/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- incr
- reset
- close
- getChar
- lookChar
- fillReadBuf
- getPSFilter
- isBinary
- getImageParams
- getImageParams2
- readBoxes
- readColorSpecBox
- readCodestream
- readTilePart
- readTilePartData
- readCodeBlockData
- inverseTransform
- inverseTransformLevel
- inverseTransform1D
- inverseMultiCompAndDC
- readBoxHdr
- readMarkerHdr
- readUByte
- readByte
- readUWord
- readULong
- readNBytes
- readBits
- startBitBuf
- finishBitBuf
//========================================================================
//
// JPXStream.cc
//
// Copyright 2002-2003 Glyph & Cog, LLC
//
//========================================================================
#include <aconf.h>
#ifdef USE_GCC_PRAGMAS
#pragma implementation
#endif
#include <limits.h>
#include "gmem.h"
#include "Error.h"
#include "JArithmeticDecoder.h"
#include "JPXStream.h"
//~ to do:
// - precincts
// - ROI
// - progression order changes
// - packed packet headers
// - support for palettes, channel maps, etc.
// - make sure all needed JP2/JPX subboxes are parsed (readBoxes)
// - can we assume that QCC segments must come after the QCD segment?
// - skip EPH markers (readTilePartData)
// - handle tilePartToEOC in readTilePartData
// - deal with multiple codeword segments (readTilePartData,
// readCodeBlockData)
// - progression orders 2, 3, and 4
// - in coefficient decoding (readCodeBlockData):
// - termination pattern: terminate after every coding pass
// - error resilience segmentation symbol
// - selective arithmetic coding bypass
// - vertically causal context formation
// - coeffs longer than 31 bits (should just ignore the extra bits?)
// - handle boxes larger than 2^32 bytes
// - the fixed-point arithmetic won't handle 16-bit pixels
//------------------------------------------------------------------------
// number of contexts for the arithmetic decoder
#define jpxNContexts 19
#define jpxContextSigProp 0 // 0 - 8: significance prop and cleanup
#define jpxContextSign 9 // 9 - 13: sign
#define jpxContextMagRef 14 // 14 -16: magnitude refinement
#define jpxContextRunLength 17 // cleanup: run length
#define jpxContextUniform 18 // cleanup: first signif coeff
//------------------------------------------------------------------------
#define jpxPassSigProp 0
#define jpxPassMagRef 1
#define jpxPassCleanup 2
//------------------------------------------------------------------------
// arithmetic decoder context for the significance propagation and
// cleanup passes:
// [horiz][vert][diag][subband]
// where subband = 0 for HL
// = 1 for LH and LL
// = 2 for HH
static Guint sigPropContext[3][3][5][3] = {
{{{ 0, 0, 0 }, // horiz=0, vert=0, diag=0
{ 1, 1, 3 }, // horiz=0, vert=0, diag=1
{ 2, 2, 6 }, // horiz=0, vert=0, diag=2
{ 2, 2, 8 }, // horiz=0, vert=0, diag=3
{ 2, 2, 8 }}, // horiz=0, vert=0, diag=4
{{ 5, 3, 1 }, // horiz=0, vert=1, diag=0
{ 6, 3, 4 }, // horiz=0, vert=1, diag=1
{ 6, 3, 7 }, // horiz=0, vert=1, diag=2
{ 6, 3, 8 }, // horiz=0, vert=1, diag=3
{ 6, 3, 8 }}, // horiz=0, vert=1, diag=4
{{ 8, 4, 2 }, // horiz=0, vert=2, diag=0
{ 8, 4, 5 }, // horiz=0, vert=2, diag=1
{ 8, 4, 7 }, // horiz=0, vert=2, diag=2
{ 8, 4, 8 }, // horiz=0, vert=2, diag=3
{ 8, 4, 8 }}}, // horiz=0, vert=2, diag=4
{{{ 3, 5, 1 }, // horiz=1, vert=0, diag=0
{ 3, 6, 4 }, // horiz=1, vert=0, diag=1
{ 3, 6, 7 }, // horiz=1, vert=0, diag=2
{ 3, 6, 8 }, // horiz=1, vert=0, diag=3
{ 3, 6, 8 }}, // horiz=1, vert=0, diag=4
{{ 7, 7, 2 }, // horiz=1, vert=1, diag=0
{ 7, 7, 5 }, // horiz=1, vert=1, diag=1
{ 7, 7, 7 }, // horiz=1, vert=1, diag=2
{ 7, 7, 8 }, // horiz=1, vert=1, diag=3
{ 7, 7, 8 }}, // horiz=1, vert=1, diag=4
{{ 8, 7, 2 }, // horiz=1, vert=2, diag=0
{ 8, 7, 5 }, // horiz=1, vert=2, diag=1
{ 8, 7, 7 }, // horiz=1, vert=2, diag=2
{ 8, 7, 8 }, // horiz=1, vert=2, diag=3
{ 8, 7, 8 }}}, // horiz=1, vert=2, diag=4
{{{ 4, 8, 2 }, // horiz=2, vert=0, diag=0
{ 4, 8, 5 }, // horiz=2, vert=0, diag=1
{ 4, 8, 7 }, // horiz=2, vert=0, diag=2
{ 4, 8, 8 }, // horiz=2, vert=0, diag=3
{ 4, 8, 8 }}, // horiz=2, vert=0, diag=4
{{ 7, 8, 2 }, // horiz=2, vert=1, diag=0
{ 7, 8, 5 }, // horiz=2, vert=1, diag=1
{ 7, 8, 7 }, // horiz=2, vert=1, diag=2
{ 7, 8, 8 }, // horiz=2, vert=1, diag=3
{ 7, 8, 8 }}, // horiz=2, vert=1, diag=4
{{ 8, 8, 2 }, // horiz=2, vert=2, diag=0
{ 8, 8, 5 }, // horiz=2, vert=2, diag=1
{ 8, 8, 7 }, // horiz=2, vert=2, diag=2
{ 8, 8, 8 }, // horiz=2, vert=2, diag=3
{ 8, 8, 8 }}} // horiz=2, vert=2, diag=4
};
// arithmetic decoder context and xor bit for the sign bit in the
// significance propagation pass:
// [horiz][vert][k]
// where horiz/vert are offset by 2 (i.e., range is -2 .. 2)
// and k = 0 for the context
// = 1 for the xor bit
static Guint signContext[5][5][2] = {
{{ 13, 1 }, // horiz=-2, vert=-2
{ 13, 1 }, // horiz=-2, vert=-1
{ 12, 1 }, // horiz=-2, vert= 0
{ 11, 1 }, // horiz=-2, vert=+1
{ 11, 1 }}, // horiz=-2, vert=+2
{{ 13, 1 }, // horiz=-1, vert=-2
{ 13, 1 }, // horiz=-1, vert=-1
{ 12, 1 }, // horiz=-1, vert= 0
{ 11, 1 }, // horiz=-1, vert=+1
{ 11, 1 }}, // horiz=-1, vert=+2
{{ 10, 1 }, // horiz= 0, vert=-2
{ 10, 1 }, // horiz= 0, vert=-1
{ 9, 0 }, // horiz= 0, vert= 0
{ 10, 0 }, // horiz= 0, vert=+1
{ 10, 0 }}, // horiz= 0, vert=+2
{{ 11, 0 }, // horiz=+1, vert=-2
{ 11, 0 }, // horiz=+1, vert=-1
{ 12, 0 }, // horiz=+1, vert= 0
{ 13, 0 }, // horiz=+1, vert=+1
{ 13, 0 }}, // horiz=+1, vert=+2
{{ 11, 0 }, // horiz=+2, vert=-2
{ 11, 0 }, // horiz=+2, vert=-1
{ 12, 0 }, // horiz=+2, vert= 0
{ 13, 0 }, // horiz=+2, vert=+1
{ 13, 0 }}, // horiz=+2, vert=+2
};
//------------------------------------------------------------------------
// constants used in the IDWT
#define idwtAlpha -1.586134342059924
#define idwtBeta -0.052980118572961
#define idwtGamma 0.882911075530934
#define idwtDelta 0.443506852043971
#define idwtKappa 1.230174104914001
#define idwtIKappa (1.0 / idwtKappa)
// number of bits to the right of the decimal point for the fixed
// point arithmetic used in the IDWT
#define fracBits 16
//------------------------------------------------------------------------
// floor(x / y)
#define jpxFloorDiv(x, y) ((x) / (y))
// floor(x / 2^y)
#define jpxFloorDivPow2(x, y) ((x) >> (y))
// ceil(x / y)
#define jpxCeilDiv(x, y) (((x) + (y) - 1) / (y))
// ceil(x / 2^y)
#define jpxCeilDivPow2(x, y) (((x) + (1 << (y)) - 1) >> (y))
//------------------------------------------------------------------------
#if 1 //----- disable coverage tracking
#define cover(idx)
#else //----- enable coverage tracking
class JPXCover {
public:
JPXCover(int sizeA);
~JPXCover();
void incr(int idx);
private:
int size, used;
int *data;
};
JPXCover::JPXCover(int sizeA) {
size = sizeA;
used = -1;
data = (int *)gmallocn(size, sizeof(int));
memset(data, 0, size * sizeof(int));
}
JPXCover::~JPXCover() {
int i;
printf("JPX coverage:\n");
for (i = 0; i <= used; ++i) {
printf(" %4d: %8d\n", i, data[i]);
}
gfree(data);
}
void JPXCover::incr(int idx) {
if (idx < size) {
++data[idx];
if (idx > used) {
used = idx;
}
}
}
JPXCover jpxCover(150);
#define cover(idx) jpxCover.incr(idx)
#endif //----- coverage tracking
//------------------------------------------------------------------------
JPXStream::JPXStream(Stream *strA):
FilterStream(strA)
{
nComps = 0;
bpc = NULL;
width = height = 0;
haveCS = gFalse;
havePalette = gFalse;
haveCompMap = gFalse;
haveChannelDefn = gFalse;
img.tiles = NULL;
bitBuf = 0;
bitBufLen = 0;
bitBufSkip = gFalse;
byteCount = 0;
}
JPXStream::~JPXStream() {
close();
delete str;
}
void JPXStream::reset() {
str->reset();
if (readBoxes()) {
curY = img.yOffset;
} else {
// readBoxes reported an error, so we go immediately to EOF
curY = img.ySize;
}
curX = img.xOffset;
curComp = 0;
readBufLen = 0;
}
void JPXStream::close() {
JPXTile *tile;
JPXTileComp *tileComp;
JPXResLevel *resLevel;
JPXPrecinct *precinct;
JPXSubband *subband;
JPXCodeBlock *cb;
Guint comp, i, k, r, pre, sb;
gfree(bpc);
bpc = NULL;
if (havePalette) {
gfree(palette.bpc);
gfree(palette.c);
havePalette = gFalse;
}
if (haveCompMap) {
gfree(compMap.comp);
gfree(compMap.type);
gfree(compMap.pComp);
haveCompMap = gFalse;
}
if (haveChannelDefn) {
gfree(channelDefn.idx);
gfree(channelDefn.type);
gfree(channelDefn.assoc);
haveChannelDefn = gFalse;
}
if (img.tiles) {
for (i = 0; i < img.nXTiles * img.nYTiles; ++i) {
tile = &img.tiles[i];
if (tile->tileComps) {
for (comp = 0; comp < img.nComps; ++comp) {
tileComp = &tile->tileComps[comp];
gfree(tileComp->quantSteps);
gfree(tileComp->data);
gfree(tileComp->buf);
if (tileComp->resLevels) {
for (r = 0; r <= tileComp->nDecompLevels; ++r) {
resLevel = &tileComp->resLevels[r];
if (resLevel->precincts) {
for (pre = 0; pre < 1; ++pre) {
precinct = &resLevel->precincts[pre];
if (precinct->subbands) {
for (sb = 0; sb < (Guint)(r == 0 ? 1 : 3); ++sb) {
subband = &precinct->subbands[sb];
gfree(subband->inclusion);
gfree(subband->zeroBitPlane);
if (subband->cbs) {
for (k = 0; k < subband->nXCBs * subband->nYCBs; ++k) {
cb = &subband->cbs[k];
gfree(cb->coeffs);
if (cb->arithDecoder) {
delete cb->arithDecoder;
}
if (cb->stats) {
delete cb->stats;
}
}
gfree(subband->cbs);
}
}
gfree(precinct->subbands);
}
}
gfree(img.tiles[i].tileComps[comp].resLevels[r].precincts);
}
}
gfree(img.tiles[i].tileComps[comp].resLevels);
}
}
gfree(img.tiles[i].tileComps);
}
}
gfree(img.tiles);
img.tiles = NULL;
}
FilterStream::close();
}
int JPXStream::getChar() {
int c;
if (readBufLen < 8) {
fillReadBuf();
}
if (readBufLen == 8) {
c = readBuf & 0xff;
readBufLen = 0;
} else if (readBufLen > 8) {
c = (readBuf >> (readBufLen - 8)) & 0xff;
readBufLen -= 8;
} else if (readBufLen == 0) {
c = EOF;
} else {
c = (readBuf << (8 - readBufLen)) & 0xff;
readBufLen = 0;
}
return c;
}
int JPXStream::lookChar() {
int c;
if (readBufLen < 8) {
fillReadBuf();
}
if (readBufLen == 8) {
c = readBuf & 0xff;
} else if (readBufLen > 8) {
c = (readBuf >> (readBufLen - 8)) & 0xff;
} else if (readBufLen == 0) {
c = EOF;
} else {
c = (readBuf << (8 - readBufLen)) & 0xff;
}
return c;
}
void JPXStream::fillReadBuf() {
JPXTileComp *tileComp;
