/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- sqlite_step
- AggInsert
- _AggInFocus
- hardStringify
- hardDynamicify
- hardDeephem
- popStack
- toInt
- hardIntegerify
- hardRealify
- Merge
- vdbe_fgets
- expandCursorArraySize
- hwtime
- sqliteVdbeExec
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** The code in this file implements execution method of the
** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
** handles housekeeping details such as creating and deleting
** VDBE instances. This file is solely interested in executing
** the VDBE program.
**
** In the external interface, an "sqlite_vm*" is an opaque pointer
** to a VDBE.
**
** The SQL parser generates a program which is then executed by
** the VDBE to do the work of the SQL statement. VDBE programs are
** similar in form to assembly language. The program consists of
** a linear sequence of operations. Each operation has an opcode
** and 3 operands. Operands P1 and P2 are integers. Operand P3
** is a null-terminated string. The P2 operand must be non-negative.
** Opcodes will typically ignore one or more operands. Many opcodes
** ignore all three operands.
**
** Computation results are stored on a stack. Each entry on the
** stack is either an integer, a null-terminated string, a floating point
** number, or the SQL "NULL" value. An inplicit conversion from one
** type to the other occurs as necessary.
**
** Most of the code in this file is taken up by the sqliteVdbeExec()
** function which does the work of interpreting a VDBE program.
** But other routines are also provided to help in building up
** a program instruction by instruction.
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files. The formatting
** of the code in this file is, therefore, important. See other comments
** in this file for details. If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.7.4.1.2.1 2006/09/09 10:59:05 tony2001 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"
/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_MoveTo or the OP_Next opcode. The test
** procedures use this information to make sure that indices are
** working correctly. This variable has no function other than to
** help verify the correct operation of the library.
*/
int sqlite_search_count = 0;
/*
** When this global variable is positive, it gets decremented once before
** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt
** of the db.flags field is set in order to simulate an interrupt.
**
** This facility is used for testing purposes only. It does not function
** in an ordinary build.
*/
int sqlite_interrupt_count = 0;
/*
** Advance the virtual machine to the next output row.
**
** The return vale will be either SQLITE_BUSY, SQLITE_DONE,
** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
**
** SQLITE_BUSY means that the virtual machine attempted to open
** a locked database and there is no busy callback registered.
** Call sqlite_step() again to retry the open. *pN is set to 0
** and *pazColName and *pazValue are both set to NULL.
**
** SQLITE_DONE means that the virtual machine has finished
** executing. sqlite_step() should not be called again on this
** virtual machine. *pN and *pazColName are set appropriately
** but *pazValue is set to NULL.
**
** SQLITE_ROW means that the virtual machine has generated another
** row of the result set. *pN is set to the number of columns in
** the row. *pazColName is set to the names of the columns followed
** by the column datatypes. *pazValue is set to the values of each
** column in the row. The value of the i-th column is (*pazValue)[i].
** The name of the i-th column is (*pazColName)[i] and the datatype
** of the i-th column is (*pazColName)[i+*pN].
**
** SQLITE_ERROR means that a run-time error (such as a constraint
** violation) has occurred. The details of the error will be returned
** by the next call to sqlite_finalize(). sqlite_step() should not
** be called again on the VM.
**
** SQLITE_MISUSE means that the this routine was called inappropriately.
** Perhaps it was called on a virtual machine that had already been
** finalized or on one that had previously returned SQLITE_ERROR or
** SQLITE_DONE. Or it could be the case the the same database connection
** is being used simulataneously by two or more threads.
*/
int sqlite_step(
sqlite_vm *pVm, /* The virtual machine to execute */
int *pN, /* OUT: Number of columns in result */
const char ***pazValue, /* OUT: Column data */
const char ***pazColName /* OUT: Column names and datatypes */
){
Vdbe *p = (Vdbe*)pVm;
sqlite *db;
int rc;
if( !p || p->magic!=VDBE_MAGIC_RUN ){
return SQLITE_MISUSE;
}
db = p->db;
if( sqliteSafetyOn(db) ){
p->rc = SQLITE_MISUSE;
return SQLITE_MISUSE;
}
if( p->explain ){
rc = sqliteVdbeList(p);
}else{
rc = sqliteVdbeExec(p);
}
if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
if( pazColName ) *pazColName = (const char**)p->azColName;
if( pN ) *pN = p->nResColumn;
}else{
if( pazColName) *pazColName = 0;
if( pN ) *pN = 0;
}
if( pazValue ){
if( rc==SQLITE_ROW ){
*pazValue = (const char**)p->azResColumn;
}else{
*pazValue = 0;
}
}
if( sqliteSafetyOff(db) ){
return SQLITE_MISUSE;
}
return rc;
}
/*
** Insert a new aggregate element and make it the element that
** has focus.
**
** Return 0 on success and 1 if memory is exhausted.
*/
static int AggInsert(Agg *p, char *zKey, int nKey){
AggElem *pElem, *pOld;
int i;
Mem *pMem;
pElem = sqliteMalloc( sizeof(AggElem) + nKey +
(p->nMem-1)*sizeof(pElem->aMem[0]) );
if( pElem==0 ) return 1;
pElem->zKey = (char*)&pElem->aMem[p->nMem];
memcpy(pElem->zKey, zKey, nKey);
pElem->nKey = nKey;
pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
if( pOld!=0 ){
assert( pOld==pElem ); /* Malloc failed on insert */
sqliteFree(pOld);
return 0;
}
for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){
pMem->flags = MEM_Null;
}
p->pCurrent = pElem;
return 0;
}
/*
** Get the AggElem currently in focus
*/
#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
static AggElem *_AggInFocus(Agg *p){
HashElem *pElem = sqliteHashFirst(&p->hash);
if( pElem==0 ){
AggInsert(p,"",1);
pElem = sqliteHashFirst(&p->hash);
}
return pElem ? sqliteHashData(pElem) : 0;
}
/*
** Convert the given stack entity into a string if it isn't one
** already.
*/
#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);}
static int hardStringify(Mem *pStack){
int fg = pStack->flags;
if( fg & MEM_Real ){
sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
}else if( fg & MEM_Int ){
sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i);
}else{
pStack->zShort[0] = 0;
}
pStack->z = pStack->zShort;
pStack->n = strlen(pStack->zShort)+1;
pStack->flags = MEM_Str | MEM_Short;
return 0;
}
/*
** Convert the given stack entity into a string that has been obtained
** from sqliteMalloc(). This is different from Stringify() above in that
** Stringify() will use the NBFS bytes of static string space if the string
** will fit but this routine always mallocs for space.
** Return non-zero if we run out of memory.
*/
#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0)
static int hardDynamicify(Mem *pStack){
int fg = pStack->flags;
char *z;
if( (fg & MEM_Str)==0 ){
hardStringify(pStack);
}
assert( (fg & MEM_Dyn)==0 );
z = sqliteMallocRaw( pStack->n );
if( z==0 ) return 1;
memcpy(z, pStack->z, pStack->n);
pStack->z = z;
pStack->flags |= MEM_Dyn;
return 0;
}
/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string. Because the stack entry
** does not control the string, it might be deleted without the stack
** entry knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the stack entry itself controls. In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P) \
if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
static int hardDeephem(Mem *pStack){
char *z;
assert( (pStack->flags & MEM_Ephem)!=0 );
z = sqliteMallocRaw( pStack->n );
if( z==0 ) return 1;
memcpy(z, pStack->z, pStack->n);
pStack->z = z;
pStack->flags &= ~MEM_Ephem;
pStack->flags |= MEM_Dyn;
return 0;
}
/*
** Release the memory associated with the given stack level. This
** leaves the Mem.flags field in an inconsistent state.
*/
#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }
/*
** Pop the stack N times.
*/
static void popStack(Mem **ppTos, int N){
Mem *pTos = *ppTos;
while( N>0 ){
N--;
Release(pTos);
pTos--;
}
*ppTos = pTos;
}
/*
** Return TRUE if zNum is a 32-bit signed integer and write
** the value of the integer into *pNum. If zNum is not an integer
** or is an integer that is too large to be expressed with just 32
** bits, then return false.
**
** Under Linux (RedHat 7.2) this routine is much faster than atoi()
** for converting strings into integers.
*/
static int toInt(const char *zNum, int *pNum){
int v = 0;
int neg;
int i, c;
if( *zNum=='-' ){
neg = 1;
zNum++;
}else if( *zNum=='+' ){
neg = 0;
zNum++;
}else{
neg = 0;
}
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
v = v*10 + c - '0';
}
*pNum = neg ? -v : v;
return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0));
}
/*
** Convert the given stack entity into a integer if it isn't one
** already.
**
** Any prior string or real representation is invalidated.
** NULLs are converted into 0.
*/
#define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); }
static void hardIntegerify(Mem *pStack){
if( pStack->flags & MEM_Real ){
pStack->i = (int)pStack->r;
Release(pStack);
}else if( pStack->flags & MEM_Str ){
toInt(pStack->z, &pStack->i);
Release(pStack);
}else{
pStack->i = 0;
}
pStack->flags = MEM_Int;
}
/*
** Get a valid Real representation for the given stack element.
**
** Any prior string or integer representation is retained.
** NULLs are converted into 0.0.
*/
#define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); }
static void hardRealify(Mem *pStack){
if( pStack->flags & MEM_Str ){
pStack->r = sqliteAtoF(pStack->z, 0);
}else if( pStack->flags & MEM_Int ){
pStack->r = pStack->i;
}else{
pStack->r = 0.0;
}
pStack->flags |= MEM_Real;
}
/*
** The parameters are pointers to the head of two sorted lists
** of Sorter structures. Merge these two lists together and return
** a single sorted list. This routine forms the core of the merge-sort
** algorithm.
**
** In the case of a tie, left sorts in front of right.
*/
static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
Sorter sHead;
Sorter *pTail;
pTail = &sHead;
pTail->pNext = 0;
while( pLeft && pRight ){
int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
if( c<=0 ){
pTail->pNext = pLeft;
pLeft = pLeft->pNext;
}else{
pTail->pNext = pRight;
pRight = pRight->pNext;
}
pTail = pTail->pNext;
}
if( pLeft ){
pTail->pNext = pLeft;
}else if( pRight ){
pTail->pNext = pRight;
}
return sHead.pNext;
}
/*
** The following routine works like a replacement for the standard
** library routine fgets(). The difference is in how end-of-line (EOL)
** is handled. Standard fgets() uses LF for EOL under unix, CRLF
** under windows, and CR under mac. This routine accepts any of these
** character sequences as an EOL mark. The EOL mark is replaced by
** a single LF character in zBuf.
*/
static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
int i, c;
for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){
zBuf[i] = c;
if( c=='\r' || c=='\n' ){
if( c=='\r' ){
zBuf[i] = '\n';
c = getc(in);
if( c!=EOF && c!='\n' ) ungetc(c, in);
}
i++;
break;
}
}
zBuf[i] = 0;
return i>0 ? zBuf : 0;
}
/*
** Make sure there is space in the Vdbe structure to hold at least
** mxCursor cursors. If there is not currently enough space, then
** allocate more.
**
** If a memory allocation error occurs, return 1. Return 0 if
** everything works.
*/
static int expandCursorArraySize(Vdbe *p, int mxCursor){
if( mxCursor>=p->nCursor ){
Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
if( aCsr==0 ) return 1;
p->aCsr = aCsr;
memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor));
p->nCursor = mxCursor+1;
}
return 0;
}
#ifdef VDBE_PROFILE
/*
** The following routine only works on pentium-class processors.
** It uses the RDTSC opcode to read cycle count value out of the
** processor and returns that value. This can be used for high-res
** profiling.
*/
__inline__ unsigned long long int hwtime(void){
unsigned long long int x;
__asm__("rdtsc\n\t"
"mov %%edx, %%ecx\n\t"
:"=A" (x));
return x;
}
#endif
/*
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
** sqlite_interrupt() routine has been called. If it has been, then
** processing of the VDBE program is interrupted.
**
** This macro added to every instruction that does a jump in order to
** implement a loop. This test used to be on every single instruction,
** but that meant we more testing that we needed. By only testing the
** flag on jump instructions, we get a (small) speed improvement.
*/
#define CHECK_FOR_INTERRUPT \
if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
/*
** Execute as much of a VDBE program as we can then return.
**
** sqliteVdbeMakeReady() must be called before this routine in order to
** close the program with a final OP_Halt and to set up the callbacks
** and the error message pointer.
**
** Whenever a row or result data is available, this routine will either
** invoke the result callback (if there is one) or return with
** SQLITE_ROW.
**
** If an attempt is made to open a locked database, then this routine
** will either invoke the busy callback (if there is one) or it will
** return SQLITE_BUSY.
**
** If an error occurs, an error message is written to memory obtained
** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
**
** If the callback ever returns non-zero, then the program exits
** immediately. There will be no error message but the p->rc field is
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
**
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
** routine to return SQLITE_ERROR.
**
** Other fatal errors return SQLITE_ERROR.
**
** After this routine has finished, sqliteVdbeFinalize() should be
** used to clean up the mess that was left behind.
*/
int sqliteVdbeExec(
Vdbe *p /* The VDBE */
){
int pc; /* The program counter */
Op *pOp; /* Current operation */
int rc = SQLITE_OK; /* Value to return */
sqlite *db = p->db; /* The database */
Mem *pTos; /* Top entry in the operand stack */
char zBuf[100]; /* Space to sprintf() an integer */
#ifdef VDBE_PROFILE
unsigned long long start; /* CPU clock count at start of opcode */
int origPc; /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
int nProgressOps = 0; /* Opcodes executed since progress callback. */
#endif
if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
assert( db->magic==SQLITE_MAGIC_BUSY );
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
p->rc = SQLITE_OK;
assert( p->explain==0 );
if( sqlite_malloc_failed ) goto no_mem;
pTos = p->pTos;
if( p->popStack ){
popStack(&pTos, p->popStack);
p->popStack = 0;
}
CHECK_FOR_INTERRUPT;
for(pc=p->pc; rc==SQLITE_OK; pc++){
assert( pc>=0 && pc<p->nOp );
assert( pTos<=&p->aStack[pc] );
#ifdef VDBE_PROFILE
origPc = pc;
start = hwtime();
#endif
pOp = &p->aOp[pc];
/* Only allow tracing if NDEBUG is not defined.
