root/lib/pdf/xpdf/Gfx.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. lookupFont
  2. lookupXObject
  3. lookupXObjectNF
  4. lookupColorSpace
  5. lookupPattern
  6. lookupShading
  7. lookupGState
  8. display
  9. go
  10. execOp
  11. findOp
  12. checkArg
  13. getPos
  14. opSave
  15. opRestore
  16. opConcat
  17. opSetDash
  18. opSetFlat
  19. opSetLineJoin
  20. opSetLineCap
  21. opSetMiterLimit
  22. opSetLineWidth
  23. opSetExtGState
  24. doSoftMask
  25. opSetRenderingIntent
  26. opSetFillGray
  27. opSetStrokeGray
  28. opSetFillCMYKColor
  29. opSetStrokeCMYKColor
  30. opSetFillRGBColor
  31. opSetStrokeRGBColor
  32. opSetFillColorSpace
  33. opSetStrokeColorSpace
  34. opSetFillColor
  35. opSetStrokeColor
  36. opSetFillColorN
  37. opSetStrokeColorN
  38. opMoveTo
  39. opLineTo
  40. opCurveTo
  41. opCurveTo1
  42. opCurveTo2
  43. opRectangle
  44. opClosePath
  45. opEndPath
  46. opStroke
  47. opCloseStroke
  48. opFill
  49. opEOFill
  50. opFillStroke
  51. opCloseFillStroke
  52. opEOFillStroke
  53. opCloseEOFillStroke
  54. doPatternFill
  55. doPatternStroke
  56. doTilingPatternFill
  57. doShadingPatternFill
  58. opShFill
  59. doFunctionShFill
  60. doFunctionShFill1
  61. doAxialShFill
  62. doRadialShFill
  63. doGouraudTriangleShFill
  64. gouraudFillTriangle
  65. doPatchMeshShFill
  66. fillPatch
  67. doEndPath
  68. opClip
  69. opEOClip
  70. opBeginText
  71. opEndText
  72. opSetCharSpacing
  73. opSetFont
  74. opSetTextLeading
  75. opSetTextRender
  76. opSetTextRise
  77. opSetWordSpacing
  78. opSetHorizScaling
  79. opTextMove
  80. opTextMoveSet
  81. opSetTextMatrix
  82. opTextNextLine
  83. opShowText
  84. opMoveShowText
  85. opMoveSetShowText
  86. opShowSpaceText
  87. doShowText
  88. opXObject
  89. doImage
  90. doForm
  91. doForm1
  92. opBeginImage
  93. buildImageStream
  94. opImageData
  95. opEndImage
  96. opSetCharWidth
  97. opSetCacheDevice
  98. opBeginIgnoreUndef
  99. opEndIgnoreUndef
  100. opBeginMarkedContent
  101. opEndMarkedContent
  102. opMarkPoint
  103. drawAnnot
  104. saveState
  105. restoreState
  106. pushResources
  107. popResources

//========================================================================
//
// Gfx.cc
//
// Copyright 1996-2003 Glyph & Cog, LLC
//
//========================================================================

#include <aconf.h>

#ifdef USE_GCC_PRAGMAS
#pragma implementation
#endif

#include <stdlib.h>
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <math.h>
#include "gmem.h"
#include "GlobalParams.h"
#include "CharTypes.h"
#include "Object.h"
#include "Array.h"
#include "Dict.h"
#include "Stream.h"
#include "Lexer.h"
#include "Parser.h"
#include "GfxFont.h"
#include "GfxState.h"
#include "OutputDev.h"
#include "Page.h"
#include "Annot.h"
#include "Error.h"
#include "Gfx.h"

// the MSVC math.h doesn't define this
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

//------------------------------------------------------------------------
// constants
//------------------------------------------------------------------------

// Max recursive depth for a function shading fill.
#define functionMaxDepth 6

// Max delta allowed in any color component for a function shading fill.
#define functionColorDelta (dblToCol(1 / 256.0))