Guint tileIdx, tx, ty;
int pix, pixBits;
do {
if (curY >= img.ySize) {
return;
}
tileIdx = ((curY - img.yTileOffset) / img.yTileSize) * img.nXTiles
+ (curX - img.xTileOffset) / img.xTileSize;
#if 1 //~ ignore the palette, assume the PDF ColorSpace object is valid
tileComp = &img.tiles[tileIdx].tileComps[curComp];
#else
tileComp = &img.tiles[tileIdx].tileComps[havePalette ? 0 : curComp];
#endif
tx = jpxCeilDiv((curX - img.xTileOffset) % img.xTileSize, tileComp->hSep);
ty = jpxCeilDiv((curY - img.yTileOffset) % img.yTileSize, tileComp->vSep);
pix = (int)tileComp->data[ty * (tileComp->x1 - tileComp->x0) + tx];
pixBits = tileComp->prec;
#if 1 //~ ignore the palette, assume the PDF ColorSpace object is valid
if (++curComp == img.nComps) {
#else
if (havePalette) {
if (pix >= 0 && pix < palette.nEntries) {
pix = palette.c[pix * palette.nComps + curComp];
} else {
pix =
pixBits = palette.bpc[curComp];
}
if (++curComp == (Guint)(havePalette ? palette.nComps : img.nComps)) {
#endif
curComp = 0;
if (++curX == img.xSize) {
curX = img.xOffset;
++curY;
}
}
if (pixBits == 8) {
readBuf = (readBuf << 8) | (pix & 0xff);
} else {
readBuf = (readBuf << pixBits) | (pix & ((1 << pixBits) - 1));
}
readBufLen += pixBits;
} while (readBufLen < 8);
}
GString *JPXStream::getPSFilter(int psLevel, char *indent) {
return NULL;
}
GBool JPXStream::isBinary(GBool last) {
return str->isBinary(gTrue);
}
void JPXStream::getImageParams(int *bitsPerComponent,
StreamColorSpaceMode *csMode) {
Guint boxType, boxLen, dataLen, csEnum;
Guint bpc1, dummy, i;
int csMeth, csPrec, csPrec1, dummy2;
StreamColorSpaceMode csMode1;
GBool haveBPC, haveCSMode;
csPrec = 0; // make gcc happy
Guint num_components = 0;
haveBPC = haveCSMode = gFalse;
str->reset();
if (str->lookChar() == 0xff) {
getImageParams2(bitsPerComponent, csMode);
} else {
while (readBoxHdr(&boxType, &boxLen, &dataLen)) {
if (boxType == 0x6a703268) { // JP2 header
cover(0);
// skip the superbox
} else if (boxType == 0x69686472) { // image header
cover(1);
if (readULong(&dummy) &&
readULong(&dummy) &&
readUWord(&num_components) &&
readUByte(&bpc1) &&
readUByte(&dummy) &&
readUByte(&dummy) &&
readUByte(&dummy)) {
*bitsPerComponent = bpc1 + 1;
haveBPC = gTrue;
}
} else if (boxType == 0x636F6C72) { // color specification
cover(2);
if (readByte(&csMeth) &&
readByte(&csPrec1) &&
readByte(&dummy2)) {
if (csMeth == 1) {
if (readULong(&csEnum)) {
csMode1 = streamCSNone;
if (csEnum == jpxCSBiLevel ||
csEnum == jpxCSGrayscale) {
csMode1 = streamCSDeviceGray;
} else if (csEnum == jpxCSCMYK) {
csMode1 = streamCSDeviceCMYK;
} else if (csEnum == jpxCSsRGB ||
csEnum == jpxCSCISesRGB ||
csEnum == jpxCSROMMRGB) {
csMode1 = streamCSDeviceRGB;
}
if (csMode1 != streamCSNone &&
(!haveCSMode || csPrec1 > csPrec)) {
*csMode = csMode1;
csPrec = csPrec1;
haveCSMode = gTrue;
}
for (i = 0; i < dataLen - 7; ++i) {
str->getChar();
}
}
} else {
for (i = 0; i < dataLen - 3; ++i) {
str->getChar();
}
}
}
} else if (boxType == 0x6A703263) { // codestream
cover(3);
if (!(haveBPC && haveCSMode)) {
getImageParams2(bitsPerComponent, csMode);
}
break;
} else {
cover(4);
for (i = 0; i < dataLen; ++i) {
str->getChar();
}
}
}
}
if(*csMode == streamCSDeviceRGB && num_components == 4) {
*csMode = streamCSDeviceRGBX;
}
str->close();
}
// Get image parameters from the codestream.
void JPXStream::getImageParams2(int *bitsPerComponent,
StreamColorSpaceMode *csMode) {
int segType;
Guint segLen, nComps1, bpc1, dummy, i;
while (readMarkerHdr(&segType, &segLen)) {
if (segType == 0x51) { // SIZ - image and tile size
cover(5);
if (readUWord(&dummy) &&
readULong(&dummy) &&
readULong(&dummy) &&
readULong(&dummy) &&
readULong(&dummy) &&
readULong(&dummy) &&
readULong(&dummy) &&
readULong(&dummy) &&
readULong(&dummy) &&
readUWord(&nComps1) &&
readUByte(&bpc1)) {
*bitsPerComponent = (bpc1 & 0x7f) + 1;
// if there's no color space info, take a guess
if (nComps1 == 1) {
*csMode = streamCSDeviceGray;
} else if (nComps1 == 3) {
*csMode = streamCSDeviceRGB;
} else if (nComps1 == 4) {
*csMode = streamCSDeviceCMYK;
}
}
break;
} else {
cover(6);
if (segLen > 2) {
for (i = 0; i < segLen - 2; ++i) {
str->getChar();
}
}
}
}
}
GBool JPXStream::readBoxes() {
Guint boxType, boxLen, dataLen;
Guint bpc1, compression, unknownColorspace, ipr;
Guint i, j;
haveImgHdr = gFalse;
// check for a naked JPEG 2000 codestream (without the JP2/JPX
// wrapper) -- this appears to be a violation of the PDF spec, but
// Acrobat allows it
if (str->lookChar() == 0xff) {
cover(7);
error(getPos(), "Naked JPEG 2000 codestream, missing JP2/JPX wrapper");
readCodestream(0);
nComps = img.nComps;
bpc = (Guint *)gmallocn(nComps, sizeof(Guint));
for (i = 0; i < nComps; ++i) {
bpc[i] = img.tiles[0].tileComps[i].prec;
}
width = img.xSize - img.xOffset;
height = img.ySize - img.yOffset;
return gTrue;
}
while (readBoxHdr(&boxType, &boxLen, &dataLen)) {
switch (boxType) {
case 0x6a703268: // JP2 header
// this is a grouping box ('superbox') which has no real
// contents and doesn't appear to be used consistently, i.e.,
// some things which should be subboxes of the JP2 header box
// show up outside of it - so we simply ignore the JP2 header
// box
cover(8);
break;
case 0x69686472: // image header
cover(9);
if (!readULong(&height) ||
!readULong(&width) ||
!readUWord(&nComps) ||
!readUByte(&bpc1) ||
!readUByte(&compression) ||
!readUByte(&unknownColorspace) ||
!readUByte(&ipr)) {
error(getPos(), "Unexpected EOF in JPX stream");
return gFalse;
}
if (compression != 7) {
error(getPos(), "Unknown compression type in JPX stream");
return gFalse;
}
bpc = (Guint *)gmallocn(nComps, sizeof(Guint));
for (i = 0; i < nComps; ++i) {
bpc[i] = bpc1;
}
haveImgHdr = gTrue;
break;
case 0x62706363: // bits per component
cover(10);
if (!haveImgHdr) {
error(getPos(), "Found bits per component box before image header box in JPX stream");
return gFalse;
}
if (dataLen != nComps) {
error(getPos(), "Invalid bits per component box in JPX stream");
return gFalse;
}
for (i = 0; i < nComps; ++i) {
if (!readUByte(&bpc[i])) {
error(getPos(), "Unexpected EOF in JPX stream");
return gFalse;
}
}
break;
case 0x636F6C72: // color specification
cover(11);
if (!readColorSpecBox(dataLen)) {
return gFalse;
}
break;
case 0x70636c72: // palette
cover(12);
if (!readUWord(&palette.nEntries) ||
!readUByte(&palette.nComps)) {
error(getPos(), "Unexpected EOF in JPX stream");
return gFalse;
}
palette.bpc = (Guint *)gmallocn(palette.nComps, sizeof(Guint));
palette.c =
(int *)gmallocn(palette.nEntries * palette.nComps, sizeof(int));
for (i = 0; i < palette.nComps; ++i) {
if (!readUByte(&palette.bpc[i])) {
error(getPos(), "Unexpected EOF in JPX stream");
return gFalse;
}
++palette.bpc[i];
}
for (i = 0; i < palette.nEntries; ++i) {
for (j = 0; j < palette.nComps; ++j) {
if (!readNBytes(((palette.bpc[j] & 0x7f) + 7) >> 3,
(palette.bpc[j] & 0x80) ? gTrue : gFalse,
&palette.c[i * palette.nComps + j])) {
error(getPos(), "Unexpected EOF in JPX stream");
return gFalse;
}
}
}
havePalette = gTrue;
break;
case 0x636d6170: // component mapping
cover(13);
compMap.nChannels = dataLen / 4;
compMap.comp = (Guint *)gmallocn(compMap.nChannels, sizeof(Guint));
compMap.type = (Guint *)gmallocn(compMap.nChannels, sizeof(Guint));
compMap.pComp = (Guint *)gmallocn(compMap.nChannels, sizeof(Guint));
for (i = 0; i < compMap.nChannels; ++i) {
if (!readUWord(&compMap.comp[i]) ||
!readUByte(&compMap.type[i]) ||
!readUByte(&compMap.pComp[i])) {
error(getPos(), "Unexpected EOF in JPX stream");
return gFalse;
}
}
haveCompMap = gTrue;
break;
case 0x63646566: // channel definition
cover(14);
if (!readUWord(&channelDefn.nChannels)) {
error(getPos(), "Unexpected EOF in JPX stream");
return gFalse;
}
channelDefn.idx =
(Guint *)gmallocn(channelDefn.nChannels, sizeof(Guint));
channelDefn.type =
(Guint *)gmallocn(channelDefn.nChannels, sizeof(Guint));
channelDefn.assoc =
(Guint *)gmallocn(channelDefn.nChannels, sizeof(Guint));
for (i = 0; i < channelDefn.nChannels; ++i) {
if (!readUWord(&channelDefn.idx[i]) ||
!readUWord(&channelDefn.type[i]) ||
!readUWord(&channelDefn.assoc[i])) {
error(getPos(), "Unexpected EOF in JPX stream");
return gFalse;
}
}
haveChannelDefn = gTrue;
break;
case 0x6A703263: // contiguous codestream
cover(15);
if (!bpc) {
error(getPos(), "JPX stream is missing the image header box");
}
if (!haveCS) {
error(getPos(), "JPX stream has no supported color spec");
}
if (!readCodestream(dataLen)) {
return gFalse;
}
break;
default:
cover(16);
for (i = 0; i < dataLen; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Unexpected EOF in JPX stream");
return gFalse;
}
}
break;
}
}
return gTrue;
}
GBool JPXStream::readColorSpecBox(Guint dataLen) {
JPXColorSpec newCS;
Guint csApprox, csEnum;
Guint i;
GBool ok;
ok = gFalse;
if (!readUByte(&newCS.meth) ||
!readByte(&newCS.prec) ||
!readUByte(&csApprox)) {
goto err;
}
switch (newCS.meth) {
case 1: // enumerated colorspace
cover(17);
if (!readULong(&csEnum)) {
goto err;
}
newCS.enumerated.type = (JPXColorSpaceType)csEnum;
switch (newCS.enumerated.type) {
case jpxCSBiLevel:
ok = gTrue;
break;
case jpxCSYCbCr1:
ok = gTrue;
break;
case jpxCSYCbCr2:
ok = gTrue;
break;
case jpxCSYCBCr3:
ok = gTrue;
break;
case jpxCSPhotoYCC:
ok = gTrue;
break;
case jpxCSCMY:
ok = gTrue;
break;
case jpxCSCMYK:
ok = gTrue;
break;
case jpxCSYCCK:
ok = gTrue;
break;
case jpxCSCIELab:
if (dataLen == 7 + 7*4) {
if (!readULong(&newCS.enumerated.cieLab.rl) ||
!readULong(&newCS.enumerated.cieLab.ol) ||
!readULong(&newCS.enumerated.cieLab.ra) ||
!readULong(&newCS.enumerated.cieLab.oa) ||
!readULong(&newCS.enumerated.cieLab.rb) ||
!readULong(&newCS.enumerated.cieLab.ob) ||
!readULong(&newCS.enumerated.cieLab.il)) {
goto err;
}
} else if (dataLen == 7) {
//~ this assumes the 8-bit case
cover(92);
newCS.enumerated.cieLab.rl = 100;
newCS.enumerated.cieLab.ol = 0;
newCS.enumerated.cieLab.ra = 255;
newCS.enumerated.cieLab.oa = 128;
newCS.enumerated.cieLab.rb = 255;
newCS.enumerated.cieLab.ob = 96;
newCS.enumerated.cieLab.il = 0x00443530;
} else {
goto err;
}
ok = gTrue;
break;
case jpxCSsRGB:
ok = gTrue;
break;