*/
#ifndef NDEBUG
if( p->trace ){
sqliteVdbePrintOp(p->trace, pc, pOp);
}
#endif
/* Check to see if we need to simulate an interrupt. This only happens
** if we have a special test build.
*/
#ifdef SQLITE_TEST
if( sqlite_interrupt_count>0 ){
sqlite_interrupt_count--;
if( sqlite_interrupt_count==0 ){
sqlite_interrupt(db);
}
}
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/* Call the progress callback if it is configured and the required number
** of VDBE ops have been executed (either since this invocation of
** sqliteVdbeExec() or since last time the progress callback was called).
** If the progress callback returns non-zero, exit the virtual machine with
** a return code SQLITE_ABORT.
*/
if( db->xProgress ){
if( db->nProgressOps==nProgressOps ){
if( db->xProgress(db->pProgressArg)!=0 ){
rc = SQLITE_ABORT;
continue; /* skip to the next iteration of the for loop */
}
nProgressOps = 0;
}
nProgressOps++;
}
#endif
switch( pOp->opcode ){
/*****************************************************************************
** What follows is a massive switch statement where each case implements a
** separate instruction in the virtual machine. If we follow the usual
** indentation conventions, each case should be indented by 6 spaces. But
** that is a lot of wasted space on the left margin. So the code within
** the switch statement will break with convention and be flush-left. Another
** big comment (similar to this one) will mark the point in the code where
** we transition back to normal indentation.
**
** The formatting of each case is important. The makefile for SQLite
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
** file looking for lines that begin with "case OP_". The opcodes.h files
** will be filled with #defines that give unique integer values to each
** opcode and the opcodes.c file is filled with an array of strings where
** each string is the symbolic name for the corresponding opcode.
**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:". That line and all subsequent
** comment lines are used in the generation of the opcode.html documentation
** file.
**
** SUMMARY:
**
** Formatting is important to scripts that scan this file.
** Do not deviate from the formatting style currently in use.
**
*****************************************************************************/
/* Opcode: Goto * P2 *
**
** An unconditional jump to address P2.
** The next instruction executed will be
** the one at index P2 from the beginning of
** the program.
*/
case OP_Goto: {
CHECK_FOR_INTERRUPT;
pc = pOp->p2 - 1;
break;
}
/* Opcode: Gosub * P2 *
**
** Push the current address plus 1 onto the return address stack
** and then jump to address P2.
**
** The return address stack is of limited depth. If too many
** OP_Gosub operations occur without intervening OP_Returns, then
** the return address stack will fill up and processing will abort
** with a fatal error.
*/
case OP_Gosub: {
if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){
sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0);
p->rc = SQLITE_INTERNAL;
return SQLITE_ERROR;
}
p->returnStack[p->returnDepth++] = pc+1;
pc = pOp->p2 - 1;
break;
}
/* Opcode: Return * * *
**
** Jump immediately to the next instruction after the last unreturned
** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
** processing aborts with a fatal error.
*/
case OP_Return: {
if( p->returnDepth<=0 ){
sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0);
p->rc = SQLITE_INTERNAL;
return SQLITE_ERROR;
}
p->returnDepth--;
pc = p->returnStack[p->returnDepth] - 1;
break;
}
/* Opcode: Halt P1 P2 *
**
** Exit immediately. All open cursors, Lists, Sorts, etc are closed
** automatically.
**
** P1 is the result code returned by sqlite_exec(). For a normal
** halt, this should be SQLITE_OK (0). For errors, it can be some
** other value. If P1!=0 then P2 will determine whether or not to
** rollback the current transaction. Do not rollback if P2==OE_Fail.
** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back
** out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program. So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {
p->magic = VDBE_MAGIC_HALT;
p->pTos = pTos;
if( pOp->p1!=SQLITE_OK ){
p->rc = pOp->p1;
p->errorAction = pOp->p2;
if( pOp->p3 ){
sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
}
return SQLITE_ERROR;
}else{
p->rc = SQLITE_OK;
return SQLITE_DONE;
}
}
/* Opcode: Integer P1 * P3
**
** The integer value P1 is pushed onto the stack. If P3 is not zero
** then it is assumed to be a string representation of the same integer.
*/
case OP_Integer: {
pTos++;
pTos->i = pOp->p1;
pTos->flags = MEM_Int;
if( pOp->p3 ){
pTos->z = pOp->p3;
pTos->flags |= MEM_Str | MEM_Static;
pTos->n = strlen(pOp->p3)+1;
}
break;
}
/* Opcode: String * * P3
**
** The string value P3 is pushed onto the stack. If P3==0 then a
** NULL is pushed onto the stack.
*/
case OP_String: {
char *z = pOp->p3;
pTos++;
if( z==0 ){
pTos->flags = MEM_Null;
}else{
pTos->z = z;
pTos->n = strlen(z) + 1;
pTos->flags = MEM_Str | MEM_Static;
}
break;
}
/* Opcode: Variable P1 * *
**
** Push the value of variable P1 onto the stack. A variable is
** an unknown in the original SQL string as handed to sqlite_compile().
** Any occurance of the '?' character in the original SQL is considered
** a variable. Variables in the SQL string are number from left to
** right beginning with 1. The values of variables are set using the
** sqlite_bind() API.
*/
case OP_Variable: {
int j = pOp->p1 - 1;
pTos++;
if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){
pTos->z = p->azVar[j];
pTos->n = p->anVar[j];
pTos->flags = MEM_Str | MEM_Static;
}else{
pTos->flags = MEM_Null;
}
break;
}
/* Opcode: Pop P1 * *
**
** P1 elements are popped off of the top of stack and discarded.
*/
case OP_Pop: {
assert( pOp->p1>=0 );
popStack(&pTos, pOp->p1);
assert( pTos>=&p->aStack[-1] );
break;
}
/* Opcode: Dup P1 P2 *
**
** A copy of the P1-th element of the stack
** is made and pushed onto the top of the stack.
** The top of the stack is element 0. So the
** instruction "Dup 0 0 0" will make a copy of the
** top of the stack.
**
** If the content of the P1-th element is a dynamically
** allocated string, then a new copy of that string
** is made if P2==0. If P2!=0, then just a pointer
** to the string is copied.
**
** Also see the Pull instruction.
*/
case OP_Dup: {
Mem *pFrom = &pTos[-pOp->p1];
assert( pFrom<=pTos && pFrom>=p->aStack );
pTos++;
memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
if( pTos->flags & MEM_Str ){
if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
pTos->flags &= ~MEM_Dyn;
pTos->flags |= MEM_Ephem;
}else if( pTos->flags & MEM_Short ){
memcpy(pTos->zShort, pFrom->zShort, pTos->n);
pTos->z = pTos->zShort;
}else if( (pTos->flags & MEM_Static)==0 ){
pTos->z = sqliteMallocRaw(pFrom->n);
if( sqlite_malloc_failed ) goto no_mem;
memcpy(pTos->z, pFrom->z, pFrom->n);
pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
pTos->flags |= MEM_Dyn;
}
}
break;
}
/* Opcode: Pull P1 * *
**
** The P1-th element is removed from its current location on
** the stack and pushed back on top of the stack. The
** top of the stack is element 0, so "Pull 0 0 0" is
** a no-op. "Pull 1 0 0" swaps the top two elements of
** the stack.
**
** See also the Dup instruction.
*/
case OP_Pull: {
Mem *pFrom = &pTos[-pOp->p1];
int i;
Mem ts;
ts = *pFrom;
Deephemeralize(pTos);
for(i=0; i<pOp->p1; i++, pFrom++){
Deephemeralize(&pFrom[1]);
*pFrom = pFrom[1];
assert( (pFrom->flags & MEM_Ephem)==0 );
if( pFrom->flags & MEM_Short ){
assert( pFrom->flags & MEM_Str );
assert( pFrom->z==pFrom[1].zShort );
pFrom->z = pFrom->zShort;
}
}
*pTos = ts;
if( pTos->flags & MEM_Short ){
assert( pTos->flags & MEM_Str );
assert( pTos->z==pTos[-pOp->p1].zShort );
pTos->z = pTos->zShort;
}
break;
}
/* Opcode: Push P1 * *
**
** Overwrite the value of the P1-th element down on the
** stack (P1==0 is the top of the stack) with the value
** of the top of the stack. Then pop the top of the stack.
*/
case OP_Push: {
Mem *pTo = &pTos[-pOp->p1];
assert( pTo>=p->aStack );
Deephemeralize(pTos);
Release(pTo);
*pTo = *pTos;
if( pTo->flags & MEM_Short ){
assert( pTo->z==pTos->zShort );
pTo->z = pTo->zShort;
}
pTos--;
break;
}
/* Opcode: ColumnName P1 P2 P3
**
** P3 becomes the P1-th column name (first is 0). An array of pointers
** to all column names is passed as the 4th parameter to the callback.
** If P2==1 then this is the last column in the result set and thus the
** number of columns in the result set will be P1. There must be at least
** one OP_ColumnName with a P2==1 before invoking OP_Callback and the
** number of columns specified in OP_Callback must one more than the P1
** value of the OP_ColumnName that has P2==1.
*/
case OP_ColumnName: {
assert( pOp->p1>=0 && pOp->p1<p->nOp );
p->azColName[pOp->p1] = pOp->p3;
p->nCallback = 0;
if( pOp->p2 ) p->nResColumn = pOp->p1+1;
break;
}
/* Opcode: Callback P1 * *
**
** Pop P1 values off the stack and form them into an array. Then
** invoke the callback function using the newly formed array as the
** 3rd parameter.
*/
case OP_Callback: {
int i;
char **azArgv = p->zArgv;
Mem *pCol;
pCol = &pTos[1-pOp->p1];
assert( pCol>=p->aStack );
for(i=0; i<pOp->p1; i++, pCol++){
if( pCol->flags & MEM_Null ){
azArgv[i] = 0;
}else{
Stringify(pCol);
azArgv[i] = pCol->z;
}
}
azArgv[i] = 0;
p->nCallback++;
p->azResColumn = azArgv;
assert( p->nResColumn==pOp->p1 );
p->popStack = pOp->p1;
p->pc = pc + 1;
p->pTos = pTos;
return SQLITE_ROW;
}
/* Opcode: Concat P1 P2 P3
**
** Look at the first P1 elements of the stack. Append them all
** together with the lowest element first. Use P3 as a separator.
** Put the result on the top of the stack. The original P1 elements
** are popped from the stack if P2==0 and retained if P2==1. If
** any element of the stack is NULL, then the result is NULL.
**
** If P3 is NULL, then use no separator. When P1==1, this routine
** makes a copy of the top stack element into memory obtained
** from sqliteMalloc().
*/
case OP_Concat: {
char *zNew;
int nByte;
int nField;
int i, j;
char *zSep;
int nSep;
Mem *pTerm;
nField = pOp->p1;
zSep = pOp->p3;
if( zSep==0 ) zSep = "";
nSep = strlen(zSep);
assert( &pTos[1-nField] >= p->aStack );
nByte = 1 - nSep;
pTerm = &pTos[1-nField];
for(i=0; i<nField; i++, pTerm++){
if( pTerm->flags & MEM_Null ){
nByte = -1;
break;
}else{
Stringify(pTerm);
nByte += pTerm->n - 1 + nSep;
}
}
if( nByte<0 ){
if( pOp->p2==0 ){
popStack(&pTos, nField);
}
pTos++;
pTos->flags = MEM_Null;
break;
}
zNew = sqliteMallocRaw( nByte );
if( zNew==0 ) goto no_mem;
j = 0;
pTerm = &pTos[1-nField];
for(i=j=0; i<nField; i++, pTerm++){
assert( pTerm->flags & MEM_Str );
memcpy(&zNew[j], pTerm->z, pTerm->n-1);
j += pTerm->n-1;
if( nSep>0 && i<nField-1 ){
memcpy(&zNew[j], zSep, nSep);
j += nSep;
}
}
zNew[j] = 0;
if( pOp->p2==0 ){
popStack(&pTos, nField);
}
pTos++;
pTos->n = nByte;
pTos->flags = MEM_Str|MEM_Dyn;
pTos->z = zNew;
break;
}
/* Opcode: Add * * *
**
** Pop the top two elements from the stack, add them together,
** and push the result back onto the stack. If either element
** is a string then it is converted to a double using the atof()
** function before the addition.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Multiply * * *
**
** Pop the top two elements from the stack, multiply them together,
** and push the result back onto the stack. If either element
** is a string then it is converted to a double using the atof()
** function before the multiplication.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Subtract * * *
**
** Pop the top two elements from the stack, subtract the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the result back onto the stack. If either element
** is a string then it is converted to a double using the atof()
** function before the subtraction.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Divide * * *
**
** Pop the top two elements from the stack, divide the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the result back onto the stack. If either element
** is a string then it is converted to a double using the atof()
** function before the division. Division by zero returns NULL.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: Remainder * * *
**
** Pop the top two elements from the stack, divide the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the remainder after division onto the stack. If either element
** is a string then it is converted to a double using the atof()
** function before the division. Division by zero returns NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add:
case OP_Subtract:
case OP_Multiply:
case OP_Divide:
case OP_Remainder: {
Mem *pNos = &pTos[-1];
assert( pNos>=p->aStack );
if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
Release(pTos);
pTos--;
Release(pTos);
pTos->flags = MEM_Null;
}else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
int a, b;
a = pTos->i;
b = pNos->i;
switch( pOp->opcode ){
case OP_Add: b += a; break;
case OP_Subtract: b -= a; break;
case OP_Multiply: b *= a; break;
case OP_Divide: {
if( a==0 ) goto divide_by_zero;
b /= a;
break;
}
default: {
if( a==0 ) goto divide_by_zero;
b %= a;
break;
}
}
Release(pTos);
pTos--;
Release(pTos);
pTos->i = b;
pTos->flags = MEM_Int;
}else{
double a, b;
Realify(pTos);
Realify(pNos);
a = pTos->r;
b = pNos->r;
switch( pOp->opcode ){
case OP_Add: b += a; break;
case OP_Subtract: b -= a; break;
case OP_Multiply: b *= a; break;
case OP_Divide: {
if( a==0.0 ) goto divide_by_zero;
b /= a;
break;
}
default: {
int ia = (int)a;
int ib = (int)b;
if( ia==0.0 ) goto divide_by_zero;
b = ib % ia;
break;
}
}
Release(pTos);
pTos--;
Release(pTos);
pTos->r = b;
pTos->flags = MEM_Real;
}
break;
divide_by_zero:
Release(pTos);
pTos--;
Release(pTos);
pTos->flags = MEM_Null;
break;
}
/* Opcode: Function P1 * P3
**
** Invoke a user function (P3 is a pointer to a Function structure that
** defines the function) with P1 string arguments taken from the stack.
** Pop all arguments from the stack and push back the result.
**
** See also: AggFunc
*/
case OP_Function: {
int n, i;
Mem *pArg;
char **azArgv;
sqlite_func ctx;
n = pOp->p1;
pArg = &pTos[1-n];
azArgv = p->zArgv;
for(i=0; i<n; i++, pArg++){
if( pArg->flags & MEM_Null ){
azArgv[i] = 0;
}else{
Stringify(pArg);
azArgv[i] = pArg->z;
}
}
ctx.pFunc = (FuncDef*)pOp->p3;
ctx.s.flags = MEM_Null;
ctx.s.z = 0;
ctx.isError = 0;
ctx.isStep = 0;
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
(*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv);
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
popStack(&pTos, n);
pTos++;
*pTos = ctx.s;
if( pTos->flags & MEM_Short ){
pTos->z = pTos->zShort;
}
if( ctx.isError ){
sqliteSetString(&p->zErrMsg,
(pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
rc = SQLITE_ERROR;
}
break;
}
/* Opcode: BitAnd * * *
**
** Pop the top two elements from the stack. Convert both elements
** to integers. Push back onto the stack the bit-wise AND of the
** two elements.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: BitOr * * *
**
** Pop the top two elements from the stack. Convert both elements
** to integers. Push back onto the stack the bit-wise OR of the
** two elements.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: ShiftLeft * * *
**
** Pop the top two elements from the stack. Convert both elements
** to integers. Push back onto the stack the top element shifted
** left by N bits where N is the second element on the stack.
** If either operand is NULL, the result is NULL.
*/
/* Opcode: ShiftRight * * *
**
** Pop the top two elements from the stack. Convert both elements
** to integers. Push back onto the stack the top element shifted
** right by N bits where N is the second element on the stack.
** If either operand is NULL, the result is NULL.
*/
case OP_BitAnd:
case OP_BitOr:
case OP_ShiftLeft:
case OP_ShiftRight: {
Mem *pNos = &pTos[-1];
int a, b;
assert( pNos>=p->aStack );
if( (pTos->flags | pNos->flags) & MEM_Null ){
popStack(&pTos, 2);
pTos++;
pTos->flags = MEM_Null;
break;
}
Integerify(pTos);
Integerify(pNos);
a = pTos->i;
b = pNos->i;
switch( pOp->opcode ){
case OP_BitAnd: a &= b; break;
case OP_BitOr: a |= b; break;
case OP_ShiftLeft: a <<= b; break;
case OP_ShiftRight: a >>= b; break;
default: /* CANT HAPPEN */ break;
}
assert( (pTos->flags & MEM_Dyn)==0 );
assert( (pNos->flags & MEM_Dyn)==0 );
pTos--;
Release(pTos);
pTos->i = a;
pTos->flags = MEM_Int;
break;
