end;
}else if( iCol<=0 || iCol>pEList->nExpr ){
sqliteErrorMsg(pParse,
"GROUP BY column number %d out of range - should be "
"between 1 and %d", iCol, pEList->nExpr);
goto select_end;
}
}
}
}
/* Begin generating code.
*/
v = sqliteGetVdbe(pParse);
if( v==0 ) goto select_end;
/* Identify column names if we will be using them in a callback. This
** step is skipped if the output is going to some other destination.
*/
if( eDest==SRT_Callback ){
generateColumnNames(pParse, pTabList, pEList);
}
/* Generate code for all sub-queries in the FROM clause
*/
for(i=0; i<pTabList->nSrc; i++){
const char *zSavedAuthContext;
int needRestoreContext;
if( pTabList->a[i].pSelect==0 ) continue;
if( pTabList->a[i].zName!=0 ){
zSavedAuthContext = pParse->zAuthContext;
pParse->zAuthContext = pTabList->a[i].zName;
needRestoreContext = 1;
}else{
needRestoreContext = 0;
}
sqliteSelect(pParse, pTabList->a[i].pSelect, SRT_TempTable,
pTabList->a[i].iCursor, p, i, &isAgg);
if( needRestoreContext ){
pParse->zAuthContext = zSavedAuthContext;
}
pTabList = p->pSrc;
pWhere = p->pWhere;
if( eDest!=SRT_Union && eDest!=SRT_Except && eDest!=SRT_Discard ){
pOrderBy = p->pOrderBy;
}
pGroupBy = p->pGroupBy;
pHaving = p->pHaving;
isDistinct = p->isDistinct;
}
/* Check for the special case of a min() or max() function by itself
** in the result set.
*/
if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
rc = 0;
goto select_end;
}
/* Check to see if this is a subquery that can be "flattened" into its parent.
** If flattening is a possiblity, do so and return immediately.
*/
if( pParent && pParentAgg &&
flattenSubquery(pParse, pParent, parentTab, *pParentAgg, isAgg) ){
if( isAgg ) *pParentAgg = 1;
return rc;
}
/* Set the limiter.
*/
computeLimitRegisters(pParse, p);
/* Identify column types if we will be using a callback. This
** step is skipped if the output is going to a destination other
** than a callback.
**
** We have to do this separately from the creation of column names
** above because if the pTabList contains views then they will not
** have been resolved and we will not know the column types until
** now.
*/
if( eDest==SRT_Callback ){
generateColumnTypes(pParse, pTabList, pEList);
}
/* If the output is destined for a temporary table, open that table.
*/
if( eDest==SRT_TempTable ){
sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
}
/* Do an analysis of aggregate expressions.
*/
sqliteAggregateInfoReset(pParse);
if( isAgg || pGroupBy ){
assert( pParse->nAgg==0 );
isAgg = 1;
for(i=0; i<pEList->nExpr; i++){
if( sqliteExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){
goto select_end;
}
}
if( pGroupBy ){
for(i=0; i<pGroupBy->nExpr; i++){
if( sqliteExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){
goto select_end;
}
}
}
if( pHaving && sqliteExprAnalyzeAggregates(pParse, pHaving) ){
goto select_end;
}
if( pOrderBy ){
for(i=0; i<pOrderBy->nExpr; i++){
if( sqliteExprAnalyzeAggregates(pParse, pOrderBy->a[i].pExpr) ){
goto select_end;
}
}
}
}
/* Reset the aggregator
*/
if( isAgg ){
sqliteVdbeAddOp(v, OP_AggReset, 0, pParse->nAgg);
for(i=0; i<pParse->nAgg; i++){
FuncDef *pFunc;
if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){
sqliteVdbeOp3(v, OP_AggInit, 0, i, (char*)pFunc, P3_POINTER);
}
}
if( pGroupBy==0 ){
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_AggFocus, 0, 0);
}
}
/* Initialize the memory cell to NULL
*/
if( eDest==SRT_Mem ){
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
}
/* Open a temporary table to use for the distinct set.
*/
if( isDistinct ){
distinct = pParse->nTab++;
sqliteVdbeAddOp(v, OP_OpenTemp, distinct, 1);
}else{
distinct = -1;
}
/* Begin the database scan
*/
pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 0,
pGroupBy ? 0 : &pOrderBy);
if( pWInfo==0 ) goto select_end;
/* Use the standard inner loop if we are not dealing with
** aggregates
*/
if( !isAgg ){
if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
iParm, pWInfo->iContinue, pWInfo->iBreak) ){
goto select_end;
}
}
/* If we are dealing with aggregates, then do the special aggregate
** processing.
*/
else{
AggExpr *pAgg;
if( pGroupBy ){
int lbl1;
for(i=0; i<pGroupBy->nExpr; i++){
sqliteExprCode(pParse, pGroupBy->a[i].pExpr);
}
sqliteVdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0);
if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pGroupBy);
lbl1 = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_AggFocus, 0, lbl1);
for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
if( pAgg->isAgg ) continue;
sqliteExprCode(pParse, pAgg->pExpr);
sqliteVdbeAddOp(v, OP_AggSet, 0, i);
}
sqliteVdbeResolveLabel(v, lbl1);
}
for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
Expr *pE;
int nExpr;
FuncDef *pDef;
if( !pAgg->isAgg ) continue;
assert( pAgg->pFunc!=0 );
assert( pAgg->pFunc->xStep!=0 );
pDef = pAgg->pFunc;
pE = pAgg->pExpr;
assert( pE!=0 );
assert( pE->op==TK_AGG_FUNCTION );
nExpr = sqliteExprCodeExprList(pParse, pE->pList, pDef->includeTypes);
sqliteVdbeAddOp(v, OP_Integer, i, 0);
sqliteVdbeOp3(v, OP_AggFunc, 0, nExpr, (char*)pDef, P3_POINTER);
}
}
/* End the database scan loop.
*/
sqliteWhereEnd(pWInfo);
/* If we are processing aggregates, we need to set up a second loop
** over all of the aggregate values and process them.
*/
if( isAgg ){
int endagg = sqliteVdbeMakeLabel(v);
int startagg;
startagg = sqliteVdbeAddOp(v, OP_AggNext, 0, endagg);
pParse->useAgg = 1;
if( pHaving ){
sqliteExprIfFalse(pParse, pHaving, startagg, 1);
}
if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
iParm, startagg, endagg) ){
goto select_end;
}
sqliteVdbeAddOp(v, OP_Goto, 0, startagg);
sqliteVdbeResolveLabel(v, endagg);
sqliteVdbeAddOp(v, OP_Noop, 0, 0);
pParse->useAgg = 0;
}
/* If there is an ORDER BY clause, then we need to sort the results
** and send them to the callback one by one.
*/
if( pOrderBy ){
generateSortTail(p, v, pEList->nExpr, eDest, iParm);
}
/* If this was a subquery, we have now converted the subquery into a
** temporary table. So delete the subquery structure from the parent
** to prevent this subquery from being evaluated again and to force the
** the use of the temporary table.
*/
if( pParent ){
assert( pParent->pSrc->nSrc>parentTab );
assert( pParent->pSrc->a[parentTab].pSelect==p );
sqliteSelectDelete(p);
pParent->pSrc->a[parentTab].pSelect = 0;
}
/* The SELECT was successfully coded. Set the return code to 0
** to indicate no errors.
*/
rc = 0;
/* Control jumps to here if an error is encountered above, or upon
** successful coding of the SELECT.
*/
select_end:
sqliteAggregateInfoReset(pParse);
return rc;
}