case jpxCSGrayscale:
ok = gTrue;
break;
case jpxCSBiLevel2:
ok = gTrue;
break;
case jpxCSCIEJab:
// not allowed in PDF
goto err;
case jpxCSCISesRGB:
ok = gTrue;
break;
case jpxCSROMMRGB:
ok = gTrue;
break;
case jpxCSsRGBYCbCr:
ok = gTrue;
break;
case jpxCSYPbPr1125:
ok = gTrue;
break;
case jpxCSYPbPr1250:
ok = gTrue;
break;
default:
goto err;
}
break;
case 2: // restricted ICC profile
case 3: // any ICC profile (JPX)
case 4: // vendor color (JPX)
cover(18);
for (i = 0; i < dataLen - 3; ++i) {
if (str->getChar() == EOF) {
goto err;
}
}
break;
}
if (ok && (!haveCS || newCS.prec > cs.prec)) {
cs = newCS;
haveCS = gTrue;
}
return gTrue;
err:
error(getPos(), "Error in JPX color spec");
return gFalse;
}
GBool JPXStream::readCodestream(Guint len) {
JPXTile *tile;
JPXTileComp *tileComp;
int segType;
GBool haveSIZ, haveCOD, haveQCD, haveSOT;
Guint precinctSize, style;
Guint segLen, capabilities, comp, i, j, r;
//----- main header
haveSIZ = haveCOD = haveQCD = haveSOT = gFalse;
do {
if (!readMarkerHdr(&segType, &segLen)) {
error(getPos(), "Error in JPX codestream");
return gFalse;
}
switch (segType) {
case 0x4f: // SOC - start of codestream
// marker only
cover(19);
break;
case 0x51: // SIZ - image and tile size
cover(20);
if (!readUWord(&capabilities) ||
!readULong(&img.xSize) ||
!readULong(&img.ySize) ||
!readULong(&img.xOffset) ||
!readULong(&img.yOffset) ||
!readULong(&img.xTileSize) ||
!readULong(&img.yTileSize) ||
!readULong(&img.xTileOffset) ||
!readULong(&img.yTileOffset) ||
!readUWord(&img.nComps)) {
error(getPos(), "Error in JPX SIZ marker segment");
return gFalse;
}
if (haveImgHdr && img.nComps != nComps) {
error(getPos(), "Different number of components in JPX SIZ marker segment");
return gFalse;
}
img.nXTiles = (img.xSize - img.xTileOffset + img.xTileSize - 1)
/ img.xTileSize;
img.nYTiles = (img.ySize - img.yTileOffset + img.yTileSize - 1)
/ img.yTileSize;
// check for overflow before allocating memory
if (img.nXTiles <= 0 || img.nYTiles <= 0 ||
img.nXTiles >= INT_MAX / img.nYTiles) {
error(getPos(), "Bad tile count in JPX SIZ marker segment");
return gFalse;
}
img.tiles = (JPXTile *)gmallocn(img.nXTiles * img.nYTiles,
sizeof(JPXTile));
for (i = 0; i < img.nXTiles * img.nYTiles; ++i) {
img.tiles[i].tileComps = (JPXTileComp *)gmallocn(img.nComps,
sizeof(JPXTileComp));
for (comp = 0; comp < img.nComps; ++comp) {
img.tiles[i].tileComps[comp].quantSteps = NULL;
img.tiles[i].tileComps[comp].data = NULL;
img.tiles[i].tileComps[comp].buf = NULL;
img.tiles[i].tileComps[comp].resLevels = NULL;
}
}
for (comp = 0; comp < img.nComps; ++comp) {
if (!readUByte(&img.tiles[0].tileComps[comp].prec) ||
!readUByte(&img.tiles[0].tileComps[comp].hSep) ||
!readUByte(&img.tiles[0].tileComps[comp].vSep)) {
error(getPos(), "Error in JPX SIZ marker segment");
return gFalse;
}
img.tiles[0].tileComps[comp].sgned =
(img.tiles[0].tileComps[comp].prec & 0x80) ? gTrue : gFalse;
img.tiles[0].tileComps[comp].prec =
(img.tiles[0].tileComps[comp].prec & 0x7f) + 1;
for (i = 1; i < img.nXTiles * img.nYTiles; ++i) {
img.tiles[i].tileComps[comp] = img.tiles[0].tileComps[comp];
}
}
haveSIZ = gTrue;
break;
case 0x52: // COD - coding style default
cover(21);
if (!readUByte(&img.tiles[0].tileComps[0].style) ||
!readUByte(&img.tiles[0].progOrder) ||
!readUWord(&img.tiles[0].nLayers) ||
!readUByte(&img.tiles[0].multiComp) ||
!readUByte(&img.tiles[0].tileComps[0].nDecompLevels) ||
!readUByte(&img.tiles[0].tileComps[0].codeBlockW) ||
!readUByte(&img.tiles[0].tileComps[0].codeBlockH) ||
!readUByte(&img.tiles[0].tileComps[0].codeBlockStyle) ||
!readUByte(&img.tiles[0].tileComps[0].transform)) {
error(getPos(), "Error in JPX COD marker segment");
return gFalse;
}
img.tiles[0].tileComps[0].codeBlockW += 2;
img.tiles[0].tileComps[0].codeBlockH += 2;
for (i = 0; i < img.nXTiles * img.nYTiles; ++i) {
if (i != 0) {
img.tiles[i].progOrder = img.tiles[0].progOrder;
img.tiles[i].nLayers = img.tiles[0].nLayers;
img.tiles[i].multiComp = img.tiles[0].multiComp;
}
for (comp = 0; comp < img.nComps; ++comp) {
if (!(i == 0 && comp == 0)) {
img.tiles[i].tileComps[comp].style =
img.tiles[0].tileComps[0].style;
img.tiles[i].tileComps[comp].nDecompLevels =
img.tiles[0].tileComps[0].nDecompLevels;
img.tiles[i].tileComps[comp].codeBlockW =
img.tiles[0].tileComps[0].codeBlockW;
img.tiles[i].tileComps[comp].codeBlockH =
img.tiles[0].tileComps[0].codeBlockH;
img.tiles[i].tileComps[comp].codeBlockStyle =
img.tiles[0].tileComps[0].codeBlockStyle;
img.tiles[i].tileComps[comp].transform =
img.tiles[0].tileComps[0].transform;
}
img.tiles[i].tileComps[comp].resLevels =
(JPXResLevel *)gmallocn(
(img.tiles[i].tileComps[comp].nDecompLevels + 1),
sizeof(JPXResLevel));
for (r = 0; r <= img.tiles[i].tileComps[comp].nDecompLevels; ++r) {
img.tiles[i].tileComps[comp].resLevels[r].precincts = NULL;
}
}
}
for (r = 0; r <= img.tiles[0].tileComps[0].nDecompLevels; ++r) {
if (img.tiles[0].tileComps[0].style & 0x01) {
cover(91);
if (!readUByte(&precinctSize)) {
error(getPos(), "Error in JPX COD marker segment");
return gFalse;
}
img.tiles[0].tileComps[0].resLevels[r].precinctWidth =
precinctSize & 0x0f;
img.tiles[0].tileComps[0].resLevels[r].precinctHeight =
(precinctSize >> 4) & 0x0f;
} else {
img.tiles[0].tileComps[0].resLevels[r].precinctWidth = 15;
img.tiles[0].tileComps[0].resLevels[r].precinctHeight = 15;
}
}
for (i = 0; i < img.nXTiles * img.nYTiles; ++i) {
for (comp = 0; comp < img.nComps; ++comp) {
if (!(i == 0 && comp == 0)) {
for (r = 0; r <= img.tiles[i].tileComps[comp].nDecompLevels; ++r) {
img.tiles[i].tileComps[comp].resLevels[r].precinctWidth =
img.tiles[0].tileComps[0].resLevels[r].precinctWidth;
img.tiles[i].tileComps[comp].resLevels[r].precinctHeight =
img.tiles[0].tileComps[0].resLevels[r].precinctHeight;
}
}
}
}
haveCOD = gTrue;
break;
case 0x53: // COC - coding style component
cover(22);
if (!haveCOD) {
error(getPos(), "JPX COC marker segment before COD segment");
return gFalse;
}
if ((img.nComps > 256 && !readUWord(&comp)) ||
(img.nComps <= 256 && !readUByte(&comp)) ||
comp >= img.nComps ||
!readUByte(&style) ||
!readUByte(&img.tiles[0].tileComps[comp].nDecompLevels) ||
!readUByte(&img.tiles[0].tileComps[comp].codeBlockW) ||
!readUByte(&img.tiles[0].tileComps[comp].codeBlockH) ||
!readUByte(&img.tiles[0].tileComps[comp].codeBlockStyle) ||
!readUByte(&img.tiles[0].tileComps[comp].transform)) {
error(getPos(), "Error in JPX COC marker segment");
return gFalse;
}
img.tiles[0].tileComps[comp].style =
(img.tiles[0].tileComps[comp].style & ~1) | (style & 1);
img.tiles[0].tileComps[comp].codeBlockW += 2;
img.tiles[0].tileComps[comp].codeBlockH += 2;
for (i = 0; i < img.nXTiles * img.nYTiles; ++i) {
if (i != 0) {
img.tiles[i].tileComps[comp].style =
img.tiles[0].tileComps[comp].style;
img.tiles[i].tileComps[comp].nDecompLevels =
img.tiles[0].tileComps[comp].nDecompLevels;
img.tiles[i].tileComps[comp].codeBlockW =
img.tiles[0].tileComps[comp].codeBlockW;
img.tiles[i].tileComps[comp].codeBlockH =
img.tiles[0].tileComps[comp].codeBlockH;
img.tiles[i].tileComps[comp].codeBlockStyle =
img.tiles[0].tileComps[comp].codeBlockStyle;
img.tiles[i].tileComps[comp].transform =
img.tiles[0].tileComps[comp].transform;
}
img.tiles[i].tileComps[comp].resLevels =
(JPXResLevel *)greallocn(
img.tiles[i].tileComps[comp].resLevels,
(img.tiles[i].tileComps[comp].nDecompLevels + 1),
sizeof(JPXResLevel));
for (r = 0; r <= img.tiles[i].tileComps[comp].nDecompLevels; ++r) {
img.tiles[i].tileComps[comp].resLevels[r].precincts = NULL;
}
}
for (r = 0; r <= img.tiles[0].tileComps[comp].nDecompLevels; ++r) {
if (img.tiles[0].tileComps[comp].style & 0x01) {
if (!readUByte(&precinctSize)) {
error(getPos(), "Error in JPX COD marker segment");
return gFalse;
}
img.tiles[0].tileComps[comp].resLevels[r].precinctWidth =
precinctSize & 0x0f;
img.tiles[0].tileComps[comp].resLevels[r].precinctHeight =
(precinctSize >> 4) & 0x0f;
} else {
img.tiles[0].tileComps[comp].resLevels[r].precinctWidth = 15;
img.tiles[0].tileComps[comp].resLevels[r].precinctHeight = 15;
}
}
for (i = 1; i < img.nXTiles * img.nYTiles; ++i) {
for (r = 0; r <= img.tiles[i].tileComps[comp].nDecompLevels; ++r) {
img.tiles[i].tileComps[comp].resLevels[r].precinctWidth =
img.tiles[0].tileComps[comp].resLevels[r].precinctWidth;
img.tiles[i].tileComps[comp].resLevels[r].precinctHeight =
img.tiles[0].tileComps[comp].resLevels[r].precinctHeight;
}
}
break;
case 0x5c: // QCD - quantization default
cover(23);
if (!readUByte(&img.tiles[0].tileComps[0].quantStyle)) {
error(getPos(), "Error in JPX QCD marker segment");
return gFalse;
}
if ((img.tiles[0].tileComps[0].quantStyle & 0x1f) == 0x00) {
img.tiles[0].tileComps[0].nQuantSteps = segLen - 3;
img.tiles[0].tileComps[0].quantSteps =
(Guint *)greallocn(img.tiles[0].tileComps[0].quantSteps,
img.tiles[0].tileComps[0].nQuantSteps,
sizeof(Guint));
for (i = 0; i < img.tiles[0].tileComps[0].nQuantSteps; ++i) {
if (!readUByte(&img.tiles[0].tileComps[0].quantSteps[i])) {
error(getPos(), "Error in JPX QCD marker segment");
return gFalse;
}
}
} else if ((img.tiles[0].tileComps[0].quantStyle & 0x1f) == 0x01) {
img.tiles[0].tileComps[0].nQuantSteps = 1;
img.tiles[0].tileComps[0].quantSteps =
(Guint *)greallocn(img.tiles[0].tileComps[0].quantSteps,
img.tiles[0].tileComps[0].nQuantSteps,
sizeof(Guint));
if (!readUWord(&img.tiles[0].tileComps[0].quantSteps[0])) {
error(getPos(), "Error in JPX QCD marker segment");
return gFalse;
}
} else if ((img.tiles[0].tileComps[0].quantStyle & 0x1f) == 0x02) {
img.tiles[0].tileComps[0].nQuantSteps = (segLen - 3) / 2;
img.tiles[0].tileComps[0].quantSteps =
(Guint *)greallocn(img.tiles[0].tileComps[0].quantSteps,
img.tiles[0].tileComps[0].nQuantSteps,
sizeof(Guint));
for (i = 0; i < img.tiles[0].tileComps[0].nQuantSteps; ++i) {
if (!readUWord(&img.tiles[0].tileComps[0].quantSteps[i])) {
error(getPos(), "Error in JPX QCD marker segment");
return gFalse;
}
}
} else {
error(getPos(), "Error in JPX QCD marker segment");
return gFalse;
}
for (i = 0; i < img.nXTiles * img.nYTiles; ++i) {
for (comp = 0; comp < img.nComps; ++comp) {