}
/* Opcode: AddImm P1 * *
**
** Add the value P1 to whatever is on top of the stack. The result
** is always an integer.
**
** To force the top of the stack to be an integer, just add 0.
*/
case OP_AddImm: {
assert( pTos>=p->aStack );
Integerify(pTos);
pTos->i += pOp->p1;
break;
}
/* Opcode: ForceInt P1 P2 *
**
** Convert the top of the stack into an integer. If the current top of
** the stack is not numeric (meaning that is is a NULL or a string that
** does not look like an integer or floating point number) then pop the
** stack and jump to P2. If the top of the stack is numeric then
** convert it into the least integer that is greater than or equal to its
** current value if P1==0, or to the least integer that is strictly
** greater than its current value if P1==1.
*/
case OP_ForceInt: {
int v;
assert( pTos>=p->aStack );
if( (pTos->flags & (MEM_Int|MEM_Real))==0
&& ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){
Release(pTos);
pTos--;
pc = pOp->p2 - 1;
break;
}
if( pTos->flags & MEM_Int ){
v = pTos->i + (pOp->p1!=0);
}else{
Realify(pTos);
v = (int)pTos->r;
if( pTos->r>(double)v ) v++;
if( pOp->p1 && pTos->r==(double)v ) v++;
}
Release(pTos);
pTos->i = v;
pTos->flags = MEM_Int;
break;
}
/* Opcode: MustBeInt P1 P2 *
**
** Force the top of the stack to be an integer. If the top of the
** stack is not an integer and cannot be converted into an integer
** with out data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
**
** If the top of the stack is not an integer and P2 is not zero and
** P1 is 1, then the stack is popped. In all other cases, the depth
** of the stack is unchanged.
*/
case OP_MustBeInt: {
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Int ){
/* Do nothing */
}else if( pTos->flags & MEM_Real ){
int i = (int)pTos->r;
double r = (double)i;
if( r!=pTos->r ){
goto mismatch;
}
pTos->i = i;
}else if( pTos->flags & MEM_Str ){
int v;
if( !toInt(pTos->z, &v) ){
double r;
if( !sqliteIsNumber(pTos->z) ){
goto mismatch;
}
Realify(pTos);
v = (int)pTos->r;
r = (double)v;
if( r!=pTos->r ){
goto mismatch;
}
}
pTos->i = v;
}else{
goto mismatch;
}
Release(pTos);
pTos->flags = MEM_Int;
break;
mismatch:
if( pOp->p2==0 ){
rc = SQLITE_MISMATCH;
goto abort_due_to_error;
}else{
if( pOp->p1 ) popStack(&pTos, 1);
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: Eq P1 P2 *
**
** Pop the top two elements from the stack. If they are equal, then
** jump to instruction P2. Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared for equality that way. Otherwise the strcmp() library
** routine is used for the comparison. For a pure text comparison
** use OP_StrEq.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: Ne P1 P2 *
**
** Pop the top two elements from the stack. If they are not equal, then
** jump to instruction P2. Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format. Otherwise the strcmp() library
** routine is used for the comparison. For a pure text comparison
** use OP_StrNe.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: Lt P1 P2 *
**
** Pop the top two elements from the stack. If second element (the
** next on stack) is less than the first (the top of stack), then
** jump to instruction P2. Otherwise, continue to the next instruction.
** In other words, jump if NOS<TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format. Numeric values are always less than
** non-numeric values. If both operands are non-numeric, the strcmp() library
** routine is used for the comparison. For a pure text comparison
** use OP_StrLt.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: Le P1 P2 *
**
** Pop the top two elements from the stack. If second element (the
** next on stack) is less than or equal to the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS<=TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format. Numeric values are always less than
** non-numeric values. If both operands are non-numeric, the strcmp() library
** routine is used for the comparison. For a pure text comparison
** use OP_StrLe.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: Gt P1 P2 *
**
** Pop the top two elements from the stack. If second element (the
** next on stack) is greater than the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS>TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format. Numeric values are always less than
** non-numeric values. If both operands are non-numeric, the strcmp() library
** routine is used for the comparison. For a pure text comparison
** use OP_StrGt.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: Ge P1 P2 *
**
** Pop the top two elements from the stack. If second element (the next
** on stack) is greater than or equal to the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS>=TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** If both values are numeric, they are converted to doubles using atof()
** and compared in that format. Numeric values are always less than
** non-numeric values. If both operands are non-numeric, the strcmp() library
** routine is used for the comparison. For a pure text comparison
** use OP_StrGe.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
case OP_Eq:
case OP_Ne:
case OP_Lt:
case OP_Le:
case OP_Gt:
case OP_Ge: {
Mem *pNos = &pTos[-1];
int c, v;
int ft, fn;
assert( pNos>=p->aStack );
ft = pTos->flags;
fn = pNos->flags;
if( (ft | fn) & MEM_Null ){
popStack(&pTos, 2);
if( pOp->p2 ){
if( pOp->p1 ) pc = pOp->p2-1;
}else{
pTos++;
pTos->flags = MEM_Null;
}
break;
}else if( (ft & fn & MEM_Int)==MEM_Int ){
c = pNos->i - pTos->i;
}else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){
c = v - pTos->i;
}else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){
c = pNos->i - v;
}else{
Stringify(pTos);
Stringify(pNos);
c = sqliteCompare(pNos->z, pTos->z);
}
switch( pOp->opcode ){
case OP_Eq: c = c==0; break;
case OP_Ne: c = c!=0; break;
case OP_Lt: c = c<0; break;
case OP_Le: c = c<=0; break;
case OP_Gt: c = c>0; break;
default: c = c>=0; break;
}
popStack(&pTos, 2);
if( pOp->p2 ){
if( c ) pc = pOp->p2-1;
}else{
pTos++;
pTos->i = c;
pTos->flags = MEM_Int;
}
break;
}
/* INSERT NO CODE HERE!
**
** The opcode numbers are extracted from this source file by doing
**
** grep '^case OP_' vdbe.c | ... >opcodes.h
**
** The opcodes are numbered in the order that they appear in this file.
** But in order for the expression generating code to work right, the
** string comparison operators that follow must be numbered exactly 6
** greater than the numeric comparison opcodes above. So no other
** cases can appear between the two.
*/
/* Opcode: StrEq P1 P2 *
**
** Pop the top two elements from the stack. If they are equal, then
** jump to instruction P2. Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison. For a
** numeric comparison, use OP_Eq.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrNe P1 P2 *
**
** Pop the top two elements from the stack. If they are not equal, then
** jump to instruction P2. Otherwise, continue to the next instruction.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison. For a
** numeric comparison, use OP_Ne.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrLt P1 P2 *
**
** Pop the top two elements from the stack. If second element (the
** next on stack) is less than the first (the top of stack), then
** jump to instruction P2. Otherwise, continue to the next instruction.
** In other words, jump if NOS<TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison. For a
** numeric comparison, use OP_Lt.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrLe P1 P2 *
**
** Pop the top two elements from the stack. If second element (the
** next on stack) is less than or equal to the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS<=TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison. For a
** numeric comparison, use OP_Le.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrGt P1 P2 *
**
** Pop the top two elements from the stack. If second element (the
** next on stack) is greater than the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS>TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison. For a
** numeric comparison, use OP_Gt.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
/* Opcode: StrGe P1 P2 *
**
** Pop the top two elements from the stack. If second element (the next
** on stack) is greater than or equal to the first (the top of stack),
** then jump to instruction P2. In other words, jump if NOS>=TOS.
**
** If either operand is NULL (and thus if the result is unknown) then
** take the jump if P1 is true.
**
** The strcmp() library routine is used for the comparison. For a
** numeric comparison, use OP_Ge.
**
** If P2 is zero, do not jump. Instead, push an integer 1 onto the
** stack if the jump would have been taken, or a 0 if not. Push a
** NULL if either operand was NULL.
*/
case OP_StrEq:
case OP_StrNe:
case OP_StrLt:
case OP_StrLe:
case OP_StrGt:
case OP_StrGe: {
Mem *pNos = &pTos[-1];
int c;
assert( pNos>=p->aStack );
if( (pNos->flags | pTos->flags) & MEM_Null ){
popStack(&pTos, 2);
if( pOp->p2 ){
if( pOp->p1 ) pc = pOp->p2-1;
}else{
pTos++;
pTos->flags = MEM_Null;
}
break;
}else{
Stringify(pTos);
Stringify(pNos);
c = strcmp(pNos->z, pTos->z);
}
/* The asserts on each case of the following switch are there to verify
** that string comparison opcodes are always exactly 6 greater than the
** corresponding numeric comparison opcodes. The code generator depends
** on this fact.
*/
switch( pOp->opcode ){
case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break;
case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break;
case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break;
case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break;
case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break;
default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break;
}
popStack(&pTos, 2);
if( pOp->p2 ){
if( c ) pc = pOp->p2-1;
}else{
pTos++;
pTos->flags = MEM_Int;
pTos->i = c;
}
break;
}
/* Opcode: And * * *
**
** Pop two values off the stack. Take the logical AND of the
** two values and push the resulting boolean value back onto the
** stack.
*/
/* Opcode: Or * * *
**
** Pop two values off the stack. Take the logical OR of the
** two values and push the resulting boolean value back onto the
** stack.
*/
case OP_And:
case OP_Or: {
Mem *pNos = &pTos[-1];
int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
assert( pNos>=p->aStack );
if( pTos->flags & MEM_Null ){
v1 = 2;
}else{
Integerify(pTos);
v1 = pTos->i==0;
}
if( pNos->flags & MEM_Null ){
v2 = 2;
}else{
Integerify(pNos);
v2 = pNos->i==0;
}
if( pOp->opcode==OP_And ){
static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
v1 = and_logic[v1*3+v2];
}else{
static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
v1 = or_logic[v1*3+v2];
}
popStack(&pTos, 2);
pTos++;
if( v1==2 ){
pTos->flags = MEM_Null;
}else{
pTos->i = v1==0;
pTos->flags = MEM_Int;
}
break;
}
/* Opcode: Negative * * *
**
** Treat the top of the stack as a numeric quantity. Replace it
** with its additive inverse. If the top of the stack is NULL
** its value is unchanged.
*/
/* Opcode: AbsValue * * *
**
** Treat the top of the stack as a numeric quantity. Replace it
** with its absolute value. If the top of the stack is NULL
** its value is unchanged.
*/
case OP_Negative:
case OP_AbsValue: {
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Real ){
Release(pTos);
if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
pTos->r = -pTos->r;
}
pTos->flags = MEM_Real;
}else if( pTos->flags & MEM_Int ){
Release(pTos);
if( pOp->opcode==OP_Negative || pTos->i<0 ){
pTos->i = -pTos->i;
}
pTos->flags = MEM_Int;
}else if( pTos->flags & MEM_Null ){
/* Do nothing */
}else{
Realify(pTos);
Release(pTos);
if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
pTos->r = -pTos->r;
}
pTos->flags = MEM_Real;
}
break;
}
/* Opcode: Not * * *
**
** Interpret the top of the stack as a boolean value. Replace it
** with its complement. If the top of the stack is NULL its value
** is unchanged.
*/
case OP_Not: {
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
Integerify(pTos);
Release(pTos);
pTos->i = !pTos->i;
pTos->flags = MEM_Int;
break;
}
/* Opcode: BitNot * * *
**
** Interpret the top of the stack as an value. Replace it
** with its ones-complement. If the top of the stack is NULL its
** value is unchanged.
*/
case OP_BitNot: {
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
Integerify(pTos);
Release(pTos);
pTos->i = ~pTos->i;
pTos->flags = MEM_Int;
break;
}
/* Opcode: Noop * * *
**
** Do nothing. This instruction is often useful as a jump
** destination.
*/
case OP_Noop: {
break;
}
/* Opcode: If P1 P2 *
**
** Pop a single boolean from the stack. If the boolean popped is
** true, then jump to p2. Otherwise continue to the next instruction.
** An integer is false if zero and true otherwise. A string is
** false if it has zero length and true otherwise.
**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
/* Opcode: IfNot P1 P2 *
**
** Pop a single boolean from the stack. If the boolean popped is
** false, then jump to p2. Otherwise continue to the next instruction.
** An integer is false if zero and true otherwise. A string is
** false if it has zero length and true otherwise.
**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
case OP_If:
case OP_IfNot: {
int c;
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Null ){
c = pOp->p1;
}else{
Integerify(pTos);
c = pTos->i;
if( pOp->opcode==OP_IfNot ) c = !c;
}
assert( (pTos->flags & MEM_Dyn)==0 );
pTos--;
if( c ) pc = pOp->p2-1;
break;
}
/* Opcode: IsNull P1 P2 *
**
** If any of the top abs(P1) values on the stack are NULL, then jump
** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack
** unchanged.
*/
case OP_IsNull: {
int i, cnt;
Mem *pTerm;
cnt = pOp->p1;
if( cnt<0 ) cnt = -cnt;
pTerm = &pTos[1-cnt];
assert( pTerm>=p->aStack );
for(i=0; i<cnt; i++, pTerm++){
if( pTerm->flags & MEM_Null ){
pc = pOp->p2-1;
break;
}
}
if( pOp->p1>0 ) popStack(&pTos, cnt);
break;
}
/* Opcode: NotNull P1 P2 *
**
** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the
** stack if P1 times if P1 is greater than zero. If P1 is less than
** zero then leave the stack unchanged.
*/
case OP_NotNull: {
int i, cnt;
cnt = pOp->p1;
if( cnt<0 ) cnt = -cnt;
assert( &pTos[1-cnt] >= p->aStack );
for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
if( i>=cnt ) pc = pOp->p2-1;
if( pOp->p1>0 ) popStack(&pTos, cnt);
break;
}
/* Opcode: MakeRecord P1 P2 *
**
** Convert the top P1 entries of the stack into a single entry
** suitable for use as a data record in a database table. The
** details of the format are irrelavant as long as the OP_Column
** opcode can decode the record later. Refer to source code
** comments for the details of the record format.
**
** If P2 is true (non-zero) and one or more of the P1 entries
** that go into building the record is NULL, then add some extra
** bytes to the record to make it distinct for other entries created
** during the same run of the VDBE. The extra bytes added are a
** counter that is reset with each run of the VDBE, so records
** created this way will not necessarily be distinct across runs.
** But they should be distinct for transient tables (created using
** OP_OpenTemp) which is what they are intended for.
**
** (Later:) The P2==1 option was intended to make NULLs distinct
** for the UNION operator. But I have since discovered that NULLs
** are indistinct for UNION. So this option is never used.
*/
case OP_MakeRecord: {
char *zNewRecord;
int nByte;
int nField;
int i, j;
int idxWidth;
u32 addr;
Mem *pRec;