// Max number of splits along the t axis for an axial shading fill.
#define axialMaxSplits 256

// Max delta allowed in any color component for an axial shading fill.
#define axialColorDelta (dblToCol(1 / 256.0))

// Max number of splits along the t axis for a radial shading fill.
#define radialMaxSplits 256

// Max delta allowed in any color component for a radial shading fill.
#define radialColorDelta (dblToCol(1 / 256.0))

// Max recursive depth for a Gouraud triangle shading fill.
#define gouraudMaxDepth 6

// Max delta allowed in any color component for a Gouraud triangle
// shading fill.
#define gouraudColorDelta (dblToCol(1 / 256.0))

// Max recursive depth for a patch mesh shading fill.
#define patchMaxDepth 6

// Max delta allowed in any color component for a patch mesh shading
// fill.
#define patchColorDelta (dblToCol(1 / 256.0))

//------------------------------------------------------------------------
// Operator table
//------------------------------------------------------------------------

#ifdef WIN32 // this works around a bug in the VC7 compiler
#  pragma optimize("",off)
#endif

Operator Gfx::opTab[] = {
  {"\"",  3, {tchkNum,    tchkNum,    tchkString},
          &Gfx::opMoveSetShowText},
  {"'",   1, {tchkString},
          &Gfx::opMoveShowText},
  {"B",   0, {tchkNone},
          &Gfx::opFillStroke},
  {"B*",  0, {tchkNone},
          &Gfx::opEOFillStroke},
  {"BDC", 2, {tchkName,   tchkProps},
          &Gfx::opBeginMarkedContent},
  {"BI",  0, {tchkNone},
          &Gfx::opBeginImage},
  {"BMC", 1, {tchkName},
          &Gfx::opBeginMarkedContent},
  {"BT",  0, {tchkNone},
          &Gfx::opBeginText},
  {"BX",  0, {tchkNone},
          &Gfx::opBeginIgnoreUndef},
  {"CS",  1, {tchkName},
          &Gfx::opSetStrokeColorSpace},
  {"DP",  2, {tchkName,   tchkProps},
          &Gfx::opMarkPoint},
  {"Do",  1, {tchkName},
          &Gfx::opXObject},
  {"EI",  0, {tchkNone},
          &Gfx::opEndImage},
  {"EMC", 0, {tchkNone},
          &Gfx::opEndMarkedContent},
  {"ET",  0, {tchkNone},
          &Gfx::opEndText},
  {"EX",  0, {tchkNone},
          &Gfx::opEndIgnoreUndef},
  {"F",   0, {tchkNone},
          &Gfx::opFill},
  {"G",   1, {tchkNum},
          &Gfx::opSetStrokeGray},
  {"ID",  0, {tchkNone},
          &Gfx::opImageData},
  {"J",   1, {tchkInt},
          &Gfx::opSetLineCap},
  {"K",   4, {tchkNum,    tchkNum,    tchkNum,    tchkNum},
          &Gfx::opSetStrokeCMYKColor},
  {"M",   1, {tchkNum},
          &Gfx::opSetMiterLimit},
  {"MP",  1, {tchkName},
          &Gfx::opMarkPoint},
  {"Q",   0, {tchkNone},
          &Gfx::opRestore},
  {"RG",  3, {tchkNum,    tchkNum,    tchkNum},
          &Gfx::opSetStrokeRGBColor},
  {"S",   0, {tchkNone},
          &Gfx::opStroke},
  {"SC",  -4, {tchkNum,   tchkNum,    tchkNum,    tchkNum},
          &Gfx::opSetStrokeColor},
  {"SCN", -33, {tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN},
          &Gfx::opSetStrokeColorN},