if (!(i == 0 && comp == 0)) {
img.tiles[i].tileComps[comp].quantStyle =
img.tiles[0].tileComps[0].quantStyle;
img.tiles[i].tileComps[comp].nQuantSteps =
img.tiles[0].tileComps[0].nQuantSteps;
img.tiles[i].tileComps[comp].quantSteps =
(Guint *)greallocn(img.tiles[i].tileComps[comp].quantSteps,
img.tiles[0].tileComps[0].nQuantSteps,
sizeof(Guint));
for (j = 0; j < img.tiles[0].tileComps[0].nQuantSteps; ++j) {
img.tiles[i].tileComps[comp].quantSteps[j] =
img.tiles[0].tileComps[0].quantSteps[j];
}
}
}
}
haveQCD = gTrue;
break;
case 0x5d: // QCC - quantization component
cover(24);
if (!haveQCD) {
error(getPos(), "JPX QCC marker segment before QCD segment");
return gFalse;
}
if ((img.nComps > 256 && !readUWord(&comp)) ||
(img.nComps <= 256 && !readUByte(&comp)) ||
comp >= img.nComps ||
!readUByte(&img.tiles[0].tileComps[comp].quantStyle)) {
error(getPos(), "Error in JPX QCC marker segment");
return gFalse;
}
if ((img.tiles[0].tileComps[comp].quantStyle & 0x1f) == 0x00) {
img.tiles[0].tileComps[comp].nQuantSteps =
segLen - (img.nComps > 256 ? 5 : 4);
img.tiles[0].tileComps[comp].quantSteps =
(Guint *)greallocn(img.tiles[0].tileComps[comp].quantSteps,
img.tiles[0].tileComps[comp].nQuantSteps,
sizeof(Guint));
for (i = 0; i < img.tiles[0].tileComps[comp].nQuantSteps; ++i) {
if (!readUByte(&img.tiles[0].tileComps[comp].quantSteps[i])) {
error(getPos(), "Error in JPX QCC marker segment");
return gFalse;
}
}
} else if ((img.tiles[0].tileComps[comp].quantStyle & 0x1f) == 0x01) {
img.tiles[0].tileComps[comp].nQuantSteps = 1;
img.tiles[0].tileComps[comp].quantSteps =
(Guint *)greallocn(img.tiles[0].tileComps[comp].quantSteps,
img.tiles[0].tileComps[comp].nQuantSteps,
sizeof(Guint));
if (!readUWord(&img.tiles[0].tileComps[comp].quantSteps[0])) {
error(getPos(), "Error in JPX QCC marker segment");
return gFalse;
}
} else if ((img.tiles[0].tileComps[comp].quantStyle & 0x1f) == 0x02) {
img.tiles[0].tileComps[comp].nQuantSteps =
(segLen - (img.nComps > 256 ? 5 : 4)) / 2;
img.tiles[0].tileComps[comp].quantSteps =
(Guint *)greallocn(img.tiles[0].tileComps[comp].quantSteps,
img.tiles[0].tileComps[comp].nQuantSteps,
sizeof(Guint));
for (i = 0; i < img.tiles[0].tileComps[comp].nQuantSteps; ++i) {
if (!readUWord(&img.tiles[0].tileComps[comp].quantSteps[i])) {
error(getPos(), "Error in JPX QCD marker segment");
return gFalse;
}
}
} else {
error(getPos(), "Error in JPX QCC marker segment");
return gFalse;
}
for (i = 1; i < img.nXTiles * img.nYTiles; ++i) {
img.tiles[i].tileComps[comp].quantStyle =
img.tiles[0].tileComps[comp].quantStyle;
img.tiles[i].tileComps[comp].nQuantSteps =
img.tiles[0].tileComps[comp].nQuantSteps;
img.tiles[i].tileComps[comp].quantSteps =
(Guint *)greallocn(img.tiles[i].tileComps[comp].quantSteps,
img.tiles[0].tileComps[comp].nQuantSteps,
sizeof(Guint));
for (j = 0; j < img.tiles[0].tileComps[comp].nQuantSteps; ++j) {
img.tiles[i].tileComps[comp].quantSteps[j] =
img.tiles[0].tileComps[comp].quantSteps[j];
}
}
break;
case 0x5e: // RGN - region of interest
cover(25);
#if 1 //~ ROI is unimplemented
fprintf(stderr, "RGN\n");
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Error in JPX PPM marker segment");
return gFalse;
}
}
#else
if ((img.nComps > 256 && !readUWord(&comp)) ||
(img.nComps <= 256 && !readUByte(&comp)) ||
comp >= img.nComps ||
!readUByte(&compInfo[comp].defROI.style) ||
!readUByte(&compInfo[comp].defROI.shift)) {
error(getPos(), "Error in JPX RGN marker segment");
return gFalse;
}
#endif
break;
case 0x5f: // POC - progression order change
cover(26);
#if 1 //~ progression order changes are unimplemented
fprintf(stderr, "POC\n");
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Error in JPX PPM marker segment");
return gFalse;
}
}
#else
nProgs = (segLen - 2) / (img.nComps > 256 ? 9 : 7);
progs = (JPXProgOrder *)gmallocn(nProgs, sizeof(JPXProgOrder));
for (i = 0; i < nProgs; ++i) {
if (!readUByte(&progs[i].startRes) ||
!(img.nComps > 256 && readUWord(&progs[i].startComp)) ||
!(img.nComps <= 256 && readUByte(&progs[i].startComp)) ||
!readUWord(&progs[i].endLayer) ||
!readUByte(&progs[i].endRes) ||
!(img.nComps > 256 && readUWord(&progs[i].endComp)) ||
!(img.nComps <= 256 && readUByte(&progs[i].endComp)) ||
!readUByte(&progs[i].progOrder)) {
error(getPos(), "Error in JPX POC marker segment");
return gFalse;
}
}
#endif
break;
case 0x60: // PPM - packed packet headers, main header
cover(27);
#if 1 //~ packed packet headers are unimplemented
fprintf(stderr, "PPM\n");
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Error in JPX PPM marker segment");
return gFalse;
}
}
#endif
break;
case 0x55: // TLM - tile-part lengths
// skipped
cover(28);
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Error in JPX TLM marker segment");
return gFalse;
}
}
break;
case 0x57: // PLM - packet length, main header
// skipped
cover(29);
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Error in JPX PLM marker segment");
return gFalse;
}
}
break;
case 0x63: // CRG - component registration
// skipped
cover(30);
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Error in JPX CRG marker segment");
return gFalse;
}
}
break;
case 0x64: // COM - comment
// skipped
cover(31);
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Error in JPX COM marker segment");
return gFalse;
}
}
break;
case 0x90: // SOT - start of tile
cover(32);
haveSOT = gTrue;
break;
default:
cover(33);
error(getPos(), "Unknown marker segment %02x in JPX stream", segType);
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
break;
}
}
break;
}
} while (!haveSOT);
if (!haveSIZ) {
error(getPos(), "Missing SIZ marker segment in JPX stream");
return gFalse;
}
if (!haveCOD) {
error(getPos(), "Missing COD marker segment in JPX stream");
return gFalse;
}
if (!haveQCD) {
error(getPos(), "Missing QCD marker segment in JPX stream");
return gFalse;
}
//----- read the tile-parts
while (1) {
if (!readTilePart()) {
return gFalse;
}
if (!readMarkerHdr(&segType, &segLen)) {
error(getPos(), "Error in JPX codestream");
return gFalse;
}
if (segType != 0x90) { // SOT - start of tile
break;
}
}
if (segType != 0xd9) { // EOC - end of codestream
error(getPos(), "Missing EOC marker in JPX codestream");
return gFalse;
}
//----- finish decoding the image
for (i = 0; i < img.nXTiles * img.nYTiles; ++i) {
tile = &img.tiles[i];
for (comp = 0; comp < img.nComps; ++comp) {
tileComp = &tile->tileComps[comp];
inverseTransform(tileComp);
}
if (!inverseMultiCompAndDC(tile)) {
return gFalse;
}
}
//~ can free memory below tileComps here, and also tileComp.buf
return gTrue;
}
GBool JPXStream::readTilePart() {
JPXTile *tile;
JPXTileComp *tileComp;
JPXResLevel *resLevel;
JPXPrecinct *precinct;
JPXSubband *subband;
JPXCodeBlock *cb;
GBool haveSOD;
Guint tileIdx, tilePartLen, tilePartIdx, nTileParts;
GBool tilePartToEOC;
Guint precinctSize, style;
Guint n, nSBs, nx, ny, sbx0, sby0, comp, segLen;
Guint i, j, k, cbX, cbY, r, pre, sb, cbi;
int segType, level;
// process the SOT marker segment
if (!readUWord(&tileIdx) ||
!readULong(&tilePartLen) ||
!readUByte(&tilePartIdx) ||
!readUByte(&nTileParts)) {
error(getPos(), "Error in JPX SOT marker segment");
return gFalse;
}
if (tileIdx >= img.nXTiles * img.nYTiles) {
error(getPos(), "Weird tile index in JPX stream");
return gFalse;
}
tilePartToEOC = tilePartLen == 0;
tilePartLen -= 12; // subtract size of SOT segment
haveSOD = gFalse;
do {
if (!readMarkerHdr(&segType, &segLen)) {
error(getPos(), "Error in JPX tile-part codestream");
return gFalse;
}
tilePartLen -= 2 + segLen;
switch (segType) {
case 0x52: // COD - coding style default
cover(34);
if (!readUByte(&img.tiles[tileIdx].tileComps[0].style) ||
!readUByte(&img.tiles[tileIdx].progOrder) ||
!readUWord(&img.tiles[tileIdx].nLayers) ||
!readUByte(&img.tiles[tileIdx].multiComp) ||
!readUByte(&img.tiles[tileIdx].tileComps[0].nDecompLevels) ||
!readUByte(&img.tiles[tileIdx].tileComps[0].codeBlockW) ||
!readUByte(&img.tiles[tileIdx].tileComps[0].codeBlockH) ||
!readUByte(&img.tiles[tileIdx].tileComps[0].codeBlockStyle) ||
!readUByte(&img.tiles[tileIdx].tileComps[0].transform)) {
error(getPos(), "Error in JPX COD marker segment");
return gFalse;
}
img.tiles[tileIdx].tileComps[0].codeBlockW += 2;
img.tiles[tileIdx].tileComps[0].codeBlockH += 2;
for (comp = 0; comp < img.nComps; ++comp) {
if (comp != 0) {
img.tiles[tileIdx].tileComps[comp].style =
img.tiles[tileIdx].tileComps[0].style;
img.tiles[tileIdx].tileComps[comp].nDecompLevels =
img.tiles[tileIdx].tileComps[0].nDecompLevels;
img.tiles[tileIdx].tileComps[comp].codeBlockW =
img.tiles[tileIdx].tileComps[0].codeBlockW;
img.tiles[tileIdx].tileComps[comp].codeBlockH =
img.tiles[tileIdx].tileComps[0].codeBlockH;
img.tiles[tileIdx].tileComps[comp].codeBlockStyle =
img.tiles[tileIdx].tileComps[0].codeBlockStyle;
img.tiles[tileIdx].tileComps[comp].transform =
img.tiles[tileIdx].tileComps[0].transform;
}
img.tiles[tileIdx].tileComps[comp].resLevels =
(JPXResLevel *)greallocn(
img.tiles[tileIdx].tileComps[comp].resLevels,
(img.tiles[tileIdx].tileComps[comp].nDecompLevels + 1),
sizeof(JPXResLevel));
for (r = 0;
r <= img.tiles[tileIdx].tileComps[comp].nDecompLevels;
++r) {
img.tiles[tileIdx].tileComps[comp].resLevels[r].precincts = NULL;
}
}
for (r = 0; r <= img.tiles[tileIdx].tileComps[0].nDecompLevels; ++r) {
if (img.tiles[tileIdx].tileComps[0].style & 0x01) {
if (!readUByte(&precinctSize)) {
error(getPos(), "Error in JPX COD marker segment");
return gFalse;
}
img.tiles[tileIdx].tileComps[0].resLevels[r].precinctWidth =
precinctSize & 0x0f;
img.tiles[tileIdx].tileComps[0].resLevels[r].precinctHeight =
(precinctSize >> 4) & 0x0f;
} else {
img.tiles[tileIdx].tileComps[0].resLevels[r].precinctWidth = 15;
img.tiles[tileIdx].tileComps[0].resLevels[r].precinctHeight = 15;
}
}
for (comp = 1; comp < img.nComps; ++comp) {
for (r = 0;
r <= img.tiles[tileIdx].tileComps[comp].nDecompLevels;
++r) {
img.tiles[tileIdx].tileComps[comp].resLevels[r].precinctWidth =
img.tiles[tileIdx].tileComps[0].resLevels[r].precinctWidth;
img.tiles[tileIdx].tileComps[comp].resLevels[r].precinctHeight =
img.tiles[tileIdx].tileComps[0].resLevels[r].precinctHeight;