int addUnique = 0; /* True to cause bytes to be added to make the
** generated record distinct */
char zTemp[NBFS]; /* Temp space for small records */
/* Assuming the record contains N fields, the record format looks
** like this:
**
** -------------------------------------------------------------------
** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
** -------------------------------------------------------------------
**
** All data fields are converted to strings before being stored and
** are stored with their null terminators. NULL entries omit the
** null terminator. Thus an empty string uses 1 byte and a NULL uses
** zero bytes. Data(0) is taken from the lowest element of the stack
** and data(N-1) is the top of the stack.
**
** Each of the idx() entries is either 1, 2, or 3 bytes depending on
** how big the total record is. Idx(0) contains the offset to the start
** of data(0). Idx(k) contains the offset to the start of data(k).
** Idx(N) contains the total number of bytes in the record.
*/
nField = pOp->p1;
pRec = &pTos[1-nField];
assert( pRec>=p->aStack );
nByte = 0;
for(i=0; i<nField; i++, pRec++){
if( pRec->flags & MEM_Null ){
addUnique = pOp->p2;
}else{
Stringify(pRec);
nByte += pRec->n;
}
}
if( addUnique ) nByte += sizeof(p->uniqueCnt);
if( nByte + nField + 1 < 256 ){
idxWidth = 1;
}else if( nByte + 2*nField + 2 < 65536 ){
idxWidth = 2;
}else{
idxWidth = 3;
}
nByte += idxWidth*(nField + 1);
if( nByte>MAX_BYTES_PER_ROW ){
rc = SQLITE_TOOBIG;
goto abort_due_to_error;
}
if( nByte<=NBFS ){
zNewRecord = zTemp;
}else{
zNewRecord = sqliteMallocRaw( nByte );
if( zNewRecord==0 ) goto no_mem;
}
j = 0;
addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
zNewRecord[j++] = addr & 0xff;
if( idxWidth>1 ){
zNewRecord[j++] = (addr>>8)&0xff;
if( idxWidth>2 ){
zNewRecord[j++] = (addr>>16)&0xff;
}
}
if( (pRec->flags & MEM_Null)==0 ){
addr += pRec->n;
}
}
zNewRecord[j++] = addr & 0xff;
if( idxWidth>1 ){
zNewRecord[j++] = (addr>>8)&0xff;
if( idxWidth>2 ){
zNewRecord[j++] = (addr>>16)&0xff;
}
}
if( addUnique ){
memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
p->uniqueCnt++;
j += sizeof(p->uniqueCnt);
}
for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
if( (pRec->flags & MEM_Null)==0 ){
memcpy(&zNewRecord[j], pRec->z, pRec->n);
j += pRec->n;
}
}
popStack(&pTos, nField);
pTos++;
pTos->n = nByte;
if( nByte<=NBFS ){
assert( zNewRecord==zTemp );
memcpy(pTos->zShort, zTemp, nByte);
pTos->z = pTos->zShort;
pTos->flags = MEM_Str | MEM_Short;
}else{
assert( zNewRecord!=zTemp );
pTos->z = zNewRecord;
pTos->flags = MEM_Str | MEM_Dyn;
}
break;
}
/* Opcode: MakeKey P1 P2 P3
**
** Convert the top P1 entries of the stack into a single entry suitable
** for use as the key in an index. The top P1 records are
** converted to strings and merged. The null-terminators
** are retained and used as separators.
** The lowest entry in the stack is the first field and the top of the
** stack becomes the last.
**
** If P2 is not zero, then the original entries remain on the stack
** and the new key is pushed on top. If P2 is zero, the original
** data is popped off the stack first then the new key is pushed
** back in its place.
**
** P3 is a string that is P1 characters long. Each character is either
** an 'n' or a 't' to indicates if the argument should be intepreted as
** numeric or text type. The first character of P3 corresponds to the
** lowest element on the stack. If P3 is NULL then all arguments are
** assumed to be of the numeric type.
**
** The type makes a difference in that text-type fields may not be
** introduced by 'b' (as described in the next paragraph). The
** first character of a text-type field must be either 'a' (if it is NULL)
** or 'c'. Numeric fields will be introduced by 'b' if their content
** looks like a well-formed number. Otherwise the 'a' or 'c' will be
** used.
**
** The key is a concatenation of fields. Each field is terminated by
** a single 0x00 character. A NULL field is introduced by an 'a' and
** is followed immediately by its 0x00 terminator. A numeric field is
** introduced by a single character 'b' and is followed by a sequence
** of characters that represent the number such that a comparison of
** the character string using memcpy() sorts the numbers in numerical
** order. The character strings for numbers are generated using the
** sqliteRealToSortable() function. A text field is introduced by a
** 'c' character and is followed by the exact text of the field. The
** use of an 'a', 'b', or 'c' character at the beginning of each field
** guarantees that NULLs sort before numbers and that numbers sort
** before text. 0x00 characters do not occur except as separators
** between fields.
**
** See also: MakeIdxKey, SortMakeKey
*/
/* Opcode: MakeIdxKey P1 P2 P3
**
** Convert the top P1 entries of the stack into a single entry suitable
** for use as the key in an index. In addition, take one additional integer
** off of the stack, treat that integer as a four-byte record number, and
** append the four bytes to the key. Thus a total of P1+1 entries are
** popped from the stack for this instruction and a single entry is pushed
** back. The first P1 entries that are popped are strings and the last
** entry (the lowest on the stack) is an integer record number.
**
** The converstion of the first P1 string entries occurs just like in
** MakeKey. Each entry is separated from the others by a null.
** The entire concatenation is null-terminated. The lowest entry
** in the stack is the first field and the top of the stack becomes the
** last.
**
** If P2 is not zero and one or more of the P1 entries that go into the
** generated key is NULL, then jump to P2 after the new key has been
** pushed on the stack. In other words, jump to P2 if the key is
** guaranteed to be unique. This jump can be used to skip a subsequent
** uniqueness test.
**
** P3 is a string that is P1 characters long. Each character is either
** an 'n' or a 't' to indicates if the argument should be numeric or
** text. The first character corresponds to the lowest element on the
** stack. If P3 is null then all arguments are assumed to be numeric.
**
** See also: MakeKey, SortMakeKey
*/
case OP_MakeIdxKey:
case OP_MakeKey: {
char *zNewKey;
int nByte;
int nField;
int addRowid;
int i, j;
int containsNull = 0;
Mem *pRec;
char zTemp[NBFS];
addRowid = pOp->opcode==OP_MakeIdxKey;
nField = pOp->p1;
pRec = &pTos[1-nField];
assert( pRec>=p->aStack );
nByte = 0;
for(j=0, i=0; i<nField; i++, j++, pRec++){
int flags = pRec->flags;
int len;
char *z;
if( flags & MEM_Null ){
nByte += 2;
containsNull = 1;
}else if( pOp->p3 && pOp->p3[j]=='t' ){
Stringify(pRec);
pRec->flags &= ~(MEM_Int|MEM_Real);
nByte += pRec->n+1;
}else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){
if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){
pRec->r = pRec->i;
}else if( (flags & (MEM_Real|MEM_Int))==0 ){
pRec->r = sqliteAtoF(pRec->z, 0);
}
Release(pRec);
z = pRec->zShort;
sqliteRealToSortable(pRec->r, z);
len = strlen(z);
pRec->z = 0;
pRec->flags = MEM_Real;
pRec->n = len+1;
nByte += pRec->n+1;
}else{
nByte += pRec->n+1;
}
}
if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
rc = SQLITE_TOOBIG;
goto abort_due_to_error;
}
if( addRowid ) nByte += sizeof(u32);
if( nByte<=NBFS ){
zNewKey = zTemp;
}else{
zNewKey = sqliteMallocRaw( nByte );
if( zNewKey==0 ) goto no_mem;
}
j = 0;
pRec = &pTos[1-nField];
for(i=0; i<nField; i++, pRec++){
if( pRec->flags & MEM_Null ){
zNewKey[j++] = 'a';
zNewKey[j++] = 0;
}else if( pRec->flags==MEM_Real ){
zNewKey[j++] = 'b';
memcpy(&zNewKey[j], pRec->zShort, pRec->n);
j += pRec->n;
}else{
assert( pRec->flags & MEM_Str );
zNewKey[j++] = 'c';
memcpy(&zNewKey[j], pRec->z, pRec->n);
j += pRec->n;
}
}
if( addRowid ){
u32 iKey;
pRec = &pTos[-nField];
assert( pRec>=p->aStack );
Integerify(pRec);
iKey = intToKey(pRec->i);
memcpy(&zNewKey[j], &iKey, sizeof(u32));
popStack(&pTos, nField+1);
if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
}else{
if( pOp->p2==0 ) popStack(&pTos, nField);
}
pTos++;
pTos->n = nByte;
if( nByte<=NBFS ){
assert( zNewKey==zTemp );
pTos->z = pTos->zShort;
memcpy(pTos->zShort, zTemp, nByte);
pTos->flags = MEM_Str | MEM_Short;
}else{
pTos->z = zNewKey;
pTos->flags = MEM_Str | MEM_Dyn;
}
break;
}
/* Opcode: IncrKey * * *
**
** The top of the stack should contain an index key generated by
** The MakeKey opcode. This routine increases the least significant
** byte of that key by one. This is used so that the MoveTo opcode
** will move to the first entry greater than the key rather than to
** the key itself.
*/
case OP_IncrKey: {
assert( pTos>=p->aStack );
/* The IncrKey opcode is only applied to keys generated by
** MakeKey or MakeIdxKey and the results of those operands
** are always dynamic strings or zShort[] strings. So we
** are always free to modify the string in place.
*/
assert( pTos->flags & (MEM_Dyn|MEM_Short) );
pTos->z[pTos->n-1]++;
break;
}
/* Opcode: Checkpoint P1 * *
**
** Begin a checkpoint. A checkpoint is the beginning of a operation that
** is part of a larger transaction but which might need to be rolled back
** itself without effecting the containing transaction. A checkpoint will
** be automatically committed or rollback when the VDBE halts.
**
** The checkpoint is begun on the database file with index P1. The main
** database file has an index of 0 and the file used for temporary tables
** has an index of 1.
*/
case OP_Checkpoint: {
int i = pOp->p1;
if( i>=0 && i<db->nDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){
rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt);
if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2;
}
break;
}
/* Opcode: Transaction P1 * *
**
** Begin a transaction. The transaction ends when a Commit or Rollback
** opcode is encountered. Depending on the ON CONFLICT setting, the
** transaction might also be rolled back if an error is encountered.
**
** P1 is the index of the database file on which the transaction is
** started. Index 0 is the main database file and index 1 is the
** file used for temporary tables.
**
** A write lock is obtained on the database file when a transaction is
** started. No other process can read or write the file while the
** transaction is underway. Starting a transaction also creates a
** rollback journal. A transaction must be started before any changes
** can be made to the database.
*/
case OP_Transaction: {
int busy = 1;
int i = pOp->p1;
assert( i>=0 && i<db->nDb );
if( db->aDb[i].inTrans ) break;
while( db->aDb[i].pBt!=0 && busy ){
rc = sqliteBtreeBeginTrans(db->aDb[i].pBt);
switch( rc ){
case SQLITE_BUSY: {
if( db->xBusyCallback==0 ){
p->pc = pc;
p->undoTransOnError = 1;
p->rc = SQLITE_BUSY;
p->pTos = pTos;
return SQLITE_BUSY;
}else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
busy = 0;
}
break;
}
case SQLITE_READONLY: {
rc = SQLITE_OK;
/* Fall thru into the next case */
}
case SQLITE_OK: {
p->inTempTrans = 0;
busy = 0;
break;
}
default: {
goto abort_due_to_error;
}
}
}
db->aDb[i].inTrans = 1;
p->undoTransOnError = 1;
break;
}
/* Opcode: Commit * * *
**
** Cause all modifications to the database that have been made since the
** last Transaction to actually take effect. No additional modifications
** are allowed until another transaction is started. The Commit instruction
** deletes the journal file and releases the write lock on the database.
** A read lock continues to be held if there are still cursors open.
*/
case OP_Commit: {
int i;
if( db->xCommitCallback!=0 ){
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
if( db->xCommitCallback(db->pCommitArg)!=0 ){
rc = SQLITE_CONSTRAINT;
}
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
}
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
if( db->aDb[i].inTrans ){
rc = sqliteBtreeCommit(db->aDb[i].pBt);
db->aDb[i].inTrans = 0;
}
}
if( rc==SQLITE_OK ){
sqliteCommitInternalChanges(db);
}else{
sqliteRollbackAll(db);
}
break;
}
/* Opcode: Rollback P1 * *
**
** Cause all modifications to the database that have been made since the
** last Transaction to be undone. The database is restored to its state
** before the Transaction opcode was executed. No additional modifications
** are allowed until another transaction is started.
**
** P1 is the index of the database file that is committed. An index of 0
** is used for the main database and an index of 1 is used for the file used
** to hold temporary tables.
**
** This instruction automatically closes all cursors and releases both
** the read and write locks on the indicated database.
*/
case OP_Rollback: {
sqliteRollbackAll(db);
break;
}
/* Opcode: ReadCookie P1 P2 *
**
** Read cookie number P2 from database P1 and push it onto the stack.
** P2==0 is the schema version. P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth. P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {
int aMeta[SQLITE_N_BTREE_META];
assert( pOp->p2<SQLITE_N_BTREE_META );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( db->aDb[pOp->p1].pBt!=0 );
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
pTos++;
pTos->i = aMeta[1+pOp->p2];
pTos->flags = MEM_Int;
break;
}
/* Opcode: SetCookie P1 P2 *
**
** Write the top of the stack into cookie number P2 of database P1.
** P2==0 is the schema version. P2==1 is the database format.
** P2==2 is the recommended pager cache size, and so forth. P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {
int aMeta[SQLITE_N_BTREE_META];
assert( pOp->p2<SQLITE_N_BTREE_META );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( db->aDb[pOp->p1].pBt!=0 );
assert( pTos>=p->aStack );
Integerify(pTos)
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
if( rc==SQLITE_OK ){
aMeta[1+pOp->p2] = pTos->i;
rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta);
}
Release(pTos);
pTos--;
break;
}
/* Opcode: VerifyCookie P1 P2 *
**
** Check the value of global database parameter number 0 (the
** schema version) and make sure it is equal to P2.
** P1 is the database number which is 0 for the main database file
** and 1 for the file holding temporary tables and some higher number
** for auxiliary databases.
**
** The cookie changes its value whenever the database schema changes.
** This operation is used to detect when that the cookie has changed
** and that the current process needs to reread the schema.
**
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie: {
int aMeta[SQLITE_N_BTREE_META];
assert( pOp->p1>=0 && pOp->p1<db->nDb );
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){
sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0);
rc = SQLITE_SCHEMA;
}
break;
}
/* Opcode: OpenRead P1 P2 P3
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file. The database file is determined by an
** integer from the top of the stack. 0 means the main database and
** 1 means the database used for temporary tables. Give the new
** cursor an identifier of P1. The P1 values need not be contiguous
** but all P1 values should be small integers. It is an error for
** P1 to be negative.
**
** If P2==0 then take the root page number from the next of the stack.
**
** There will be a read lock on the database whenever there is an
** open cursor. If the database was unlocked prior to this instruction
** then a read lock is acquired as part of this instruction. A read
** lock allows other processes to read the database but prohibits
** any other process from modifying the database. The read lock is
** released when all cursors are closed. If this instruction attempts
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
** The P3 value is the name of the table or index being opened.
** The P3 value is not actually used by this opcode and may be
** omitted. But the code generator usually inserts the index or
** table name into P3 to make the code easier to read.
**
** See also OpenWrite.
*/
/* Opcode: OpenWrite P1 P2 P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2. If P2==0 then take the root page number from the stack.