}
}
break;
case 0x53: // COC - coding style component
cover(35);
if ((img.nComps > 256 && !readUWord(&comp)) ||
(img.nComps <= 256 && !readUByte(&comp)) ||
comp >= img.nComps ||
!readUByte(&style) ||
!readUByte(&img.tiles[tileIdx].tileComps[comp].nDecompLevels) ||
!readUByte(&img.tiles[tileIdx].tileComps[comp].codeBlockW) ||
!readUByte(&img.tiles[tileIdx].tileComps[comp].codeBlockH) ||
!readUByte(&img.tiles[tileIdx].tileComps[comp].codeBlockStyle) ||
!readUByte(&img.tiles[tileIdx].tileComps[comp].transform)) {
error(getPos(), "Error in JPX COC marker segment");
return gFalse;
}
img.tiles[tileIdx].tileComps[comp].style =
(img.tiles[tileIdx].tileComps[comp].style & ~1) | (style & 1);
img.tiles[tileIdx].tileComps[comp].codeBlockW += 2;
img.tiles[tileIdx].tileComps[comp].codeBlockH += 2;
img.tiles[tileIdx].tileComps[comp].resLevels =
(JPXResLevel *)greallocn(
img.tiles[tileIdx].tileComps[comp].resLevels,
(img.tiles[tileIdx].tileComps[comp].nDecompLevels + 1),
sizeof(JPXResLevel));
for (r = 0; r <= img.tiles[tileIdx].tileComps[comp].nDecompLevels; ++r) {
img.tiles[tileIdx].tileComps[comp].resLevels[r].precincts = NULL;
}
for (r = 0; r <= img.tiles[tileIdx].tileComps[comp].nDecompLevels; ++r) {
if (img.tiles[tileIdx].tileComps[comp].style & 0x01) {
if (!readUByte(&precinctSize)) {
error(getPos(), "Error in JPX COD marker segment");
return gFalse;
}
img.tiles[tileIdx].tileComps[comp].resLevels[r].precinctWidth =
precinctSize & 0x0f;
img.tiles[tileIdx].tileComps[comp].resLevels[r].precinctHeight =
(precinctSize >> 4) & 0x0f;
} else {
img.tiles[tileIdx].tileComps[comp].resLevels[r].precinctWidth = 15;
img.tiles[tileIdx].tileComps[comp].resLevels[r].precinctHeight = 15;
}
}
break;
case 0x5c: // QCD - quantization default
cover(36);
if (!readUByte(&img.tiles[tileIdx].tileComps[0].quantStyle)) {
error(getPos(), "Error in JPX QCD marker segment");
return gFalse;
}
if ((img.tiles[tileIdx].tileComps[0].quantStyle & 0x1f) == 0x00) {
img.tiles[tileIdx].tileComps[0].nQuantSteps =
segLen - 3;
img.tiles[tileIdx].tileComps[0].quantSteps =
(Guint *)greallocn(img.tiles[tileIdx].tileComps[0].quantSteps,
img.tiles[tileIdx].tileComps[0].nQuantSteps,
sizeof(Guint));
for (i = 0; i < img.tiles[tileIdx].tileComps[0].nQuantSteps; ++i) {
if (!readUByte(&img.tiles[tileIdx].tileComps[0].quantSteps[i])) {
error(getPos(), "Error in JPX QCD marker segment");
return gFalse;
}
}
} else if ((img.tiles[tileIdx].tileComps[0].quantStyle & 0x1f) == 0x01) {
img.tiles[tileIdx].tileComps[0].nQuantSteps = 1;
img.tiles[tileIdx].tileComps[0].quantSteps =
(Guint *)greallocn(img.tiles[tileIdx].tileComps[0].quantSteps,
img.tiles[tileIdx].tileComps[0].nQuantSteps,
sizeof(Guint));
if (!readUWord(&img.tiles[tileIdx].tileComps[0].quantSteps[0])) {
error(getPos(), "Error in JPX QCD marker segment");
return gFalse;
}
} else if ((img.tiles[tileIdx].tileComps[0].quantStyle & 0x1f) == 0x02) {
img.tiles[tileIdx].tileComps[0].nQuantSteps = (segLen - 3) / 2;
img.tiles[tileIdx].tileComps[0].quantSteps =
(Guint *)greallocn(img.tiles[tileIdx].tileComps[0].quantSteps,
img.tiles[tileIdx].tileComps[0].nQuantSteps,
sizeof(Guint));
for (i = 0; i < img.tiles[tileIdx].tileComps[0].nQuantSteps; ++i) {
if (!readUWord(&img.tiles[tileIdx].tileComps[0].quantSteps[i])) {
error(getPos(), "Error in JPX QCD marker segment");
return gFalse;
}
}
} else {
error(getPos(), "Error in JPX QCD marker segment");
return gFalse;
}
for (comp = 1; comp < img.nComps; ++comp) {
img.tiles[tileIdx].tileComps[comp].quantStyle =
img.tiles[tileIdx].tileComps[0].quantStyle;
img.tiles[tileIdx].tileComps[comp].nQuantSteps =
img.tiles[tileIdx].tileComps[0].nQuantSteps;
img.tiles[tileIdx].tileComps[comp].quantSteps =
(Guint *)greallocn(img.tiles[tileIdx].tileComps[comp].quantSteps,
img.tiles[tileIdx].tileComps[0].nQuantSteps,
sizeof(Guint));
for (j = 0; j < img.tiles[tileIdx].tileComps[0].nQuantSteps; ++j) {
img.tiles[tileIdx].tileComps[comp].quantSteps[j] =
img.tiles[tileIdx].tileComps[0].quantSteps[j];
}
}
break;
case 0x5d: // QCC - quantization component
cover(37);
if ((img.nComps > 256 && !readUWord(&comp)) ||
(img.nComps <= 256 && !readUByte(&comp)) ||
comp >= img.nComps ||
!readUByte(&img.tiles[tileIdx].tileComps[comp].quantStyle)) {
error(getPos(), "Error in JPX QCC marker segment");
return gFalse;
}
if ((img.tiles[tileIdx].tileComps[comp].quantStyle & 0x1f) == 0x00) {
img.tiles[tileIdx].tileComps[comp].nQuantSteps =
segLen - (img.nComps > 256 ? 5 : 4);
img.tiles[tileIdx].tileComps[comp].quantSteps =
(Guint *)greallocn(img.tiles[tileIdx].tileComps[comp].quantSteps,
img.tiles[tileIdx].tileComps[comp].nQuantSteps,
sizeof(Guint));
for (i = 0; i < img.tiles[tileIdx].tileComps[comp].nQuantSteps; ++i) {
if (!readUByte(&img.tiles[tileIdx].tileComps[comp].quantSteps[i])) {
error(getPos(), "Error in JPX QCC marker segment");
return gFalse;
}
}
} else if ((img.tiles[tileIdx].tileComps[comp].quantStyle & 0x1f)
== 0x01) {
img.tiles[tileIdx].tileComps[comp].nQuantSteps = 1;
img.tiles[tileIdx].tileComps[comp].quantSteps =
(Guint *)greallocn(img.tiles[tileIdx].tileComps[comp].quantSteps,
img.tiles[tileIdx].tileComps[comp].nQuantSteps,
sizeof(Guint));
if (!readUWord(&img.tiles[tileIdx].tileComps[comp].quantSteps[0])) {
error(getPos(), "Error in JPX QCC marker segment");
return gFalse;
}
} else if ((img.tiles[tileIdx].tileComps[comp].quantStyle & 0x1f)
== 0x02) {
img.tiles[tileIdx].tileComps[comp].nQuantSteps =
(segLen - (img.nComps > 256 ? 5 : 4)) / 2;
img.tiles[tileIdx].tileComps[comp].quantSteps =
(Guint *)greallocn(img.tiles[tileIdx].tileComps[comp].quantSteps,
img.tiles[tileIdx].tileComps[comp].nQuantSteps,
sizeof(Guint));
for (i = 0; i < img.tiles[tileIdx].tileComps[comp].nQuantSteps; ++i) {
if (!readUWord(&img.tiles[tileIdx].tileComps[comp].quantSteps[i])) {
error(getPos(), "Error in JPX QCD marker segment");
return gFalse;
}
}
} else {
error(getPos(), "Error in JPX QCC marker segment");
return gFalse;
}
break;
case 0x5e: // RGN - region of interest
cover(38);
#if 1 //~ ROI is unimplemented
fprintf(stderr, "RGN\n");
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Error in JPX PPM marker segment");
return gFalse;
}
}
#else
if ((img.nComps > 256 && !readUWord(&comp)) ||
(img.nComps <= 256 && !readUByte(&comp)) ||
comp >= img.nComps ||
!readUByte(&compInfo[comp].roi.style) ||
!readUByte(&compInfo[comp].roi.shift)) {
error(getPos(), "Error in JPX RGN marker segment");
return gFalse;
}
#endif
break;
case 0x5f: // POC - progression order change
cover(39);
#if 1 //~ progression order changes are unimplemented
fprintf(stderr, "POC\n");
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Error in JPX PPM marker segment");
return gFalse;
}
}
#else
nTileProgs = (segLen - 2) / (img.nComps > 256 ? 9 : 7);
tileProgs = (JPXProgOrder *)gmallocn(nTileProgs, sizeof(JPXProgOrder));
for (i = 0; i < nTileProgs; ++i) {
if (!readUByte(&tileProgs[i].startRes) ||
!(img.nComps > 256 && readUWord(&tileProgs[i].startComp)) ||
!(img.nComps <= 256 && readUByte(&tileProgs[i].startComp)) ||
!readUWord(&tileProgs[i].endLayer) ||
!readUByte(&tileProgs[i].endRes) ||
!(img.nComps > 256 && readUWord(&tileProgs[i].endComp)) ||
!(img.nComps <= 256 && readUByte(&tileProgs[i].endComp)) ||
!readUByte(&tileProgs[i].progOrder)) {
error(getPos(), "Error in JPX POC marker segment");
return gFalse;
}
}
#endif
break;
case 0x61: // PPT - packed packet headers, tile-part hdr
cover(40);
#if 1 //~ packed packet headers are unimplemented
fprintf(stderr, "PPT\n");
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Error in JPX PPT marker segment");
return gFalse;
}
}
#endif
case 0x58: // PLT - packet length, tile-part header
// skipped
cover(41);
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Error in JPX PLT marker segment");
return gFalse;
}
}
break;
case 0x64: // COM - comment
// skipped
cover(42);
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
error(getPos(), "Error in JPX COM marker segment");
return gFalse;
}
}
break;
case 0x93: // SOD - start of data
cover(43);
haveSOD = gTrue;
break;
default:
cover(44);
error(getPos(), "Unknown marker segment %02x in JPX tile-part stream",
segType);
for (i = 0; i < segLen - 2; ++i) {
if (str->getChar() == EOF) {
break;
}
}
break;
}
} while (!haveSOD);
//----- initialize the tile, precincts, and code-blocks
if (tilePartIdx == 0) {
tile = &img.tiles[tileIdx];
i = tileIdx / img.nXTiles;
j = tileIdx % img.nXTiles;
if ((tile->x0 = img.xTileOffset + j * img.xTileSize) < img.xOffset) {
tile->x0 = img.xOffset;
}
if ((tile->y0 = img.yTileOffset + i * img.yTileSize) < img.yOffset) {
tile->y0 = img.yOffset;
}
if ((tile->x1 = img.xTileOffset + (j + 1) * img.xTileSize) > img.xSize) {
tile->x1 = img.xSize;
}
if ((tile->y1 = img.yTileOffset + (i + 1) * img.yTileSize) > img.ySize) {
tile->y1 = img.ySize;
}
tile->comp = 0;
tile->res = 0;
tile->precinct = 0;
tile->layer = 0;
tile->maxNDecompLevels = 0;
for (comp = 0; comp < img.nComps; ++comp) {
tileComp = &tile->tileComps[comp];
if (tileComp->nDecompLevels > tile->maxNDecompLevels) {
tile->maxNDecompLevels = tileComp->nDecompLevels;
}
tileComp->x0 = jpxCeilDiv(tile->x0, tileComp->hSep);
tileComp->y0 = jpxCeilDiv(tile->y0, tileComp->hSep);
tileComp->x1 = jpxCeilDiv(tile->x1, tileComp->hSep);
tileComp->y1 = jpxCeilDiv(tile->y1, tileComp->hSep);
tileComp->cbW = 1 << tileComp->codeBlockW;
tileComp->cbH = 1 << tileComp->codeBlockH;
tileComp->data = (int *)gmallocn((tileComp->x1 - tileComp->x0) *
(tileComp->y1 - tileComp->y0),
sizeof(int));
if (tileComp->x1 - tileComp->x0 > tileComp->y1 - tileComp->y0) {
n = tileComp->x1 - tileComp->x0;
} else {
n = tileComp->y1 - tileComp->y0;
}
tileComp->buf = (int *)gmallocn(n + 8, sizeof(int));
for (r = 0; r <= tileComp->nDecompLevels; ++r) {
resLevel = &tileComp->resLevels[r];
k = r == 0 ? tileComp->nDecompLevels
: tileComp->nDecompLevels - r + 1;
resLevel->x0 = jpxCeilDivPow2(tileComp->x0, k);
resLevel->y0 = jpxCeilDivPow2(tileComp->y0, k);
resLevel->x1 = jpxCeilDivPow2(tileComp->x1, k);
resLevel->y1 = jpxCeilDivPow2(tileComp->y1, k);
if (r == 0) {