**
** The P3 value is the name of the table or index being opened.
** The P3 value is not actually used by this opcode and may be
** omitted. But the code generator usually inserts the index or
** table name into P3 to make the code easier to read.
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode. For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_OpenRead:
case OP_OpenWrite: {
int busy = 0;
int i = pOp->p1;
int p2 = pOp->p2;
int wrFlag;
Btree *pX;
int iDb;
assert( pTos>=p->aStack );
Integerify(pTos);
iDb = pTos->i;
pTos--;
assert( iDb>=0 && iDb<db->nDb );
pX = db->aDb[iDb].pBt;
assert( pX!=0 );
wrFlag = pOp->opcode==OP_OpenWrite;
if( p2<=0 ){
assert( pTos>=p->aStack );
Integerify(pTos);
p2 = pTos->i;
pTos--;
if( p2<2 ){
sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0);
rc = SQLITE_INTERNAL;
break;
}
}
assert( i>=0 );
if( expandCursorArraySize(p, i) ) goto no_mem;
sqliteVdbeCleanupCursor(&p->aCsr[i]);
memset(&p->aCsr[i], 0, sizeof(Cursor));
p->aCsr[i].nullRow = 1;
if( pX==0 ) break;
do{
rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
switch( rc ){
case SQLITE_BUSY: {
if( db->xBusyCallback==0 ){
p->pc = pc;
p->rc = SQLITE_BUSY;
p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
return SQLITE_BUSY;
}else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
busy = 0;
}
break;
}
case SQLITE_OK: {
busy = 0;
break;
}
default: {
goto abort_due_to_error;
}
}
}while( busy );
break;
}
/* Opcode: OpenTemp P1 P2 *
**
** Open a new cursor to a transient table.
** The transient cursor is always opened read/write even if
** the main database is read-only. The transient table is deleted
** automatically when the cursor is closed.
**
** The cursor points to a BTree table if P2==0 and to a BTree index
** if P2==1. A BTree table must have an integer key and can have arbitrary
** data. A BTree index has no data but can have an arbitrary key.
**
** This opcode is used for tables that exist for the duration of a single
** SQL statement only. Tables created using CREATE TEMPORARY TABLE
** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the
** context of this opcode means for the duration of a single SQL statement
** whereas "Temporary" in the context of CREATE TABLE means for the duration
** of the connection to the database. Same word; different meanings.
*/
case OP_OpenTemp: {
int i = pOp->p1;
Cursor *pCx;
assert( i>=0 );
if( expandCursorArraySize(p, i) ) goto no_mem;
pCx = &p->aCsr[i];
sqliteVdbeCleanupCursor(pCx);
memset(pCx, 0, sizeof(*pCx));
pCx->nullRow = 1;
rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
if( rc==SQLITE_OK ){
rc = sqliteBtreeBeginTrans(pCx->pBt);
}
if( rc==SQLITE_OK ){
if( pOp->p2 ){
int pgno;
rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
if( rc==SQLITE_OK ){
rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
}
}else{
rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
}
}
break;
}
/* Opcode: OpenPseudo P1 * *
**
** Open a new cursor that points to a fake table that contains a single
** row of data. Any attempt to write a second row of data causes the
** first row to be deleted. All data is deleted when the cursor is
** closed.
**
** A pseudo-table created by this opcode is useful for holding the
** NEW or OLD tables in a trigger.
*/
case OP_OpenPseudo: {
int i = pOp->p1;
Cursor *pCx;
assert( i>=0 );
if( expandCursorArraySize(p, i) ) goto no_mem;
pCx = &p->aCsr[i];
sqliteVdbeCleanupCursor(pCx);
memset(pCx, 0, sizeof(*pCx));
pCx->nullRow = 1;
pCx->pseudoTable = 1;
break;
}
/* Opcode: Close P1 * *
**
** Close a cursor previously opened as P1. If P1 is not
** currently open, this instruction is a no-op.
*/
case OP_Close: {
int i = pOp->p1;
if( i>=0 && i<p->nCursor ){
sqliteVdbeCleanupCursor(&p->aCsr[i]);
}
break;
}
/* Opcode: MoveTo P1 P2 *
**
** Pop the top of the stack and use its value as a key. Reposition
** cursor P1 so that it points to an entry with a matching key. If
** the table contains no record with a matching key, then the cursor
** is left pointing at the first record that is greater than the key.
** If there are no records greater than the key and P2 is not zero,
** then an immediate jump to P2 is made.
**
** See also: Found, NotFound, Distinct, MoveLt
*/
/* Opcode: MoveLt P1 P2 *
**
** Pop the top of the stack and use its value as a key. Reposition
** cursor P1 so that it points to the entry with the largest key that is
** less than the key popped from the stack.
** If there are no records less than than the key and P2
** is not zero then an immediate jump to P2 is made.
**
** See also: MoveTo
*/
case OP_MoveLt:
case OP_MoveTo: {
int i = pOp->p1;
Cursor *pC;
assert( pTos>=p->aStack );
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
if( pC->pCursor!=0 ){
int res, oc;
pC->nullRow = 0;
if( pTos->flags & MEM_Int ){
int iKey = intToKey(pTos->i);
if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){
pC->movetoTarget = iKey;
pC->deferredMoveto = 1;
Release(pTos);
pTos--;
break;
}
sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
pC->lastRecno = pTos->i;
pC->recnoIsValid = res==0;
}else{
Stringify(pTos);
sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
pC->recnoIsValid = 0;
}
pC->deferredMoveto = 0;
sqlite_search_count++;
oc = pOp->opcode;
if( oc==OP_MoveTo && res<0 ){
sqliteBtreeNext(pC->pCursor, &res);
pC->recnoIsValid = 0;
if( res && pOp->p2>0 ){
pc = pOp->p2 - 1;
}
}else if( oc==OP_MoveLt ){
if( res>=0 ){
sqliteBtreePrevious(pC->pCursor, &res);
pC->recnoIsValid = 0;
}else{
/* res might be negative because the table is empty. Check to
** see if this is the case.
*/
int keysize;
res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
}
if( res && pOp->p2>0 ){
pc = pOp->p2 - 1;
}
}
}
Release(pTos);
pTos--;
break;
}
/* Opcode: Distinct P1 P2 *
**
** Use the top of the stack as a string key. If a record with that key does
** not exist in the table of cursor P1, then jump to P2. If the record
** does already exist, then fall thru. The cursor is left pointing
** at the record if it exists. The key is not popped from the stack.
**
** This operation is similar to NotFound except that this operation
** does not pop the key from the stack.
**
** See also: Found, NotFound, MoveTo, IsUnique, NotExists
*/
/* Opcode: Found P1 P2 *
**
** Use the top of the stack as a string key. If a record with that key
** does exist in table of P1, then jump to P2. If the record
** does not exist, then fall thru. The cursor is left pointing
** to the record if it exists. The key is popped from the stack.
**
** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
*/
/* Opcode: NotFound P1 P2 *
**
** Use the top of the stack as a string key. If a record with that key
** does not exist in table of P1, then jump to P2. If the record
** does exist, then fall thru. The cursor is left pointing to the
** record if it exists. The key is popped from the stack.
**
** The difference between this operation and Distinct is that
** Distinct does not pop the key from the stack.
**
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
*/
case OP_Distinct:
case OP_NotFound:
case OP_Found: {
int i = pOp->p1;
int alreadyExists = 0;
Cursor *pC;
assert( pTos>=p->aStack );
assert( i>=0 && i<p->nCursor );
if( (pC = &p->aCsr[i])->pCursor!=0 ){
int res, rx;
Stringify(pTos);
rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
alreadyExists = rx==SQLITE_OK && res==0;
pC->deferredMoveto = 0;
}
if( pOp->opcode==OP_Found ){
if( alreadyExists ) pc = pOp->p2 - 1;
}else{
if( !alreadyExists ) pc = pOp->p2 - 1;
}
if( pOp->opcode!=OP_Distinct ){
Release(pTos);
pTos--;
}
break;
}
/* Opcode: IsUnique P1 P2 *
**
** The top of the stack is an integer record number. Call this
** record number R. The next on the stack is an index key created
** using MakeIdxKey. Call it K. This instruction pops R from the
** stack but it leaves K unchanged.
**
** P1 is an index. So all but the last four bytes of K are an
** index string. The last four bytes of K are a record number.
**
** This instruction asks if there is an entry in P1 where the
** index string matches K but the record number is different
** from R. If there is no such entry, then there is an immediate
** jump to P2. If any entry does exist where the index string
** matches K but the record number is not R, then the record
** number for that entry is pushed onto the stack and control
** falls through to the next instruction.
**
** See also: Distinct, NotFound, NotExists, Found
*/
case OP_IsUnique: {
int i = pOp->p1;
Mem *pNos = &pTos[-1];
BtCursor *pCrsr;
int R;
/* Pop the value R off the top of the stack
*/
assert( pNos>=p->aStack );
Integerify(pTos);
R = pTos->i;
pTos--;
assert( i>=0 && i<=p->nCursor );
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int res, rc;
int v; /* The record number on the P1 entry that matches K */
char *zKey; /* The value of K */
int nKey; /* Number of bytes in K */
/* Make sure K is a string and make zKey point to K
*/
Stringify(pNos);
zKey = pNos->z;
nKey = pNos->n;
assert( nKey >= 4 );
/* Search for an entry in P1 where all but the last four bytes match K.
** If there is no such entry, jump immediately to P2.
*/
assert( p->aCsr[i].deferredMoveto==0 );
rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
if( res<0 ){
rc = sqliteBtreeNext(pCrsr, &res);
if( res ){
pc = pOp->p2 - 1;
break;
}
}
rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
if( res>0 ){
pc = pOp->p2 - 1;
break;
}
/* At this point, pCrsr is pointing to an entry in P1 where all but
** the last for bytes of the key match K. Check to see if the last
** four bytes of the key are different from R. If the last four
** bytes equal R then jump immediately to P2.
*/
sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
v = keyToInt(v);
if( v==R ){
pc = pOp->p2 - 1;
break;
}
/* The last four bytes of the key are different from R. Convert the
** last four bytes of the key into an integer and push it onto the
** stack. (These bytes are the record number of an entry that
** violates a UNIQUE constraint.)
*/
pTos++;
pTos->i = v;
pTos->flags = MEM_Int;
}
break;
}
/* Opcode: NotExists P1 P2 *
**
** Use the top of the stack as a integer key. If a record with that key
** does not exist in table of P1, then jump to P2. If the record
** does exist, then fall thru. The cursor is left pointing to the
** record if it exists. The integer key is popped from the stack.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and NotFound assumes it
** is a string.
**
** See also: Distinct, Found, MoveTo, NotFound, IsUnique
*/
case OP_NotExists: {
int i = pOp->p1;
BtCursor *pCrsr;
assert( pTos>=p->aStack );
assert( i>=0 && i<p->nCursor );
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int res, rx, iKey;
assert( pTos->flags & MEM_Int );
iKey = intToKey(pTos->i);
rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
p->aCsr[i].lastRecno = pTos->i;
p->aCsr[i].recnoIsValid = res==0;
p->aCsr[i].nullRow = 0;
if( rx!=SQLITE_OK || res!=0 ){
pc = pOp->p2 - 1;
p->aCsr[i].recnoIsValid = 0;
}
}
Release(pTos);
pTos--;
break;
}
/* Opcode: NewRecno P1 * *
**
** Get a new integer record number used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to. The new record number is pushed
** onto the stack.
*/
case OP_NewRecno: {
int i = pOp->p1;
int v = 0;
Cursor *pC;
assert( i>=0 && i<p->nCursor );
if( (pC = &p->aCsr[i])->pCursor==0 ){
v = 0;
}else{
/* The next rowid or record number (different terms for the same
** thing) is obtained in a two-step algorithm.
**
** First we attempt to find the largest existing rowid and add one
** to that. But if the largest existing rowid is already the maximum
** positive integer, we have to fall through to the second
** probabilistic algorithm
**
** The second algorithm is to select a rowid at random and see if
** it already exists in the table. If it does not exist, we have
** succeeded. If the random rowid does exist, we select a new one
** and try again, up to 1000 times.
**
** For a table with less than 2 billion entries, the probability
** of not finding a unused rowid is about 1.0e-300. This is a
** non-zero probability, but it is still vanishingly small and should
** never cause a problem. You are much, much more likely to have a
** hardware failure than for this algorithm to fail.
**
** The analysis in the previous paragraph assumes that you have a good
** source of random numbers. Is a library function like lrand48()
** good enough? Maybe. Maybe not. It's hard to know whether there
** might be subtle bugs is some implementations of lrand48() that
** could cause problems. To avoid uncertainty, SQLite uses its own
** random number generator based on the RC4 algorithm.
**
** To promote locality of reference for repetitive inserts, the
** first few attempts at chosing a random rowid pick values just a little
** larger than the previous rowid. This has been shown experimentally
** to double the speed of the COPY operation.
*/
int res, rx, cnt, x;
cnt = 0;
if( !pC->useRandomRowid ){
if( pC->nextRowidValid ){
v = pC->nextRowid;
}else{
rx = sqliteBtreeLast(pC->pCursor, &res);
if( res ){
v = 1;
}else{
sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
v = keyToInt(v);
if( v==0x7fffffff ){
pC->useRandomRowid = 1;
}else{
v++;
}
}
}
if( v<0x7fffffff ){
pC->nextRowidValid = 1;
pC->nextRowid = v+1;
}else{
pC->nextRowidValid = 0;
}
}
if( pC->useRandomRowid ){
v = db->priorNewRowid;
cnt = 0;
do{
if( v==0 || cnt>2 ){
sqliteRandomness(sizeof(v), &v);
if( cnt<5 ) v &= 0xffffff;
}else{
unsigned char r;
sqliteRandomness(1, &r);
v += r + 1;
}
if( v==0 ) continue;
x = intToKey(v);
rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
cnt++;
}while( cnt<1000 && rx==SQLITE_OK && res==0 );
db->priorNewRowid = v;
if( rx==SQLITE_OK && res==0 ){
rc = SQLITE_FULL;
goto abort_due_to_error;
}
}
pC->recnoIsValid = 0;
pC->deferredMoveto = 0;
}
pTos++;
pTos->i = v;
pTos->flags = MEM_Int;
break;
}
/* Opcode: PutIntKey P1 P2 *
**
** Write an entry into the table of cursor P1. A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten. The data is the value on the top of the
** stack. The key is the next value down on the stack. The key must
** be an integer. The stack is popped twice by this instruction.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not). If the OPFLAG_CSCHANGE flag is set,
** then the current statement change count is incremented (otherwise not).
** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is
** stored for subsequent return by the sqlite_last_insert_rowid() function
** (otherwise it's unmodified).
*/
/* Opcode: PutStrKey P1 * *
**
** Write an entry into the table of cursor P1. A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten. The data is the value on the top of the
** stack. The key is the next value down on the stack. The key must
** be a string. The stack is popped twice by this instruction.
**
** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
*/
case OP_PutIntKey:
case OP_PutStrKey: {
Mem *pNos = &pTos[-1];
int i = pOp->p1;
Cursor *pC;
assert( pNos>=p->aStack );
assert( i>=0 && i<p->nCursor );
if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
char *zKey;
int nKey, iKey;
if( pOp->opcode==OP_PutStrKey ){
Stringify(pNos);
nKey = pNos->n;
zKey = pNos->z;
}else{
assert( pNos->flags & MEM_Int );
nKey = sizeof(int);
iKey = intToKey(pNos->i);
zKey = (char*)&iKey;
if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i;
if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
pC->nextRowidValid = 0;
}
}
if( pTos->flags & MEM_Null ){
pTos->z = 0;
pTos->n = 0;
}else{
assert( pTos->flags & MEM_Str );
}
if( pC->pseudoTable ){
/* PutStrKey does not work for pseudo-tables.