resLevel->bx0[0] = resLevel->x0;
resLevel->by0[0] = resLevel->y0;
resLevel->bx1[0] = resLevel->x1;
resLevel->by1[0] = resLevel->y1;
} else {
resLevel->bx0[0] = jpxCeilDivPow2(tileComp->x0 - (1 << (k-1)), k);
resLevel->by0[0] = resLevel->y0;
resLevel->bx1[0] = jpxCeilDivPow2(tileComp->x1 - (1 << (k-1)), k);
resLevel->by1[0] = resLevel->y1;
resLevel->bx0[1] = resLevel->x0;
resLevel->by0[1] = jpxCeilDivPow2(tileComp->y0 - (1 << (k-1)), k);
resLevel->bx1[1] = resLevel->x1;
resLevel->by1[1] = jpxCeilDivPow2(tileComp->y1 - (1 << (k-1)), k);
resLevel->bx0[2] = jpxCeilDivPow2(tileComp->x0 - (1 << (k-1)), k);
resLevel->by0[2] = jpxCeilDivPow2(tileComp->y0 - (1 << (k-1)), k);
resLevel->bx1[2] = jpxCeilDivPow2(tileComp->x1 - (1 << (k-1)), k);
resLevel->by1[2] = jpxCeilDivPow2(tileComp->y1 - (1 << (k-1)), k);
}
resLevel->precincts = (JPXPrecinct *)gmallocn(1, sizeof(JPXPrecinct));
for (pre = 0; pre < 1; ++pre) {
precinct = &resLevel->precincts[pre];
precinct->x0 = resLevel->x0;
precinct->y0 = resLevel->y0;
precinct->x1 = resLevel->x1;
precinct->y1 = resLevel->y1;
nSBs = r == 0 ? 1 : 3;
precinct->subbands =
(JPXSubband *)gmallocn(nSBs, sizeof(JPXSubband));
for (sb = 0; sb < nSBs; ++sb) {
subband = &precinct->subbands[sb];
subband->x0 = resLevel->bx0[sb];
subband->y0 = resLevel->by0[sb];
subband->x1 = resLevel->bx1[sb];
subband->y1 = resLevel->by1[sb];
subband->nXCBs = jpxCeilDivPow2(subband->x1,
tileComp->codeBlockW)
- jpxFloorDivPow2(subband->x0,
tileComp->codeBlockW);
subband->nYCBs = jpxCeilDivPow2(subband->y1,
tileComp->codeBlockH)
- jpxFloorDivPow2(subband->y0,
tileComp->codeBlockH);
n = subband->nXCBs > subband->nYCBs ? subband->nXCBs
: subband->nYCBs;
for (subband->maxTTLevel = 0, --n;
n;
++subband->maxTTLevel, n >>= 1) ;
n = 0;
for (level = subband->maxTTLevel; level >= 0; --level) {
nx = jpxCeilDivPow2(subband->nXCBs, level);
ny = jpxCeilDivPow2(subband->nYCBs, level);
n += nx * ny;
}
subband->inclusion =
(JPXTagTreeNode *)gmallocn(n, sizeof(JPXTagTreeNode));
subband->zeroBitPlane =
(JPXTagTreeNode *)gmallocn(n, sizeof(JPXTagTreeNode));
for (k = 0; k < n; ++k) {
subband->inclusion[k].finished = gFalse;
subband->inclusion[k].val = 0;
subband->zeroBitPlane[k].finished = gFalse;
subband->zeroBitPlane[k].val = 0;
}
subband->cbs = (JPXCodeBlock *)gmallocn(subband->nXCBs *
subband->nYCBs,
sizeof(JPXCodeBlock));
sbx0 = jpxFloorDivPow2(subband->x0, tileComp->codeBlockW);
sby0 = jpxFloorDivPow2(subband->y0, tileComp->codeBlockH);
cb = subband->cbs;
for (cbY = 0; cbY < subband->nYCBs; ++cbY) {
for (cbX = 0; cbX < subband->nXCBs; ++cbX) {
cb->x0 = (sbx0 + cbX) << tileComp->codeBlockW;
cb->x1 = cb->x0 + tileComp->cbW;
if (subband->x0 > cb->x0) {
cb->x0 = subband->x0;
}
if (subband->x1 < cb->x1) {
cb->x1 = subband->x1;
}
cb->y0 = (sby0 + cbY) << tileComp->codeBlockH;
cb->y1 = cb->y0 + tileComp->cbH;
if (subband->y0 > cb->y0) {
cb->y0 = subband->y0;
}
if (subband->y1 < cb->y1) {
cb->y1 = subband->y1;
}
cb->seen = gFalse;
cb->lBlock = 3;
cb->nextPass = jpxPassCleanup;
cb->nZeroBitPlanes = 0;
cb->coeffs =
(JPXCoeff *)gmallocn((1 << (tileComp->codeBlockW
+ tileComp->codeBlockH)),
sizeof(JPXCoeff));
for (cbi = 0;
cbi < (Guint)(1 << (tileComp->codeBlockW
+ tileComp->codeBlockH));
++cbi) {
cb->coeffs[cbi].flags = 0;
cb->coeffs[cbi].len = 0;
cb->coeffs[cbi].mag = 0;
}
cb->arithDecoder = NULL;
cb->stats = NULL;
++cb;
}
}
}
}
}
}
}
return readTilePartData(tileIdx, tilePartLen, tilePartToEOC);
}
GBool JPXStream::readTilePartData(Guint tileIdx,
Guint tilePartLen, GBool tilePartToEOC) {
JPXTile *tile;
JPXTileComp *tileComp;
JPXResLevel *resLevel;
JPXPrecinct *precinct;
JPXSubband *subband;
JPXCodeBlock *cb;
Guint ttVal;
Guint bits, cbX, cbY, nx, ny, i, j, n, sb;
int level;
tile = &img.tiles[tileIdx];
// read all packets from this tile-part
while (1) {
if (tilePartToEOC) {
//~ peek for an EOC marker
cover(93);
} else if (tilePartLen == 0) {
break;
}
tileComp = &tile->tileComps[tile->comp];
resLevel = &tileComp->resLevels[tile->res];
precinct = &resLevel->precincts[tile->precinct];
//----- packet header
// setup
startBitBuf(tilePartLen);
// zero-length flag
if (!readBits(1, &bits)) {
goto err;
}
if (!bits) {
// packet is empty -- clear all code-block inclusion flags
cover(45);
for (sb = 0; sb < (Guint)(tile->res == 0 ? 1 : 3); ++sb) {
subband = &precinct->subbands[sb];
for (cbY = 0; cbY < subband->nYCBs; ++cbY) {
for (cbX = 0; cbX < subband->nXCBs; ++cbX) {
cb = &subband->cbs[cbY * subband->nXCBs + cbX];
cb->included = gFalse;
}
}
}
} else {
for (sb = 0; sb < (Guint)(tile->res == 0 ? 1 : 3); ++sb) {
subband = &precinct->subbands[sb];
for (cbY = 0; cbY < subband->nYCBs; ++cbY) {
for (cbX = 0; cbX < subband->nXCBs; ++cbX) {
cb = &subband->cbs[cbY * subband->nXCBs + cbX];
// skip code-blocks with no coefficients
if (cb->x0 >= cb->x1 || cb->y0 >= cb->y1) {
cover(46);
cb->included = gFalse;
continue;
}
// code-block inclusion
if (cb->seen) {
cover(47);
if (!readBits(1, &cb->included)) {
goto err;
}
} else {
cover(48);
ttVal = 0;
i = 0;
for (level = subband->maxTTLevel; level >= 0; --level) {
nx = jpxCeilDivPow2(subband->nXCBs, level);
ny = jpxCeilDivPow2(subband->nYCBs, level);
j = i + (cbY >> level) * nx + (cbX >> level);
if (!subband->inclusion[j].finished &&
!subband->inclusion[j].val) {
subband->inclusion[j].val = ttVal;
} else {
ttVal = subband->inclusion[j].val;
}
while (!subband->inclusion[j].finished &&
ttVal <= tile->layer) {
if (!readBits(1, &bits)) {
goto err;
}
if (bits == 1) {
subband->inclusion[j].finished = gTrue;
} else {
++ttVal;
}
}
subband->inclusion[j].val = ttVal;
if (ttVal > tile->layer) {
break;
}
i += nx * ny;
}
cb->included = level < 0;
}
if (cb->included) {
cover(49);
// zero bit-plane count
if (!cb->seen) {
cover(50);
ttVal = 0;
i = 0;
for (level = subband->maxTTLevel; level >= 0; --level) {
nx = jpxCeilDivPow2(subband->nXCBs, level);
ny = jpxCeilDivPow2(subband->nYCBs, level);
j = i + (cbY >> level) * nx + (cbX >> level);
if (!subband->zeroBitPlane[j].finished &&
!subband->zeroBitPlane[j].val) {
subband->zeroBitPlane[j].val = ttVal;
} else {
ttVal = subband->zeroBitPlane[j].val;
}
while (!subband->zeroBitPlane[j].finished) {
if (!readBits(1, &bits)) {
goto err;
}
if (bits == 1) {
subband->zeroBitPlane[j].finished = gTrue;
} else {
++ttVal;
}
}
subband->zeroBitPlane[j].val = ttVal;
i += nx * ny;
}
cb->nZeroBitPlanes = ttVal;
}
// number of coding passes
if (!readBits(1, &bits)) {
goto err;
}
if (bits == 0) {
cover(51);
cb->nCodingPasses = 1;
} else {
if (!readBits(1, &bits)) {
goto err;
}
if (bits == 0) {
cover(52);
cb->nCodingPasses = 2;
} else {
cover(53);
if (!readBits(2, &bits)) {
goto err;
}
if (bits < 3) {
cover(54);
cb->nCodingPasses = 3 + bits;
} else {
cover(55);
if (!readBits(5, &bits)) {
goto err;
}
if (bits < 31) {
cover(56);
cb->nCodingPasses = 6 + bits;
} else {
cover(57);
if (!readBits(7, &bits)) {
goto err;
}
cb->nCodingPasses = 37 + bits;
}
}
}
}
// update Lblock
while (1) {
if (!readBits(1, &bits)) {
goto err;
}
if (!bits) {
break;
}
++cb->lBlock;
}
// length of compressed data
//~ deal with multiple codeword segments
for (n = cb->lBlock, i = cb->nCodingPasses >> 1;
i;
++n, i >>= 1) ;
if (!readBits(n, &cb->dataLen)) {
goto err;
}
}
}
}
}
}
tilePartLen = finishBitBuf();
//----- packet data
for (sb = 0; sb < (Guint)(tile->res == 0 ? 1 : 3); ++sb) {
subband = &precinct->subbands[sb];
for (cbY = 0; cbY < subband->nYCBs; ++cbY) {
for (cbX = 0; cbX < subband->nXCBs; ++cbX) {
cb = &subband->cbs[cbY * subband->nXCBs + cbX];
if (cb->included) {
if (!readCodeBlockData(tileComp, resLevel, precinct, subband,
tile->res, sb, cb)) {
return gFalse;
}
tilePartLen -= cb->dataLen;
cb->seen = gTrue;
}
}
}
}
//----- next packet
switch (tile->progOrder) {
case 0: // layer, resolution level, component, precinct
cover(58);
if (++tile->comp == img.nComps) {
tile->comp = 0;
if (++tile->res == tile->maxNDecompLevels + 1) {
tile->res = 0;
if (++tile->layer == tile->nLayers) {
tile->layer = 0;
}
}
}
break;
case 1: // resolution level, layer, component, precinct
cover(59);
if (++tile->comp == img.nComps) {
tile->comp = 0;
if (++tile->layer == tile->nLayers) {
tile->layer = 0;
if (++tile->res == tile->maxNDecompLevels + 1) {
tile->res = 0;
}
}
}
break;
case 2: // resolution level, precinct, component, layer
//~ this isn't correct -- see B.12.1.3
cover(60);
if (++tile->layer == tile->nLayers) {
tile->layer = 0;
if (++tile->comp == img.nComps) {
tile->comp = 0;
if (++tile->res == tile->maxNDecompLevels + 1) {
tile->res = 0;
}
}
}
break;
case 3: // precinct, component, resolution level, layer
//~ this isn't correct -- see B.12.1.4
cover(61);
if (++tile->layer == tile->nLayers) {
tile->layer = 0;
if (++tile->res == tile->maxNDecompLevels + 1) {
tile->res = 0;
if (++tile->comp == img.nComps) {
tile->comp = 0;
}
}
}
break;
case 4: // component, precinct, resolution level, layer
//~ this isn't correct -- see B.12.1.5
cover(62);
if (++tile->layer == tile->nLayers) {
tile->layer = 0;
if (++tile->res == tile->maxNDecompLevels + 1) {
tile->res = 0;
if (++tile->comp == img.nComps) {
tile->comp = 0;
}
}
}
break;
}
}
return gTrue;
err:
error(getPos(), "Error in JPX stream");
return gFalse;
}
GBool JPXStream::readCodeBlockData(JPXTileComp *tileComp,
JPXResLevel *resLevel,
JPXPrecinct *precinct,
JPXSubband *subband,
Guint res, Guint sb,
JPXCodeBlock *cb) {
JPXCoeff *coeff0, *coeff1, *coeff;
Guint horiz, vert, diag, all, cx, xorBit;
int horizSign, vertSign;
Guint i, x, y0, y1, y2;
if (cb->arithDecoder) {
cover(63);
cb->arithDecoder->restart(cb->dataLen);
} else {
cover(64);
cb->arithDecoder = new JArithmeticDecoder();
cb->arithDecoder->setStream(str, cb->dataLen);
cb->arithDecoder->start();
cb->stats = new JArithmeticDecoderStats(jpxNContexts);
cb->stats->setEntry(jpxContextSigProp, 4, 0);
cb->stats->setEntry(jpxContextRunLength, 3, 0);
cb->stats->setEntry(jpxContextUniform, 46, 0);
}
for (i = 0; i < cb->nCodingPasses; ++i) {
switch (cb->nextPass) {
//----- significance propagation pass
case jpxPassSigProp:
cover(65);
for (y0 = cb->y0, coeff0 = cb->coeffs;
y0 < cb->y1;
y0 += 4, coeff0 += 4 << tileComp->codeBlockW) {
for (x = cb->x0, coeff1 = coeff0;
x < cb->x1;
++x, ++coeff1) {
for (y1 = 0, coeff = coeff1;
y1 < 4 && y0+y1 < cb->y1;
++y1, coeff += tileComp->cbW) {
if (!(coeff->flags & jpxCoeffSignificant)) {
horiz = vert = diag = 0;
horizSign = vertSign = 2;
if (x > cb->x0) {
if (coeff[-1].flags & jpxCoeffSignificant) {
++horiz;
horizSign += (coeff[-1].flags & jpxCoeffSign) ? -1 : 1;
}
if (y0+y1 > cb->y0) {
diag += (coeff[-(int)tileComp->cbW - 1].flags
>> jpxCoeffSignificantB) & 1;
}
if (y0+y1 < cb->y1 - 1) {
diag += (coeff[tileComp->cbW - 1].flags
>> jpxCoeffSignificantB) & 1;
}
}
if (x < cb->x1 - 1) {
if (coeff[1].flags & jpxCoeffSignificant) {
++horiz;
horizSign += (coeff[1].flags & jpxCoeffSign) ? -1 : 1;
}
if (y0+y1 > cb->y0) {
diag += (coeff[-(int)tileComp->cbW + 1].flags
>> jpxCoeffSignificantB) & 1;
}
if (y0+y1 < cb->y1 - 1) {
diag += (coeff[tileComp->cbW + 1].flags
>> jpxCoeffSignificantB) & 1;
}
}
if (y0+y1 > cb->y0) {
if (coeff[-(int)tileComp->cbW].flags & jpxCoeffSignificant) {
++vert;
vertSign += (coeff[-(int)tileComp->cbW].flags & jpxCoeffSign)
? -1 : 1;
}
}
if (y0+y1 < cb->y1 - 1) {
if (coeff[tileComp->cbW].flags & jpxCoeffSignificant) {
++vert;
vertSign += (coeff[tileComp->cbW].flags & jpxCoeffSign)
? -1 : 1;
}
}
cx = sigPropContext[horiz][vert][diag][res == 0 ? 1 : sb];
if (cx != 0) {
if (cb->arithDecoder->decodeBit(cx, cb->stats)) {
coeff->flags |= jpxCoeffSignificant | jpxCoeffFirstMagRef;
coeff->mag = (coeff->mag << 1) | 1;
cx = signContext[horizSign][vertSign][0];
xorBit = signContext[horizSign][vertSign][1];
if (cb->arithDecoder->decodeBit(cx, cb->stats) ^ xorBit) {
coeff->flags |= jpxCoeffSign;
}
}
++coeff->len;
coeff->flags |= jpxCoeffTouched;
}
}
}
}
}
++cb->nextPass;
break;
//----- magnitude refinement pass
case jpxPassMagRef:
cover(66);
for (y0 = cb->y0, coeff0 = cb->coeffs;
y0 < cb->y1;
y0 += 4, coeff0 += 4 << tileComp->codeBlockW) {
for (x = cb->x0, coeff1 = coeff0;
x < cb->x1;
++x, ++coeff1) {
for (y1 = 0, coeff = coeff1;
y1 < 4 && y0+y1 < cb->y1;
++y1, coeff += tileComp->cbW) {
if ((coeff->flags & jpxCoeffSignificant) &&
!(coeff->flags & jpxCoeffTouched)) {
if (coeff->flags & jpxCoeffFirstMagRef) {
all = 0;
if (x > cb->x0) {
all += (coeff[-1].flags >> jpxCoeffSignificantB) & 1;
if (y0+y1 > cb->y0) {
all += (coeff[-(int)tileComp->cbW - 1].flags
>> jpxCoeffSignificantB) & 1;
}
if (y0+y1 < cb->y1 - 1) {
all += (coeff[tileComp->cbW - 1].flags
>> jpxCoeffSignificantB) & 1;
}
}
if (x < cb->x1 - 1) {
all += (coeff[1].flags >> jpxCoeffSignificantB) & 1;
if (y0+y1 > cb->y0) {
all += (coeff[-(int)tileComp->cbW + 1].flags
>> jpxCoeffSignificantB) & 1;
}
if (y0+y1 < cb->y1 - 1) {
all += (coeff[tileComp->cbW + 1].flags
>> jpxCoeffSignificantB) & 1;
}
}
if (y0+y1 > cb->y0) {
all += (coeff[-(int)tileComp->cbW].flags
>> jpxCoeffSignificantB) & 1;
}
if (y0+y1 < cb->y1 - 1) {
all += (coeff[tileComp->cbW].flags
>> jpxCoeffSignificantB) & 1;
}
cx = all ? 15 : 14;
} else {
cx = 16;
}
coeff->mag = (coeff->mag << 1) |
cb->arithDecoder->decodeBit(cx, cb->stats);
++coeff->len;
coeff->flags |= jpxCoeffTouched;
coeff->flags &= ~jpxCoeffFirstMagRef;
}
}
}
}
++cb->nextPass;
break;
//----- cleanup pass
case jpxPassCleanup:
cover(67);
for (y0 = cb->y0, coeff0 = cb->coeffs;
y0 < cb->y1;
y0 += 4, coeff0 += 4 << tileComp->codeBlockW) {
for (x = cb->x0, coeff1 = coeff0;
x < cb->x1;
++x, ++coeff1) {
y1 = 0;
if (y0 + 3 < cb->y1 &&
!(coeff1->flags & jpxCoeffTouched) &&
!(coeff1[tileComp->cbW].flags & jpxCoeffTouched) &&
!(coeff1[2 * tileComp->cbW].flags & jpxCoeffTouched) &&
!(coeff1[3 * tileComp->cbW].flags & jpxCoeffTouched) &&
(x == cb->x0 || y0 == cb->y0 ||
!(coeff1[-(int)tileComp->cbW - 1].flags
& jpxCoeffSignificant)) &&
(y0 == cb->y0 ||
!(coeff1[-(int)tileComp->cbW].flags
& jpxCoeffSignificant)) &&
(x == cb->x1 - 1 || y0 == cb->y0 ||
!(coeff1[-(int)tileComp->cbW + 1].flags
& jpxCoeffSignificant)) &&
(x == cb->x0 ||
(!(coeff1[-1].flags & jpxCoeffSignificant) &&
!(coeff1[tileComp->cbW - 1].flags
& jpxCoeffSignificant) &&
!(coeff1[2 * tileComp->cbW - 1].flags
& jpxCoeffSignificant) &&
!(coeff1[3 * tileComp->cbW - 1].flags
& jpxCoeffSignificant))) &&
(x == cb->x1 - 1 ||
(!(coeff1[1].flags & jpxCoeffSignificant) &&
!(coeff1[tileComp->cbW + 1].flags
& jpxCoeffSignificant) &&
!(coeff1[2 * tileComp->cbW + 1].flags
& jpxCoeffSignificant) &&
!(coeff1[3 * tileComp->cbW + 1].flags
& jpxCoeffSignificant))) &&
(x == cb->x0 || y0+4 == cb->y1 ||
!(coeff1[4 * tileComp->cbW - 1].flags & jpxCoeffSignificant)) &&
(y0+4 == cb->y1 ||
!(coeff1[4 * tileComp->cbW].flags & jpxCoeffSignificant)) &&
(x == cb->x1 - 1 || y0+4 == cb->y1 ||
!(coeff1[4 * tileComp->cbW + 1].flags
& jpxCoeffSignificant))) {
if (cb->arithDecoder->decodeBit(jpxContextRunLength, cb->stats)) {
y1 = cb->arithDecoder->decodeBit(jpxContextUniform, cb->stats);
y1 = (y1 << 1) |
cb->arithDecoder->decodeBit(jpxContextUniform, cb->stats);
for (y2 = 0, coeff = coeff1;
y2 < y1;
++y2, coeff += tileComp->cbW) {
++coeff->len;
}
coeff->flags |= jpxCoeffSignificant | jpxCoeffFirstMagRef;
coeff->mag = (coeff->mag << 1) | 1;
++coeff->len;
cx = signContext[2][2][0];
xorBit = signContext[2][2][1];
if (cb->arithDecoder->decodeBit(cx, cb->stats) ^ xorBit) {
coeff->flags |= jpxCoeffSign;
}
++y1;
} else {
for (y1 = 0, coeff = coeff1;
y1 < 4;
++y1, coeff += tileComp->cbW) {
++coeff->len;
}
y1 = 4;
}
}
for (coeff = &coeff1[y1 << tileComp->codeBlockW];
y1 < 4 && y0 + y1 < cb->y1;
++y1, coeff += tileComp->cbW) {
if (!(coeff->flags & jpxCoeffTouched)) {
horiz = vert = diag = 0;
horizSign = vertSign = 2;
if (x > cb->x0) {
if (coeff[-1].flags & jpxCoeffSignificant) {
++horiz;
horizSign += (coeff[-1].flags & jpxCoeffSign) ? -1 : 1;
}
if (y0+y1 > cb->y0) {
diag += (coeff[-(int)tileComp->cbW - 1].flags
>> jpxCoeffSignificantB) & 1;
}
if (y0+y1 < cb->y1 - 1) {
diag += (coeff[tileComp->cbW - 1].flags
>> jpxCoeffSignificantB) & 1;
}
}
if (x < cb->x1 - 1) {
if (coeff[1].flags & jpxCoeffSignificant) {
++horiz;
horizSign += (coeff[1].flags & jpxCoeffSign) ? -1 : 1;
}
if (y0+y1 > cb->y0) {
diag += (coeff[-(int)tileComp->cbW + 1].flags
>> jpxCoeffSignificantB) & 1;
}
if (y0+y1 < cb->y1 - 1) {
diag += (coeff[tileComp->cbW + 1].flags
>> jpxCoeffSignificantB) & 1;
}
}
if (y0+y1 > cb->y0) {
if (coeff[-(int)tileComp->cbW].flags & jpxCoeffSignificant) {
++vert;
vertSign += (coeff[-(int)tileComp->cbW].flags & jpxCoeffSign)
? -1 : 1;
}
}
if (y0+y1 < cb->y1 - 1) {
if (coeff[tileComp->cbW].flags & jpxCoeffSignificant) {
++vert;
vertSign += (coeff[tileComp->cbW].flags & jpxCoeffSign)
? -1 : 1;
}
}
cx = sigPropContext[horiz][vert][diag][res == 0 ? 1 : sb];
if (cb->arithDecoder->decodeBit(cx, cb->stats)) {
coeff->flags |= jpxCoeffSignificant | jpxCoeffFirstMagRef;
coeff->mag = (coeff->mag << 1) | 1;
cx = signContext[horizSign][vertSign][0];
xorBit = signContext[horizSign][vertSign][1];
if (cb->arithDecoder->decodeBit(cx, cb->stats) ^ xorBit) {
coeff->flags |= jpxCoeffSign;
}
}
++coeff->len;
} else {
coeff->flags &= ~jpxCoeffTouched;
}
}
}
}
cb->nextPass = jpxPassSigProp;
break;
}
}
cb->arithDecoder->cleanup();
return gTrue;
}
// Inverse quantization, and wavelet transform (IDWT). This also does
// the initial shift to convert to fixed point format.
void JPXStream::inverseTransform(JPXTileComp *tileComp) {
JPXResLevel *resLevel;
JPXPrecinct *precinct;
JPXSubband *subband;
JPXCodeBlock *cb;
JPXCoeff *coeff0, *coeff;
Guint qStyle, guard, eps, shift;
int shift2;
double mu;
int val;
int *dataPtr;
Guint nx0, ny0, nx1, ny1;
Guint r, cbX, cbY, x, y;
cover(68);
//----- (NL)LL subband (resolution level 0)
resLevel = &tileComp->resLevels[0];
precinct = &resLevel->precincts[0];
subband = &precinct->subbands[0];
// i-quant parameters
qStyle = tileComp->quantStyle & 0x1f;
guard = (tileComp->quantStyle >> 5) & 7;
if (qStyle == 0) {
cover(69);
eps = (tileComp->quantSteps[0] >> 3) & 0x1f;
shift = guard + eps - 1;
mu = 0; // make gcc happy
} else {
cover(70);
shift = guard - 1 + tileComp->prec;
mu = (double)(0x800 + (tileComp->quantSteps[0] & 0x7ff)) / 2048.0;
}
if (tileComp->transform == 0) {
cover(71);
shift += fracBits;
}
// copy (NL)LL into the upper-left corner of the data array, doing
// the fixed point adjustment and dequantization along the way
cb = subband->cbs;
for (cbY = 0; cbY < subband->nYCBs; ++cbY) {
for (cbX = 0; cbX < subband->nXCBs; ++cbX) {
for (y = cb->y0, coeff0 = cb->coeffs;
y < cb->y1;
++y, coeff0 += tileComp->cbW) {
dataPtr = &tileComp->data[(y - subband->y0)
* (tileComp->x1 - tileComp->x0)
+ (cb->x0 - subband->x0)];
for (x = cb->x0, coeff = coeff0; x < cb->x1; ++x, ++coeff) {
val = (int)coeff->mag;
if (val != 0) {
shift2 = shift - (cb->nZeroBitPlanes + coeff->len);
if (shift2 > 0) {
cover(94);
val = (val << shift2) + (1 << (shift2 - 1));
} else {
cover(95);
val >>= -shift2;
}
if (qStyle == 0) {
cover(96);
if (tileComp->transform == 0) {
cover(97);
val &= -1 << fracBits;
}
} else {
cover(98);
val = (int)((double)val * mu);
}
if (coeff->flags & jpxCoeffSign) {
cover(99);
val = -val;
}
}
*dataPtr++ = val;
}
}
++cb;
}
}
//----- IDWT for each level
for (r = 1; r <= tileComp->nDecompLevels; ++r) {
resLevel = &tileComp->resLevels[r];
// (n)LL is already in the upper-left corner of the
// tile-component data array -- interleave with (n)HL/LH/HH
// and inverse transform to get (n-1)LL, which will be stored
// in the upper-left corner of the tile-component data array
if (r == tileComp->nDecompLevels) {
cover(72);
nx0 = tileComp->x0;
ny0 = tileComp->y0;
nx1 = tileComp->x1;
ny1 = tileComp->y1;
} else {
cover(73);
nx0 = tileComp->resLevels[r+1].x0;
ny0 = tileComp->resLevels[r+1].y0;
nx1 = tileComp->resLevels[r+1].x1;
ny1 = tileComp->resLevels[r+1].y1;
}
inverseTransformLevel(tileComp, r, resLevel, nx0, ny0, nx1, ny1);
}
}
// Do one level of the inverse transform:
// - take (n)LL from the tile-component data array
// - take (n)HL/LH/HH from <resLevel>
// - leave the resulting (n-1)LL in the tile-component data array
void JPXStream::inverseTransformLevel(JPXTileComp *tileComp,
Guint r, JPXResLevel *resLevel,
Guint nx0, Guint ny0,
Guint nx1, Guint ny1) {