** The following assert makes sure we are not trying to use
** PutStrKey on a pseudo-table
*/
assert( pOp->opcode==OP_PutIntKey );
sqliteFree(pC->pData);
pC->iKey = iKey;
pC->nData = pTos->n;
if( pTos->flags & MEM_Dyn ){
pC->pData = pTos->z;
pTos->flags = MEM_Null;
}else{
pC->pData = sqliteMallocRaw( pC->nData );
if( pC->pData ){
memcpy(pC->pData, pTos->z, pC->nData);
}
}
pC->nullRow = 0;
}else{
rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
}
pC->recnoIsValid = 0;
pC->deferredMoveto = 0;
}
popStack(&pTos, 2);
break;
}
/* Opcode: Delete P1 P2 *
**
** Delete the record at which the P1 cursor is currently pointing.
**
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op. Hence it is OK to delete
** a record from within an Next loop.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not). If OPFLAG_CSCHANGE flag is set,
** then the current statement change count is incremented (otherwise not).
**
** If P1 is a pseudo-table, then this instruction is a no-op.
*/
case OP_Delete: {
int i = pOp->p1;
Cursor *pC;
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
if( pC->pCursor!=0 ){
sqliteVdbeCursorMoveto(pC);
rc = sqliteBtreeDelete(pC->pCursor);
pC->nextRowidValid = 0;
}
if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
break;
}
/* Opcode: SetCounts * * *
**
** Called at end of statement. Updates lsChange (last statement change count)
** and resets csChange (current statement change count) to 0.
*/
case OP_SetCounts: {
db->lsChange=db->csChange;
db->csChange=0;
break;
}
/* Opcode: KeyAsData P1 P2 *
**
** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls
** data off of the key rather than the data. This is used for
** processing compound selects.
*/
case OP_KeyAsData: {
int i = pOp->p1;
assert( i>=0 && i<p->nCursor );
p->aCsr[i].keyAsData = pOp->p2;
break;
}
/* Opcode: RowData P1 * *
**
** Push onto the stack the complete row data for cursor P1.
** There is no interpretation of the data. It is just copied
** onto the stack exactly as it is found in the database file.
**
** If the cursor is not pointing to a valid row, a NULL is pushed
** onto the stack.
*/
/* Opcode: RowKey P1 * *
**
** Push onto the stack the complete row key for cursor P1.
** There is no interpretation of the key. It is just copied
** onto the stack exactly as it is found in the database file.
**
** If the cursor is not pointing to a valid row, a NULL is pushed
** onto the stack.
*/
case OP_RowKey:
case OP_RowData: {
int i = pOp->p1;
Cursor *pC;
int n;
pTos++;
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
if( pC->nullRow ){
pTos->flags = MEM_Null;
}else if( pC->pCursor!=0 ){
BtCursor *pCrsr = pC->pCursor;
sqliteVdbeCursorMoveto(pC);
if( pC->nullRow ){
pTos->flags = MEM_Null;
break;
}else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
sqliteBtreeKeySize(pCrsr, &n);
}else{
sqliteBtreeDataSize(pCrsr, &n);
}
pTos->n = n;
if( n<=NBFS ){
pTos->flags = MEM_Str | MEM_Short;
pTos->z = pTos->zShort;
}else{
char *z = sqliteMallocRaw( n );
if( z==0 ) goto no_mem;
pTos->flags = MEM_Str | MEM_Dyn;
pTos->z = z;
}
if( pC->keyAsData || pOp->opcode==OP_RowKey ){
sqliteBtreeKey(pCrsr, 0, n, pTos->z);
}else{
sqliteBtreeData(pCrsr, 0, n, pTos->z);
}
}else if( pC->pseudoTable ){
pTos->n = pC->nData;
pTos->z = pC->pData;
pTos->flags = MEM_Str|MEM_Ephem;
}else{
pTos->flags = MEM_Null;
}
break;
}
/* Opcode: Column P1 P2 *
**
** Interpret the data that cursor P1 points to as
** a structure built using the MakeRecord instruction.
** (See the MakeRecord opcode for additional information about
** the format of the data.)
** Push onto the stack the value of the P2-th column contained
** in the data.
**
** If the KeyAsData opcode has previously executed on this cursor,
** then the field might be extracted from the key rather than the
** data.
**
** If P1 is negative, then the record is stored on the stack rather
** than in a table. For P1==-1, the top of the stack is used.
** For P1==-2, the next on the stack is used. And so forth. The
** value pushed is always just a pointer into the record which is
** stored further down on the stack. The column value is not copied.
*/
case OP_Column: {
int amt, offset, end, payloadSize;
int i = pOp->p1;
int p2 = pOp->p2;
Cursor *pC;
char *zRec;
BtCursor *pCrsr;
int idxWidth;
unsigned char aHdr[10];
assert( i<p->nCursor );
pTos++;
if( i<0 ){
assert( &pTos[i]>=p->aStack );
assert( pTos[i].flags & MEM_Str );
zRec = pTos[i].z;
payloadSize = pTos[i].n;
}else if( (pC = &p->aCsr[i])->pCursor!=0 ){
sqliteVdbeCursorMoveto(pC);
zRec = 0;
pCrsr = pC->pCursor;
if( pC->nullRow ){
payloadSize = 0;
}else if( pC->keyAsData ){
sqliteBtreeKeySize(pCrsr, &payloadSize);
}else{
sqliteBtreeDataSize(pCrsr, &payloadSize);
}
}else if( pC->pseudoTable ){
payloadSize = pC->nData;
zRec = pC->pData;
assert( payloadSize==0 || zRec!=0 );
}else{
payloadSize = 0;
}
/* Figure out how many bytes in the column data and where the column
** data begins.
*/
if( payloadSize==0 ){
pTos->flags = MEM_Null;
break;
}else if( payloadSize<256 ){
idxWidth = 1;
}else if( payloadSize<65536 ){
idxWidth = 2;
}else{
idxWidth = 3;
}
/* Figure out where the requested column is stored and how big it is.
*/
if( payloadSize < idxWidth*(p2+1) ){
rc = SQLITE_CORRUPT;
goto abort_due_to_error;
}
if( zRec ){
memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2);
}else if( pC->keyAsData ){
sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
}else{
sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
}
offset = aHdr[0];
end = aHdr[idxWidth];
if( idxWidth>1 ){
offset |= aHdr[1]<<8;
end |= aHdr[idxWidth+1]<<8;
if( idxWidth>2 ){
offset |= aHdr[2]<<16;
end |= aHdr[idxWidth+2]<<16;
}
}
amt = end - offset;
if( amt<0 || offset<0 || end>payloadSize ){
rc = SQLITE_CORRUPT;
goto abort_due_to_error;
}
/* amt and offset now hold the offset to the start of data and the
** amount of data. Go get the data and put it on the stack.
*/
pTos->n = amt;
if( amt==0 ){
pTos->flags = MEM_Null;
}else if( zRec ){
pTos->flags = MEM_Str | MEM_Ephem;
pTos->z = &zRec[offset];
}else{
if( amt<=NBFS ){
pTos->flags = MEM_Str | MEM_Short;
pTos->z = pTos->zShort;
}else{
char *z = sqliteMallocRaw( amt );
if( z==0 ) goto no_mem;
pTos->flags = MEM_Str | MEM_Dyn;
pTos->z = z;
}
if( pC->keyAsData ){
sqliteBtreeKey(pCrsr, offset, amt, pTos->z);
}else{
sqliteBtreeData(pCrsr, offset, amt, pTos->z);
}
}
break;
}
/* Opcode: Recno P1 * *
**
** Push onto the stack an integer which is the first 4 bytes of the
** the key to the current entry in a sequential scan of the database
** file P1. The sequential scan should have been started using the
** Next opcode.
*/
case OP_Recno: {
int i = pOp->p1;
Cursor *pC;
int v;
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
sqliteVdbeCursorMoveto(pC);
pTos++;
if( pC->recnoIsValid ){
v = pC->lastRecno;
}else if( pC->pseudoTable ){
v = keyToInt(pC->iKey);
}else if( pC->nullRow || pC->pCursor==0 ){
pTos->flags = MEM_Null;
break;
}else{
assert( pC->pCursor!=0 );
sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
v = keyToInt(v);
}
pTos->i = v;
pTos->flags = MEM_Int;
break;
}
/* Opcode: FullKey P1 * *
**
** Extract the complete key from the record that cursor P1 is currently
** pointing to and push the key onto the stack as a string.
**
** Compare this opcode to Recno. The Recno opcode extracts the first
** 4 bytes of the key and pushes those bytes onto the stack as an
** integer. This instruction pushes the entire key as a string.
**
** This opcode may not be used on a pseudo-table.
*/
case OP_FullKey: {
int i = pOp->p1;
BtCursor *pCrsr;
assert( p->aCsr[i].keyAsData );
assert( !p->aCsr[i].pseudoTable );
assert( i>=0 && i<p->nCursor );
pTos++;
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int amt;
char *z;
sqliteVdbeCursorMoveto(&p->aCsr[i]);
sqliteBtreeKeySize(pCrsr, &amt);
if( amt<=0 ){
rc = SQLITE_CORRUPT;
goto abort_due_to_error;
}
if( amt>NBFS ){
z = sqliteMallocRaw( amt );
if( z==0 ) goto no_mem;
pTos->flags = MEM_Str | MEM_Dyn;
}else{
z = pTos->zShort;
pTos->flags = MEM_Str | MEM_Short;
}
sqliteBtreeKey(pCrsr, 0, amt, z);
pTos->z = z;
pTos->n = amt;
}
break;
}
/* Opcode: NullRow P1 * *
**
** Move the cursor P1 to a null row. Any OP_Column operations
** that occur while the cursor is on the null row will always push
** a NULL onto the stack.
*/
case OP_NullRow: {
int i = pOp->p1;
assert( i>=0 && i<p->nCursor );
p->aCsr[i].nullRow = 1;
p->aCsr[i].recnoIsValid = 0;
break;
}
/* Opcode: Last P1 P2 *
**
** The next use of the Recno or Column or Next instruction for P1
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {
int i = pOp->p1;
Cursor *pC;
BtCursor *pCrsr;
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
if( (pCrsr = pC->pCursor)!=0 ){
int res;
rc = sqliteBtreeLast(pCrsr, &res);
pC->nullRow = res;
pC->deferredMoveto = 0;
if( res && pOp->p2>0 ){
pc = pOp->p2 - 1;
}
}else{
pC->nullRow = 0;
}
break;
}
/* Opcode: Rewind P1 P2 *
**
** The next use of the Recno or Column or Next instruction for P1
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {
int i = pOp->p1;
Cursor *pC;
BtCursor *pCrsr;
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
if( (pCrsr = pC->pCursor)!=0 ){
int res;
rc = sqliteBtreeFirst(pCrsr, &res);
pC->atFirst = res==0;
pC->nullRow = res;
pC->deferredMoveto = 0;
if( res && pOp->p2>0 ){
pc = pOp->p2 - 1;
}
}else{
pC->nullRow = 0;
}
break;
}
/* Opcode: Next P1 P2 *
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index. If there are no more key/value pairs then fall through
** to the following instruction. But if the cursor advance was successful,
** jump immediately to P2.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 *
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index. If there is no previous key/value pairs then fall through
** to the following instruction. But if the cursor backup was successful,
** jump immediately to P2.
*/
case OP_Prev:
case OP_Next: {
Cursor *pC;
BtCursor *pCrsr;
CHECK_FOR_INTERRUPT;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = &p->aCsr[pOp->p1];
if( (pCrsr = pC->pCursor)!=0 ){
int res;
if( pC->nullRow ){
res = 1;
}else{
assert( pC->deferredMoveto==0 );
rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) :
sqliteBtreePrevious(pCrsr, &res);
pC->nullRow = res;
}
if( res==0 ){
pc = pOp->p2 - 1;
sqlite_search_count++;
}
}else{
pC->nullRow = 1;
}
pC->recnoIsValid = 0;
break;
}
/* Opcode: IdxPut P1 P2 P3
**
** The top of the stack holds a SQL index key made using the
** MakeIdxKey instruction. This opcode writes that key into the
** index P1. Data for the entry is nil.
**
** If P2==1, then the key must be unique. If the key is not unique,
** the program aborts with a SQLITE_CONSTRAINT error and the database
** is rolled back. If P3 is not null, then it becomes part of the
** error message returned with the SQLITE_CONSTRAINT.
*/
case OP_IdxPut: {
int i = pOp->p1;
BtCursor *pCrsr;
assert( pTos>=p->aStack );
assert( i>=0 && i<p->nCursor );
assert( pTos->flags & MEM_Str );
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int nKey = pTos->n;
const char *zKey = pTos->z;
if( pOp->p2 ){
int res, n;
assert( nKey >= 4 );
rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
while( res!=0 ){
int c;
sqliteBtreeKeySize(pCrsr, &n);
if( n==nKey
&& sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
&& c==0
){
rc = SQLITE_CONSTRAINT;
if( pOp->p3 && pOp->p3[0] ){
sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
}
goto abort_due_to_error;
}
if( res<0 ){
sqliteBtreeNext(pCrsr, &res);
res = +1;
}else{
break;
}
}
}
rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
assert( p->aCsr[i].deferredMoveto==0 );
}
Release(pTos);
pTos--;
break;
}
/* Opcode: IdxDelete P1 * *
**
** The top of the stack is an index key built using the MakeIdxKey opcode.
** This opcode removes that entry from the index.
*/
case OP_IdxDelete: {
int i = pOp->p1;
BtCursor *pCrsr;
assert( pTos>=p->aStack );
assert( pTos->flags & MEM_Str );
assert( i>=0 && i<p->nCursor );
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int rx, res;
rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
if( rx==SQLITE_OK && res==0 ){
rc = sqliteBtreeDelete(pCrsr);
}
assert( p->aCsr[i].deferredMoveto==0 );
}
Release(pTos);
pTos--;
break;
}
/* Opcode: IdxRecno P1 * *
**
** Push onto the stack an integer which is the last 4 bytes of the
** the key to the current entry in index P1. These 4 bytes should
** be the record number of the table entry to which this index entry
** points.
**
** See also: Recno, MakeIdxKey.
*/
case OP_IdxRecno: {
int i = pOp->p1;
BtCursor *pCrsr;
assert( i>=0 && i<p->nCursor );
pTos++;
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int v;
int sz;
assert( p->aCsr[i].deferredMoveto==0 );
sqliteBtreeKeySize(pCrsr, &sz);
if( sz<sizeof(u32) ){
pTos->flags = MEM_Null;
}else{
sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
v = keyToInt(v);
pTos->i = v;
pTos->flags = MEM_Int;
}
}else{
pTos->flags = MEM_Null;
}
break;
}
/* Opcode: IdxGT P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
** index entry. If the index entry is greater than the top of the stack
** then jump to P2. Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
/* Opcode: IdxGE P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
** index entry. If the index entry is greater than or equal to
** the top of the stack
** then jump to P2. Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
/* Opcode: IdxLT P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
** index entry. If the index entry is less than the top of the stack
** then jump to P2. Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
case OP_IdxLT:
case OP_IdxGT:
case OP_IdxGE: {
int i= pOp->p1;
BtCursor *pCrsr;
assert( i>=0 && i<p->nCursor );
assert( pTos>=p->aStack );
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
int res, rc;
Stringify(pTos);
assert( p->aCsr[i].deferredMoveto==0 );
rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res);
if( rc!=SQLITE_OK ){
break;
}
if( pOp->opcode==OP_IdxLT ){
res = -res;
}else if( pOp->opcode==OP_IdxGE ){
res++;
}
if( res>0 ){
pc = pOp->p2 - 1 ;
}
}
Release(pTos);
pTos--;
break;
}
/* Opcode: IdxIsNull P1 P2 *
**
** The top of the stack contains an index entry such as might be generated
** by the MakeIdxKey opcode. This routine looks at the first P1 fields of
** that key. If any of the first P1 fields are NULL, then a jump is made
** to address P2. Otherwise we fall straight through.
**
** The index entry is always popped from the stack.
*/
case OP_IdxIsNull: {
int i = pOp->p1;
int k, n;
const char *z;
assert( pTos>=p->aStack );
assert( pTos->flags & MEM_Str );
z = pTos->z;
n = pTos->n;
for(k=0; k<n && i>0; i--){
if( z[k]=='a' ){
pc = pOp->p2-1;
break;
}
while( k<n && z[k] ){ k++; }
k++;
}
Release(pTos);
pTos--;
break;
}
/* Opcode: Destroy P1 P2 *
**
** Delete an entire database table or index whose root page in the database
** file is given by P1.
**
** The table being destroyed is in the main database file if P2==0. If
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** See also: Clear
*/
case OP_Destroy: {
rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1);
break;
}
/* Opcode: Clear P1 P2 *
**
** Delete all contents of the database table or index whose root page
** in the database file is given by P1. But, unlike Destroy, do not
** remove the table or index from the database file.
**
** The table being clear is in the main database file if P2==0. If
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** See also: Destroy
*/
case OP_Clear: {
rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
break;
}
/* Opcode: CreateTable * P2 P3
**
** Allocate a new table in the main database file if P2==0 or in the
** auxiliary database file if P2==1. Push the page number
** for the root page of the new table onto the stack.
**
** The root page number is also written to a memory location that P3
** points to. This is the mechanism is used to write the root page
** number into the parser's internal data structures that describe the
** new table.
**
** The difference between a table and an index is this: A table must
** have a 4-byte integer key and can have arbitrary data. An index
** has an arbitrary key but no data.
**
** See also: CreateIndex
*/
/* Opcode: CreateIndex * P2 P3
**
** Allocate a new index in the main database file if P2==0 or in the
** auxiliary database file if P2==1. Push the page number of the
** root page of the new index onto the stack.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:
case OP_CreateTable: {
int pgno;
assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
assert( pOp->p2>=0 && pOp->p2<db->nDb );
assert( db->aDb[pOp->p2].pBt!=0 );
if( pOp->opcode==OP_CreateTable ){
rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno);
}else{
rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno);
}
pTos++;
if( rc==SQLITE_OK ){
pTos->i = pgno;
pTos->flags = MEM_Int;
*(u32*)pOp->p3 = pgno;
pOp->p3 = 0;
}else{
pTos->flags = MEM_Null;
}
break;