JPXPrecinct *precinct;
JPXSubband *subband;
JPXCodeBlock *cb;
JPXCoeff *coeff0, *coeff;
Guint qStyle, guard, eps, shift, t;
int shift2;
double mu;
int val;
int *dataPtr;
Guint xo, yo;
Guint x, y, sb, cbX, cbY;
int xx, yy;
//----- interleave
// spread out LL
for (yy = resLevel->y1 - 1; yy >= (int)resLevel->y0; --yy) {
for (xx = resLevel->x1 - 1; xx >= (int)resLevel->x0; --xx) {
tileComp->data[(2 * yy - ny0) * (tileComp->x1 - tileComp->x0)
+ (2 * xx - nx0)] =
tileComp->data[(yy - resLevel->y0) * (tileComp->x1 - tileComp->x0)
+ (xx - resLevel->x0)];
}
}
// i-quant parameters
qStyle = tileComp->quantStyle & 0x1f;
guard = (tileComp->quantStyle >> 5) & 7;
// interleave HL/LH/HH
precinct = &resLevel->precincts[0];
for (sb = 0; sb < 3; ++sb) {
// i-quant parameters
if (qStyle == 0) {
cover(100);
eps = (tileComp->quantSteps[3*r - 2 + sb] >> 3) & 0x1f;
shift = guard + eps - 1;
mu = 0; // make gcc happy
} else {
cover(101);
shift = guard + tileComp->prec;
if (sb == 2) {
cover(102);
++shift;
}
t = tileComp->quantSteps[qStyle == 1 ? 0 : (3*r - 2 + sb)];
mu = (double)(0x800 + (t & 0x7ff)) / 2048.0;
}
if (tileComp->transform == 0) {
cover(103);
shift += fracBits;
}
// copy the subband coefficients into the data array, doing the
// fixed point adjustment and dequantization along the way
xo = (sb & 1) ? 0 : 1;
yo = (sb > 0) ? 1 : 0;
subband = &precinct->subbands[sb];
cb = subband->cbs;
for (cbY = 0; cbY < subband->nYCBs; ++cbY) {
for (cbX = 0; cbX < subband->nXCBs; ++cbX) {
for (y = cb->y0, coeff0 = cb->coeffs;
y < cb->y1;
++y, coeff0 += tileComp->cbW) {
dataPtr = &tileComp->data[(2 * y + yo - ny0)
* (tileComp->x1 - tileComp->x0)
+ (2 * cb->x0 + xo - nx0)];
for (x = cb->x0, coeff = coeff0; x < cb->x1; ++x, ++coeff) {
val = (int)coeff->mag;
if (val != 0) {
shift2 = shift - (cb->nZeroBitPlanes + coeff->len);
if (shift2 > 0) {
cover(74);
val = (val << shift2) + (1 << (shift2 - 1));
} else {
cover(75);
val >>= -shift2;
}
if (qStyle == 0) {
cover(76);
if (tileComp->transform == 0) {
val &= -1 << fracBits;
}
} else {
cover(77);
val = (int)((double)val * mu);
}
if (coeff->flags & jpxCoeffSign) {
cover(78);
val = -val;
}
}
*dataPtr = val;
dataPtr += 2;
}
}
++cb;
}
}
}
//----- horizontal (row) transforms
dataPtr = tileComp->data;
for (y = 0; y < ny1 - ny0; ++y) {
inverseTransform1D(tileComp, dataPtr, 1, nx0, nx1);
dataPtr += tileComp->x1 - tileComp->x0;
}
//----- vertical (column) transforms
dataPtr = tileComp->data;
for (x = 0; x < nx1 - nx0; ++x) {
inverseTransform1D(tileComp, dataPtr,
tileComp->x1 - tileComp->x0, ny0, ny1);
++dataPtr;
}
}
void JPXStream::inverseTransform1D(JPXTileComp *tileComp,
int *data, Guint stride,
Guint i0, Guint i1) {
int *buf;
Guint offset, end, i;
//----- special case for length = 1
if (i1 - i0 == 1) {
cover(79);
if (i0 & 1) {
cover(104);
*data >>= 1;
}
} else {
cover(80);
// choose an offset: this makes even buf[] indexes correspond to
// odd values of i, and vice versa
offset = 3 + (i0 & 1);
end = offset + i1 - i0;
//----- gather
buf = tileComp->buf;
for (i = 0; i < i1 - i0; ++i) {
buf[offset + i] = data[i * stride];
}
//----- extend right
buf[end] = buf[end - 2];
if (i1 - i0 == 2) {
cover(81);
buf[end+1] = buf[offset + 1];
buf[end+2] = buf[offset];
buf[end+3] = buf[offset + 1];
} else {
cover(82);
buf[end+1] = buf[end - 3];
if (i1 - i0 == 3) {
cover(105);
buf[end+2] = buf[offset + 1];
buf[end+3] = buf[offset + 2];
} else {
cover(106);
buf[end+2] = buf[end - 4];
if (i1 - i0 == 4) {
cover(107);
buf[end+3] = buf[offset + 1];
} else {
cover(108);
buf[end+3] = buf[end - 5];
}
}
}
//----- extend left
buf[offset - 1] = buf[offset + 1];
buf[offset - 2] = buf[offset + 2];
buf[offset - 3] = buf[offset + 3];
if (offset == 4) {
cover(83);
buf[0] = buf[offset + 4];
}
//----- 9-7 irreversible filter
if (tileComp->transform == 0) {
cover(84);
// step 1 (even)
for (i = 1; i <= end + 2; i += 2) {
buf[i] = (int)(idwtKappa * buf[i]);
}
// step 2 (odd)
for (i = 0; i <= end + 3; i += 2) {
buf[i] = (int)(idwtIKappa * buf[i]);
}
// step 3 (even)
for (i = 1; i <= end + 2; i += 2) {
buf[i] = (int)(buf[i] - idwtDelta * (buf[i-1] + buf[i+1]));
}
// step 4 (odd)
for (i = 2; i <= end + 1; i += 2) {
buf[i] = (int)(buf[i] - idwtGamma * (buf[i-1] + buf[i+1]));
}
// step 5 (even)
for (i = 3; i <= end; i += 2) {
buf[i] = (int)(buf[i] - idwtBeta * (buf[i-1] + buf[i+1]));
}
// step 6 (odd)
for (i = 4; i <= end - 1; i += 2) {
buf[i] = (int)(buf[i] - idwtAlpha * (buf[i-1] + buf[i+1]));
}
//----- 5-3 reversible filter
} else {
cover(85);
// step 1 (even)
for (i = 3; i <= end; i += 2) {
buf[i] -= (buf[i-1] + buf[i+1] + 2) >> 2;
}
// step 2 (odd)
for (i = 4; i < end; i += 2) {
buf[i] += (buf[i-1] + buf[i+1]) >> 1;
}
}
//----- scatter
for (i = 0; i < i1 - i0; ++i) {
data[i * stride] = buf[offset + i];
}
}
}
// Inverse multi-component transform and DC level shift. This also
// converts fixed point samples back to integers.
GBool JPXStream::inverseMultiCompAndDC(JPXTile *tile) {
JPXTileComp *tileComp;
int coeff, d0, d1, d2, t, minVal, maxVal, zeroVal;
int *dataPtr;
Guint j, comp, x, y;
//----- inverse multi-component transform
if (tile->multiComp == 1) {
cover(86);
if (img.nComps < 3 ||
tile->tileComps[0].hSep != tile->tileComps[1].hSep ||
tile->tileComps[0].vSep != tile->tileComps[1].vSep ||
tile->tileComps[1].hSep != tile->tileComps[2].hSep ||
tile->tileComps[1].vSep != tile->tileComps[2].vSep) {
return gFalse;
}
// inverse irreversible multiple component transform
if (tile->tileComps[0].transform == 0) {
cover(87);
j = 0;
for (y = 0; y < tile->tileComps[0].y1 - tile->tileComps[0].y0; ++y) {
for (x = 0; x < tile->tileComps[0].x1 - tile->tileComps[0].x0; ++x) {
d0 = tile->tileComps[0].data[j];
d1 = tile->tileComps[1].data[j];
d2 = tile->tileComps[2].data[j];
tile->tileComps[0].data[j] = (int)(d0 + 1.402 * d2 + 0.5);
tile->tileComps[1].data[j] =
(int)(d0 - 0.34413 * d1 - 0.71414 * d2 + 0.5);
tile->tileComps[2].data[j] = (int)(d0 + 1.772 * d1 + 0.5);
++j;
}
}
// inverse reversible multiple component transform
} else {
cover(88);
j = 0;
for (y = 0; y < tile->tileComps[0].y1 - tile->tileComps[0].y0; ++y) {
for (x = 0; x < tile->tileComps[0].x1 - tile->tileComps[0].x0; ++x) {
d0 = tile->tileComps[0].data[j];
d1 = tile->tileComps[1].data[j];
d2 = tile->tileComps[2].data[j];
tile->tileComps[1].data[j] = t = d0 - ((d2 + d1) >> 2);
tile->tileComps[0].data[j] = d2 + t;
tile->tileComps[2].data[j] = d1 + t;
++j;
}
}
}
}
//----- DC level shift
for (comp = 0; comp < img.nComps; ++comp) {
tileComp = &tile->tileComps[comp];
// signed: clip
if (tileComp->sgned) {
cover(89);
minVal = -(1 << (tileComp->prec - 1));
maxVal = (1 << (tileComp->prec - 1)) - 1;
dataPtr = tileComp->data;
for (y = 0; y < tileComp->y1 - tileComp->y0; ++y) {
for (x = 0; x < tileComp->x1 - tileComp->x0; ++x) {
coeff = *dataPtr;
if (tileComp->transform == 0) {
cover(109);
coeff >>= fracBits;
}
if (coeff < minVal) {
cover(110);
coeff = minVal;
} else if (coeff > maxVal) {
cover(111);
coeff = maxVal;
}
*dataPtr++ = coeff;
}
}
// unsigned: inverse DC level shift and clip
} else {
cover(90);
maxVal = (1 << tileComp->prec) - 1;
zeroVal = 1 << (tileComp->prec - 1);
dataPtr = tileComp->data;
for (y = 0; y < tileComp->y1 - tileComp->y0; ++y) {
for (x = 0; x < tileComp->x1 - tileComp->x0; ++x) {
coeff = *dataPtr;
if (tileComp->transform == 0) {
cover(112);
coeff >>= fracBits;
}
coeff += zeroVal;
if (coeff < 0) {
cover(113);
coeff = 0;
} else if (coeff > maxVal) {
cover(114);
coeff = maxVal;
}
*dataPtr++ = coeff;
}
}
}
}
return gTrue;
}
GBool JPXStream::readBoxHdr(Guint *boxType, Guint *boxLen, Guint *dataLen) {
Guint len, lenH;
if (!readULong(&len) ||
!readULong(boxType)) {
return gFalse;
}
if (len == 1) {
if (!readULong(&lenH) || !readULong(&len)) {
return gFalse;
}
if (lenH) {
error(getPos(), "JPX stream contains a box larger than 2^32 bytes");
return gFalse;
}
*boxLen = len;
*dataLen = len - 16;
} else if (len == 0) {
*boxLen = 0;
*dataLen = 0;
} else {
*boxLen = len;
*dataLen = len - 8;
}
return gTrue;
}
int JPXStream::readMarkerHdr(int *segType, Guint *segLen) {
int c;
do {
do {
if ((c = str->getChar()) == EOF) {
return gFalse;
}
} while (c != 0xff);
do {
if ((c = str->getChar()) == EOF) {
return gFalse;
}
} while (c == 0xff);
} while (c == 0x00);
*segType = c;
if ((c >= 0x30 && c <= 0x3f) ||
c == 0x4f || c == 0x92 || c == 0x93 || c == 0xd9) {
*segLen = 0;
return gTrue;
}
return readUWord(segLen);
}
GBool JPXStream::readUByte(Guint *x) {
int c0;
if ((c0 = str->getChar()) == EOF) {
return gFalse;
}
*x = (Guint)c0;
return gTrue;
}
GBool JPXStream::readByte(int *x) {
int c0;
if ((c0 = str->getChar()) == EOF) {
return gFalse;
}
*x = c0;
if (c0 & 0x80) {
*x |= -1 - 0xff;
}
return gTrue;
}
GBool JPXStream::readUWord(Guint *x) {
int c0, c1;
if ((c0 = str->getChar()) == EOF ||
(c1 = str->getChar()) == EOF) {
return gFalse;
}
*x = (Guint)((c0 << 8) | c1);
return gTrue;
}
GBool JPXStream::readULong(Guint *x) {
int c0, c1, c2, c3;
if ((c0 = str->getChar()) == EOF ||
(c1 = str->getChar()) == EOF ||
(c2 = str->getChar()) == EOF ||
(c3 = str->getChar()) == EOF) {
return gFalse;
}
*x = (Guint)((c0 << 24) | (c1 << 16) | (c2 << 8) | c3);
return gTrue;
}
GBool JPXStream::readNBytes(int nBytes, GBool signd, int *x) {
int y, c, i;
y = 0;
for (i = 0; i < nBytes; ++i) {
if ((c = str->getChar()) == EOF) {
return gFalse;
}
y = (y << 8) + c;
}
if (signd) {
if (y & (1 << (8 * nBytes - 1))) {
y |= -1 << (8 * nBytes);
}
}
*x = y;
return gTrue;
}
GBool JPXStream::readBits(int nBits, Guint *x) {
int c;
while (bitBufLen < nBits) {
if (byteCount == 0 || (c = str->getChar()) == EOF) {
return gFalse;
}
--byteCount;
if (bitBufSkip) {
bitBuf = (bitBuf << 7) | (c & 0x7f);
bitBufLen += 7;
} else {
bitBuf = (bitBuf << 8) | (c & 0xff);
bitBufLen += 8;
}
bitBufSkip = c == 0xff;
}
*x = (bitBuf >> (bitBufLen - nBits)) & ((1 << nBits) - 1);
bitBufLen -= nBits;
return gTrue;
}
void JPXStream::startBitBuf(Guint byteCountA) {
bitBufLen = 0;
bitBufSkip = gFalse;
byteCount = byteCountA;
}
Guint JPXStream::finishBitBuf() {
if (bitBufSkip) {
str->getChar();
--byteCount;
}
return byteCount;
}