}
/* Opcode: IntegrityCk P1 P2 *
**
** Do an analysis of the currently open database. Push onto the
** stack the text of an error message describing any problems.
** If there are no errors, push a "ok" onto the stack.
**
** P1 is the index of a set that contains the root page numbers
** for all tables and indices in the main database file. The set
** is cleared by this opcode. In other words, after this opcode
** has executed, the set will be empty.
**
** If P2 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used for testing purposes only.
*/
case OP_IntegrityCk: {
int nRoot;
int *aRoot;
int iSet = pOp->p1;
Set *pSet;
int j;
HashElem *i;
char *z;
assert( iSet>=0 && iSet<p->nSet );
pTos++;
pSet = &p->aSet[iSet];
nRoot = sqliteHashCount(&pSet->hash);
aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
if( aRoot==0 ) goto no_mem;
for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
toInt((char*)sqliteHashKey(i), &aRoot[j]);
}
aRoot[j] = 0;
sqliteHashClear(&pSet->hash);
pSet->prev = 0;
z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
if( z==0 || z[0]==0 ){
if( z ) sqliteFree(z);
pTos->z = "ok";
pTos->n = 3;
pTos->flags = MEM_Str | MEM_Static;
}else{
pTos->z = z;
pTos->n = strlen(z) + 1;
pTos->flags = MEM_Str | MEM_Dyn;
}
sqliteFree(aRoot);
break;
}
/* Opcode: ListWrite * * *
**
** Write the integer on the top of the stack
** into the temporary storage list.
*/
case OP_ListWrite: {
Keylist *pKeylist;
assert( pTos>=p->aStack );
pKeylist = p->pList;
if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
if( pKeylist==0 ) goto no_mem;
pKeylist->nKey = 1000;
pKeylist->nRead = 0;
pKeylist->nUsed = 0;
pKeylist->pNext = p->pList;
p->pList = pKeylist;
}
Integerify(pTos);
pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
Release(pTos);
pTos--;
break;
}
/* Opcode: ListRewind * * *
**
** Rewind the temporary buffer back to the beginning.
*/
case OP_ListRewind: {
/* What this opcode codes, really, is reverse the order of the
** linked list of Keylist structures so that they are read out
** in the same order that they were read in. */
Keylist *pRev, *pTop;
pRev = 0;
while( p->pList ){
pTop = p->pList;
p->pList = pTop->pNext;
pTop->pNext = pRev;
pRev = pTop;
}
p->pList = pRev;
break;
}
/* Opcode: ListRead * P2 *
**
** Attempt to read an integer from the temporary storage buffer
** and push it onto the stack. If the storage buffer is empty,
** push nothing but instead jump to P2.
*/
case OP_ListRead: {
Keylist *pKeylist;
CHECK_FOR_INTERRUPT;
pKeylist = p->pList;
if( pKeylist!=0 ){
assert( pKeylist->nRead>=0 );
assert( pKeylist->nRead<pKeylist->nUsed );
assert( pKeylist->nRead<pKeylist->nKey );
pTos++;
pTos->i = pKeylist->aKey[pKeylist->nRead++];
pTos->flags = MEM_Int;
if( pKeylist->nRead>=pKeylist->nUsed ){
p->pList = pKeylist->pNext;
sqliteFree(pKeylist);
}
}else{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: ListReset * * *
**
** Reset the temporary storage buffer so that it holds nothing.
*/
case OP_ListReset: {
if( p->pList ){
sqliteVdbeKeylistFree(p->pList);
p->pList = 0;
}
break;
}
/* Opcode: ListPush * * *
**
** Save the current Vdbe list such that it can be restored by a ListPop
** opcode. The list is empty after this is executed.
*/
case OP_ListPush: {
p->keylistStackDepth++;
assert(p->keylistStackDepth > 0);
p->keylistStack = sqliteRealloc(p->keylistStack,
sizeof(Keylist *) * p->keylistStackDepth);
if( p->keylistStack==0 ) goto no_mem;
p->keylistStack[p->keylistStackDepth - 1] = p->pList;
p->pList = 0;
break;
}
/* Opcode: ListPop * * *
**
** Restore the Vdbe list to the state it was in when ListPush was last
** executed.
*/
case OP_ListPop: {
assert(p->keylistStackDepth > 0);
p->keylistStackDepth--;
sqliteVdbeKeylistFree(p->pList);
p->pList = p->keylistStack[p->keylistStackDepth];
p->keylistStack[p->keylistStackDepth] = 0;
if( p->keylistStackDepth == 0 ){
sqliteFree(p->keylistStack);
p->keylistStack = 0;
}
break;
}
/* Opcode: ContextPush * * *
**
** Save the current Vdbe context such that it can be restored by a ContextPop
** opcode. The context stores the last insert row id, the last statement change
** count, and the current statement change count.
*/
case OP_ContextPush: {
p->contextStackDepth++;
assert(p->contextStackDepth > 0);
p->contextStack = sqliteRealloc(p->contextStack,
sizeof(Context) * p->contextStackDepth);
if( p->contextStack==0 ) goto no_mem;
p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid;
p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange;
p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange;
break;
}
/* Opcode: ContextPop * * *
**
** Restore the Vdbe context to the state it was in when contextPush was last
** executed. The context stores the last insert row id, the last statement
** change count, and the current statement change count.
*/
case OP_ContextPop: {
assert(p->contextStackDepth > 0);
p->contextStackDepth--;
p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid;
p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange;
p->db->csChange = p->contextStack[p->contextStackDepth].csChange;
if( p->contextStackDepth == 0 ){
sqliteFree(p->contextStack);
p->contextStack = 0;
}
break;
}
/* Opcode: SortPut * * *
**
** The TOS is the key and the NOS is the data. Pop both from the stack
** and put them on the sorter. The key and data should have been
** made using SortMakeKey and SortMakeRec, respectively.
*/
case OP_SortPut: {
Mem *pNos = &pTos[-1];
Sorter *pSorter;
assert( pNos>=p->aStack );
if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem;
pSorter = sqliteMallocRaw( sizeof(Sorter) );
if( pSorter==0 ) goto no_mem;
pSorter->pNext = p->pSort;
p->pSort = pSorter;
assert( pTos->flags & MEM_Dyn );
pSorter->nKey = pTos->n;
pSorter->zKey = pTos->z;
assert( pNos->flags & MEM_Dyn );
pSorter->nData = pNos->n;
pSorter->pData = pNos->z;
pTos -= 2;
break;
}
/* Opcode: SortMakeRec P1 * *
**
** The top P1 elements are the arguments to a callback. Form these
** elements into a single data entry that can be stored on a sorter
** using SortPut and later fed to a callback using SortCallback.
*/
case OP_SortMakeRec: {
char *z;
char **azArg;
int nByte;
int nField;
int i;
Mem *pRec;
nField = pOp->p1;
pRec = &pTos[1-nField];
assert( pRec>=p->aStack );
nByte = 0;
for(i=0; i<nField; i++, pRec++){
if( (pRec->flags & MEM_Null)==0 ){
Stringify(pRec);
nByte += pRec->n;
}
}
nByte += sizeof(char*)*(nField+1);
azArg = sqliteMallocRaw( nByte );
if( azArg==0 ) goto no_mem;
z = (char*)&azArg[nField+1];
for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
if( pRec->flags & MEM_Null ){
azArg[i] = 0;
}else{
azArg[i] = z;
memcpy(z, pRec->z, pRec->n);
z += pRec->n;
}
}
popStack(&pTos, nField);
pTos++;
pTos->n = nByte;
pTos->z = (char*)azArg;
pTos->flags = MEM_Str | MEM_Dyn;
break;
}
/* Opcode: SortMakeKey * * P3
**
** Convert the top few entries of the stack into a sort key. The
** number of stack entries consumed is the number of characters in
** the string P3. One character from P3 is prepended to each entry.
** The first character of P3 is prepended to the element lowest in
** the stack and the last character of P3 is prepended to the top of
** the stack. All stack entries are separated by a \000 character
** in the result. The whole key is terminated by two \000 characters
** in a row.
**
** "N" is substituted in place of the P3 character for NULL values.
**
** See also the MakeKey and MakeIdxKey opcodes.
*/
case OP_SortMakeKey: {
char *zNewKey;
int nByte;
int nField;
int i, j, k;
Mem *pRec;
nField = strlen(pOp->p3);
pRec = &pTos[1-nField];
nByte = 1;
for(i=0; i<nField; i++, pRec++){
if( pRec->flags & MEM_Null ){
nByte += 2;
}else{
Stringify(pRec);
nByte += pRec->n+2;
}
}
zNewKey = sqliteMallocRaw( nByte );
if( zNewKey==0 ) goto no_mem;
j = 0;
k = 0;
for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
if( pRec->flags & MEM_Null ){
zNewKey[j++] = 'N';
zNewKey[j++] = 0;
k++;
}else{
zNewKey[j++] = pOp->p3[k++];
memcpy(&zNewKey[j], pRec->z, pRec->n-1);
j += pRec->n-1;
zNewKey[j++] = 0;
}
}
zNewKey[j] = 0;
assert( j<nByte );
popStack(&pTos, nField);
pTos++;
pTos->n = nByte;
pTos->flags = MEM_Str|MEM_Dyn;
pTos->z = zNewKey;
break;
}
/* Opcode: Sort * * *
**
** Sort all elements on the sorter. The algorithm is a
** mergesort.
*/
case OP_Sort: {
int i;
Sorter *pElem;
Sorter *apSorter[NSORT];
for(i=0; i<NSORT; i++){
apSorter[i] = 0;
}
while( p->pSort ){
pElem = p->pSort;
p->pSort = pElem->pNext;
pElem->pNext = 0;
for(i=0; i<NSORT-1; i++){
if( apSorter[i]==0 ){
apSorter[i] = pElem;
break;
}else{
pElem = Merge(apSorter[i], pElem);
apSorter[i] = 0;
}
}
if( i>=NSORT-1 ){
apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
}
}
pElem = 0;
for(i=0; i<NSORT; i++){
pElem = Merge(apSorter[i], pElem);
}
p->pSort = pElem;
break;
}
/* Opcode: SortNext * P2 *
**
** Push the data for the topmost element in the sorter onto the
** stack, then remove the element from the sorter. If the sorter
** is empty, push nothing on the stack and instead jump immediately
** to instruction P2.
*/
case OP_SortNext: {
Sorter *pSorter = p->pSort;
CHECK_FOR_INTERRUPT;
if( pSorter!=0 ){
p->pSort = pSorter->pNext;
pTos++;
pTos->z = pSorter->pData;
pTos->n = pSorter->nData;
pTos->flags = MEM_Str|MEM_Dyn;
sqliteFree(pSorter->zKey);
sqliteFree(pSorter);
}else{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: SortCallback P1 * *
**
** The top of the stack contains a callback record built using
** the SortMakeRec operation with the same P1 value as this
** instruction. Pop this record from the stack and invoke the
** callback on it.
*/
case OP_SortCallback: {
assert( pTos>=p->aStack );
assert( pTos->flags & MEM_Str );
p->nCallback++;
p->pc = pc+1;
p->azResColumn = (char**)pTos->z;
assert( p->nResColumn==pOp->p1 );
p->popStack = 1;
p->pTos = pTos;
return SQLITE_ROW;
}
/* Opcode: SortReset * * *
**
** Remove any elements that remain on the sorter.
*/
case OP_SortReset: {
sqliteVdbeSorterReset(p);
break;
}
/* Opcode: FileOpen * * P3
**
** Open the file named by P3 for reading using the FileRead opcode.
** If P3 is "stdin" then open standard input for reading.
*/
case OP_FileOpen: {
assert( pOp->p3!=0 );
if( p->pFile ){
if( p->pFile!=stdin ) fclose(p->pFile);
p->pFile = 0;
}
if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
p->pFile = stdin;
}else{
p->pFile = fopen(pOp->p3, "r");
}
if( p->pFile==0 ){
sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0);
rc = SQLITE_ERROR;
}
break;
}
/* Opcode: FileRead P1 P2 P3
**
** Read a single line of input from the open file (the file opened using
** FileOpen). If we reach end-of-file, jump immediately to P2. If
** we are able to get another line, split the line apart using P3 as
** a delimiter. There should be P1 fields. If the input line contains
** more than P1 fields, ignore the excess. If the input line contains
** fewer than P1 fields, assume the remaining fields contain NULLs.
**
** Input ends if a line consists of just "\.". A field containing only
** "\N" is a null field. The backslash \ character can be used be used
** to escape newlines or the delimiter.
*/
case OP_FileRead: {
int n, eol, nField, i, c, nDelim;
char *zDelim, *z;
CHECK_FOR_INTERRUPT;
if( p->pFile==0 ) goto fileread_jump;
nField = pOp->p1;
if( nField<=0 ) goto fileread_jump;
if( nField!=p->nField || p->azField==0 ){
char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
if( azField==0 ){ goto no_mem; }
p->azField = azField;
p->nField = nField;
}
n = 0;
eol = 0;
while( eol==0 ){
if( p->zLine==0 || n+200>p->nLineAlloc ){
char *zLine;
p->nLineAlloc = p->nLineAlloc*2 + 300;
zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
if( zLine==0 ){
p->nLineAlloc = 0;
sqliteFree(p->zLine);
p->zLine = 0;
goto no_mem;
}
p->zLine = zLine;
}
if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
eol = 1;
p->zLine[n] = 0;
}else{
int c;
while( (c = p->zLine[n])!=0 ){
if( c=='\\' ){
if( p->zLine[n+1]==0 ) break;
n += 2;
}else if( c=='\n' ){
p->zLine[n] = 0;
eol = 1;
break;
}else{
n++;
}
}
}
}
if( n==0 ) goto fileread_jump;
z = p->zLine;
if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
goto fileread_jump;
}
zDelim = pOp->p3;
if( zDelim==0 ) zDelim = "\t";
c = zDelim[0];
nDelim = strlen(zDelim);
p->azField[0] = z;
for(i=1; *z!=0 && i<=nField; i++){
int from, to;
from = to = 0;
if( z[0]=='\\' && z[1]=='N'
&& (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
if( i<=nField ) p->azField[i-1] = 0;
z += 2 + nDelim;
if( i<nField ) p->azField[i] = z;
continue;
}
while( z[from] ){
if( z[from]=='\\' && z[from+1]!=0 ){
int tx = z[from+1];
switch( tx ){
case 'b': tx = '\b'; break;
case 'f': tx = '\f'; break;
case 'n': tx = '\n'; break;
case 'r': tx = '\r'; break;
case 't': tx = '\t'; break;
case 'v': tx = '\v'; break;
default: break;
}
z[to++] = tx;
from += 2;
continue;
}
if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
z[to++] = z[from++];
}
if( z[from] ){
z[to] = 0;
z += from + nDelim;
if( i<nField ) p->azField[i] = z;
}else{
z[to] = 0;
z = "";
}
}
while( i<nField ){
p->azField[i++] = 0;
}
break;
/* If we reach end-of-file, or if anything goes wrong, jump here.
** This code will cause a jump to P2 */
fileread_jump:
pc = pOp->p2 - 1;
break;
}
/* Opcode: FileColumn P1 * *
**
** Push onto the stack the P1-th column of the most recently read line
** from the input file.
*/
case OP_FileColumn: {
int i = pOp->p1;
char *z;
assert( i>=0 && i<p->nField );
if( p->azField ){
z = p->azField[i];
}else{
z = 0;
}
pTos++;
if( z ){
pTos->n = strlen(z) + 1;
pTos->z = z;
pTos->flags = MEM_Str | MEM_Ephem;
}else{
pTos->flags = MEM_Null;
}
break;
}
/* Opcode: MemStore P1 P2 *
**
** Write the top of the stack into memory location P1.
** P1 should be a small integer since space is allocated
** for all memory locations between 0 and P1 inclusive.
**
** After the data is stored in the memory location, the
** stack is popped once if P2 is 1. If P2 is zero, then
** the original data remains on the stack.
*/
case OP_MemStore: {
int i = pOp->p1;
Mem *pMem;
assert( pTos>=p->aStack );
if( i>=p->nMem ){
int nOld = p->nMem;
Mem *aMem;
p->nMem = i + 5;
aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
if( aMem==0 ) goto no_mem;
if( aMem!=p->aMem ){
int j;
for(j=0; j<nOld; j++){
if( aMem[j].flags & MEM_Short ){
aMem[j].z = aMem[j].zShort;
}
}
}
p->aMem = aMem;
if( nOld<p->nMem ){
memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
}
}
Deephemeralize(pTos);
pMem = &p->aMem[i];
Release(pMem);
*pMem = *pTos;
if( pMem->flags & MEM_Dyn ){
if( pOp->p2 ){
pTos->flags = MEM_Null;
}else{
pMem->z = sqliteMallocRaw( pMem->n );
if( pMem->z==0 ) goto no_mem;
memcpy(pMem->z, pTos->z, pMem->n);
}
}else if( pMem->flags & MEM_Short ){
pMem->z = pMem->zShort;
}
if( pOp->p2 ){
Release(pTos);
pTos--;
}
break;
}
/* Opcode: MemLoad P1 * *
**
** Push a copy of the value in memory location P1 onto the stack.
**
** If the value is a string, then the value pushed is a pointer to
** the string that is stored in the memory location. If the memory
** location is subsequently changed (using OP_MemStore) then the
** value pushed onto the stack will change too.
*/
case OP_MemLoad: {
int i = pOp->p1;
assert( i>=0 && i<p->nMem );
pTos++;
memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
if( pTos->flags & MEM_Str ){
pTos->flags |= MEM_Ephem;
pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
}
break;
}
/* Opcode: MemIncr P1 P2 *
**
** Increment the integer valued memory cell P1 by 1. If P2 is not zero
** and the result after the increment is greater than zero, then jump
** to P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemIncr: {
int i = pOp->p1;
Mem *pMem;
assert( i>=0 && i<p->nMem );
pMem = &p->aMem[i];
assert( pMem->flags==MEM_Int );
pMem->i++;
if( pOp->p2>0 && pMem->i>0 ){
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: AggReset * P2 *
**
** Reset the aggregator so that it no longer contains any data.
** Future aggregator elements will contain P2 values each.
*/
case OP_AggReset: {
sqliteVdbeAggReset(&p->agg);
p->agg.nMem = pOp->p2;
p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
if( p->agg.apFunc==0 ) goto no_mem;
break;
}
/* Opcode: AggInit * P2 P3
**
** Initialize the function parameters for an aggregate function.
** The aggregate will operate out of aggregate column P2.
** P3 is a pointer to the FuncDef structure for the function.
*/
case OP_AggInit: {
int i = pOp->p2;
assert( i>=0 && i<p->agg.nMem );
p->agg.apFunc[i] = (FuncDef*)pOp->p3;
break;
}
/* Opcode: AggFunc * P2 P3
**
** Execute the step function for an aggregate. The
** function has P2 arguments. P3 is a pointer to the FuncDef
** structure that specifies the function.
**
** The top of the stack must be an integer which is the index of
** the aggregate column that corresponds to this aggregate function.
** Ideally, this index would be another parameter, but there are
** no free parameters left. The integer is popped from the stack.
*/
case OP_AggFunc: {
int n = pOp->p2;
int i;
Mem *pMem, *pRec;
char **azArgv = p->zArgv;
sqlite_func ctx;
assert( n>=0 );
assert( pTos->flags==MEM_Int );
pRec = &pTos[-n];
assert( pRec>=p->aStack );
for(i=0; i<n; i++, pRec++){
if( pRec->flags & MEM_Null ){
azArgv[i] = 0;
}else{
Stringify(pRec);
azArgv[i] = pRec->z;
}
}
i = pTos->i;
assert( i>=0 && i<p->agg.nMem );
ctx.pFunc = (FuncDef*)pOp->p3;
pMem = &p->agg.pCurrent->aMem[i];
ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */
ctx.pAgg = pMem->z;
ctx.cnt = ++pMem->i;
ctx.isError = 0;
ctx.isStep = 1;
(ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv);
pMem->z = ctx.pAgg;
pMem->flags = MEM_AggCtx;
popStack(&pTos, n+1);
if( ctx.isError ){
rc = SQLITE_ERROR;
}
break;
}
/* Opcode: AggFocus * P2 *
**
** Pop the top of the stack and use that as an aggregator key. If
** an aggregator with that same key already exists, then make the
** aggregator the current aggregator and jump to P2. If no aggregator
** with the given key exists, create one and make it current but
** do not jump.
**
** The order of aggregator opcodes is important. The order is:
** AggReset AggFocus AggNext. In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations. You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggFocus: {
AggElem *pElem;
char *zKey;
int nKey;
assert( pTos>=p->aStack );
Stringify(pTos);
zKey = pTos->z;
nKey = pTos->n;
pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
if( pElem ){
p->agg.pCurrent = pElem;
pc = pOp->p2 - 1;
}else{
AggInsert(&p->agg, zKey, nKey);
if( sqlite_malloc_failed ) goto no_mem;
}
Release(pTos);
pTos--;
break;
}
/* Opcode: AggSet * P2 *
**
** Move the top of the stack into the P2-th field of the current
** aggregate. String values are duplicated into new memory.
*/
case OP_AggSet: {
AggElem *pFocus = AggInFocus(p->agg);
Mem *pMem;
int i = pOp->p2;
assert( pTos>=p->aStack );
if( pFocus==0 ) goto no_mem;
assert( i>=0 && i<p->agg.nMem );
Deephemeralize(pTos);
pMem = &pFocus->aMem[i];
Release(pMem);
*pMem = *pTos;
if( pMem->flags & MEM_Dyn ){
pTos->flags = MEM_Null;
}else if( pMem->flags & MEM_Short ){
pMem->z = pMem->zShort;
}
Release(pTos);
pTos--;
break;
}
/* Opcode: AggGet * P2 *
**
** Push a new entry onto the stack which is a copy of the P2-th field
** of the current aggregate. Strings are not duplicated so
** string values will be ephemeral.
*/
case OP_AggGet: {
AggElem *pFocus = AggInFocus(p->agg);
Mem *pMem;
int i = pOp->p2;
if( pFocus==0 ) goto no_mem;
assert( i>=0 && i<p->agg.nMem );
pTos++;
pMem = &pFocus->aMem[i];
*pTos = *pMem;
if( pTos->flags & MEM_Str ){
pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
pTos->flags |= MEM_Ephem;
}
if( pTos->flags & MEM_AggCtx ){
Release(pTos);
pTos->flags = MEM_Null;
}
break;
}
/* Opcode: AggNext * P2 *
**
** Make the next aggregate value the current aggregate. The prior
** aggregate is deleted. If all aggregate values have been consumed,
** jump to P2.
**
** The order of aggregator opcodes is important. The order is:
** AggReset AggFocus AggNext. In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations. You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggNext: {
CHECK_FOR_INTERRUPT;
if( p->agg.pSearch==0 ){
p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
}else{
p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
}
if( p->agg.pSearch==0 ){
pc = pOp->p2 - 1;
} else {
int i;
sqlite_func ctx;
Mem *aMem;
p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
aMem = p->agg.pCurrent->aMem;
for(i=0; i<p->agg.nMem; i++){
int freeCtx;
if( p->agg.apFunc[i]==0 ) continue;
if( p->agg.apFunc[i]->xFinalize==0 ) continue;
ctx.s.flags = MEM_Null;
ctx.s.z = aMem[i].zShort;
ctx.pAgg = (void*)aMem[i].z;
freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort;
ctx.cnt = aMem[i].i;
ctx.isStep = 0;
ctx.pFunc = p->agg.apFunc[i];
(*p->agg.apFunc[i]->xFinalize)(&ctx);
if( freeCtx ){
sqliteFree( aMem[i].z );
}
aMem[i] = ctx.s;
if( aMem[i].flags & MEM_Short ){
aMem[i].z = aMem[i].zShort;
}
}
}
break;
}
/* Opcode: SetInsert P1 * P3
**
** If Set P1 does not exist then create it. Then insert value
** P3 into that set. If P3 is NULL, then insert the top of the
** stack into the set.
*/
case OP_SetInsert: {
int i = pOp->p1;
if( p->nSet<=i ){
int k;
Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
if( aSet==0 ) goto no_mem;
p->aSet = aSet;
for(k=p->nSet; k<=i; k++){
sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
}
p->nSet = i+1;
}
if( pOp->p3 ){
sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
}else{
assert( pTos>=p->aStack );
Stringify(pTos);
sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p);
Release(pTos);
pTos--;
}
if( sqlite_malloc_failed ) goto no_mem;
break;
}
/* Opcode: SetFound P1 P2 *
**
** Pop the stack once and compare the value popped off with the
** contents of set P1. If the element popped exists in set P1,
** then jump to P2. Otherwise fall through.
*/
case OP_SetFound: {
int i = pOp->p1;
assert( pTos>=p->aStack );
Stringify(pTos);
if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){
pc = pOp->p2 - 1;
}
Release(pTos);
pTos--;
break;
}
/* Opcode: SetNotFound P1 P2 *
**
** Pop the stack once and compare the value popped off with the
** contents of set P1. If the element popped does not exists in
** set P1, then jump to P2. Otherwise fall through.
*/
case OP_SetNotFound: {
int i = pOp->p1;
assert( pTos>=p->aStack );
Stringify(pTos);
if( i<0 || i>=p->nSet ||
sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){
pc = pOp->p2 - 1;
}
Release(pTos);
pTos--;
break;
}
/* Opcode: SetFirst P1 P2 *
**
** Read the first element from set P1 and push it onto the stack. If the
** set is empty, push nothing and jump immediately to P2. This opcode is
** used in combination with OP_SetNext to loop over all elements of a set.
*/
/* Opcode: SetNext P1 P2 *
**
** Read the next element from set P1 and push it onto the stack. If there
** are no more elements in the set, do not do the push and fall through.
** Otherwise, jump to P2 after pushing the next set element.
*/
case OP_SetFirst:
case OP_SetNext: {
Set *pSet;
CHECK_FOR_INTERRUPT;
if( pOp->p1<0 || pOp->p1>=p->nSet ){
if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
break;
}
pSet = &p->aSet[pOp->p1];
if( pOp->opcode==OP_SetFirst ){
pSet->prev = sqliteHashFirst(&pSet->hash);
if( pSet->prev==0 ){
pc = pOp->p2 - 1;
break;
}
}else{
if( pSet->prev ){
pSet->prev = sqliteHashNext(pSet->prev);
}
if( pSet->prev==0 ){
break;
}else{
pc = pOp->p2 - 1;
}
}
pTos++;
pTos->z = sqliteHashKey(pSet->prev);
pTos->n = sqliteHashKeysize(pSet->prev);
pTos->flags = MEM_Str | MEM_Ephem;
break;
}
/* Opcode: Vacuum * * *
**
** Vacuum the entire database. This opcode will cause other virtual
** machines to be created and run. It may not be called from within
** a transaction.
*/
case OP_Vacuum: {
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
rc = sqliteRunVacuum(&p->zErrMsg, db);
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
break;
}
/* Opcode: StackDepth * * *
**
** Push an integer onto the stack which is the depth of the stack prior
** to that integer being pushed.
*/
case OP_StackDepth: {
int depth = (&pTos[1]) - p->aStack;
pTos++;
pTos->i = depth;
pTos->flags = MEM_Int;
break;
}
/* Opcode: StackReset * * *
**
** Pop a single integer off of the stack. Then pop the stack
** as many times as necessary to get the depth of the stack down
** to the value of the integer that was popped.
*/
case OP_StackReset: {
int depth, goal;
assert( pTos>=p->aStack );
Integerify(pTos);
goal = pTos->i;
depth = (&pTos[1]) - p->aStack;
assert( goal<depth );
popStack(&pTos, depth-goal);
break;
}
/* An other opcode is illegal...
*/
default: {
sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode);
sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
rc = SQLITE_INTERNAL;
break;
}
/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces. But the left-most 6 spaces have been removed to improve the
** readability. From this point on down, the normal indentation rules are
** restored.
*****************************************************************************/
}
#ifdef VDBE_PROFILE
{
long long elapse = hwtime() - start;
pOp->cycles += elapse;
pOp->cnt++;
#if 0
fprintf(stdout, "%10lld ", elapse);
sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]);
#endif
}
#endif
/* The following code adds nothing to the actual functionality
** of the program. It is only here for testing and debugging.
** On the other hand, it does burn CPU cycles every time through
** the evaluator loop. So we can leave it out when NDEBUG is defined.
*/
#ifndef NDEBUG
/* Sanity checking on the top element of the stack */
if( pTos>=p->aStack ){
assert( pTos->flags!=0 ); /* Must define some type */
if( pTos->flags & MEM_Str ){
int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
assert( x!=0 ); /* Strings must define a string subtype */
assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
assert( pTos->z!=0 ); /* Strings must have a value */
/* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort );
assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort );
}else{
/* Cannot define a string subtype for non-string objects */
assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
}
/* MEM_Null excludes all other types */
assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 );
}
if( pc<-1 || pc>=p->nOp ){
sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0);
rc = SQLITE_INTERNAL;
}
if( p->trace && pTos>=p->aStack ){
int i;
fprintf(p->trace, "Stack:");
for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
if( pTos[i].flags & MEM_Null ){
fprintf(p->trace, " NULL");
}else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
fprintf(p->trace, " si:%d", pTos[i].i);
}else if( pTos[i].flags & MEM_Int ){
fprintf(p->trace, " i:%d", pTos[i].i);
}else if( pTos[i].flags & MEM_Real ){
fprintf(p->trace, " r:%g", pTos[i].r);
}else if( pTos[i].flags & MEM_Str ){
int j, k;
char zBuf[100];
zBuf[0] = ' ';
if( pTos[i].flags & MEM_Dyn ){
zBuf[1] = 'z';
assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
}else if( pTos[i].flags & MEM_Static ){
zBuf[1] = 't';
assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
}else if( pTos[i].flags & MEM_Ephem ){
zBuf[1] = 'e';
assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 );
}else{
zBuf[1] = 's';
}
zBuf[2] = '[';
k = 3;
for(j=0; j<20 && j<pTos[i].n; j++){
int c = pTos[i].z[j];
if( c==0 && j==pTos[i].n-1 ) break;
if( isprint(c) && !isspace(c) ){
zBuf[k++] = c;
}else{
zBuf[k++] = '.';
}
}
zBuf[k++] = ']';
zBuf[k++] = 0;
fprintf(p->trace, "%s", zBuf);
}else{
fprintf(p->trace, " ???");
}
}
if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
fprintf(p->trace,"\n");
}
#endif
} /* The end of the for(;;) loop the loops through opcodes */
/* If we reach this point, it means that execution is finished.
*/
vdbe_halt:
CHECK_FOR_INTERRUPT
if( rc ){
p->rc = rc;
rc = SQLITE_ERROR;
}else{
rc = SQLITE_DONE;
}
p->magic = VDBE_MAGIC_HALT;
p->pTos = pTos;
return rc;
/* Jump to here if a malloc() fails. It's hard to get a malloc()
** to fail on a modern VM computer, so this code is untested.
*/
no_mem:
sqliteSetString(&p->zErrMsg, "out of memory", (char*)0);
rc = SQLITE_NOMEM;
goto vdbe_halt;
/* Jump to here for an SQLITE_MISUSE error.
*/
abort_due_to_misuse:
rc = SQLITE_MISUSE;
/* Fall thru into abort_due_to_error */
/* Jump to here for any other kind of fatal error. The "rc" variable
** should hold the error number.
*/
abort_due_to_error:
if( p->zErrMsg==0 ){
if( sqlite_malloc_failed ) rc = SQLITE_NOMEM;
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
}
goto vdbe_halt;
/* Jump to here if the sqlite_interrupt() API sets the interrupt
** flag.
*/
abort_due_to_interrupt:
assert( db->flags & SQLITE_Interrupt );
db->flags &= ~SQLITE_Interrupt;
if( db->magic!=SQLITE_MAGIC_BUSY ){
rc = SQLITE_MISUSE;
}else{
rc = SQLITE_INTERRUPT;
}
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
goto vdbe_halt;
}