  {"T*",  0, {tchkNone},
          &Gfx::opTextNextLine},
  {"TD",  2, {tchkNum,    tchkNum},
          &Gfx::opTextMoveSet},
  {"TJ",  1, {tchkArray},
          &Gfx::opShowSpaceText},
  {"TL",  1, {tchkNum},
          &Gfx::opSetTextLeading},
  {"Tc",  1, {tchkNum},
          &Gfx::opSetCharSpacing},
  {"Td",  2, {tchkNum,    tchkNum},
          &Gfx::opTextMove},
  {"Tf",  2, {tchkName,   tchkNum},
          &Gfx::opSetFont},
  {"Tj",  1, {tchkString},
          &Gfx::opShowText},
  {"Tm",  6, {tchkNum,    tchkNum,    tchkNum,    tchkNum,
              tchkNum,    tchkNum},
          &Gfx::opSetTextMatrix},
  {"Tr",  1, {tchkInt},
          &Gfx::opSetTextRender},
  {"Ts",  1, {tchkNum},
          &Gfx::opSetTextRise},
  {"Tw",  1, {tchkNum},
          &Gfx::opSetWordSpacing},
  {"Tz",  1, {tchkNum},
          &Gfx::opSetHorizScaling},
  {"W",   0, {tchkNone},
          &Gfx::opClip},
  {"W*",  0, {tchkNone},
          &Gfx::opEOClip},
  {"b",   0, {tchkNone},
          &Gfx::opCloseFillStroke},
  {"b*",  0, {tchkNone},
          &Gfx::opCloseEOFillStroke},
  {"c",   6, {tchkNum,    tchkNum,    tchkNum,    tchkNum,
              tchkNum,    tchkNum},
          &Gfx::opCurveTo},
  {"cm",  6, {tchkNum,    tchkNum,    tchkNum,    tchkNum,
              tchkNum,    tchkNum},
          &Gfx::opConcat},
  {"cs",  1, {tchkName},
          &Gfx::opSetFillColorSpace},
  {"d",   2, {tchkArray,  tchkNum},
          &Gfx::opSetDash},
  {"d0",  2, {tchkNum,    tchkNum},
          &Gfx::opSetCharWidth},
  {"d1",  6, {tchkNum,    tchkNum,    tchkNum,    tchkNum,
              tchkNum,    tchkNum},
          &Gfx::opSetCacheDevice},
  {"f",   0, {tchkNone},
          &Gfx::opFill},
  {"f*",  0, {tchkNone},
          &Gfx::opEOFill},
  {"g",   1, {tchkNum},
          &Gfx::opSetFillGray},
  {"gs",  1, {tchkName},
          &Gfx::opSetExtGState},
  {"h",   0, {tchkNone},
          &Gfx::opClosePath},
  {"i",   1, {tchkNum},
          &Gfx::opSetFlat},
  {"j",   1, {tchkInt},
          &Gfx::opSetLineJoin},
  {"k",   4, {tchkNum,    tchkNum,    tchkNum,    tchkNum},
          &Gfx::opSetFillCMYKColor},
  {"l",   2, {tchkNum,    tchkNum},
          &Gfx::opLineTo},
  {"m",   2, {tchkNum,    tchkNum},
          &Gfx::opMoveTo},
  {"n",   0, {tchkNone},
          &Gfx::opEndPath},
  {"q",   0, {tchkNone},
          &Gfx::opSave},
  {"re",  4, {tchkNum,    tchkNum,    tchkNum,    tchkNum},
          &Gfx::opRectangle},
  {"rg",  3, {tchkNum,    tchkNum,    tchkNum},
          &Gfx::opSetFillRGBColor},
  {"ri",  1, {tchkName},
          &Gfx::opSetRenderingIntent},
  {"s",   0, {tchkNone},
          &Gfx::opCloseStroke},
  {"sc",  -4, {tchkNum,   tchkNum,    tchkNum,    tchkNum},
          &Gfx::opSetFillColor},
  {"scn", -33, {tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN,   tchkSCN,    tchkSCN,    tchkSCN,
                tchkSCN},
          &Gfx::opSetFillColorN},
  {"sh",  1, {tchkName},
          &Gfx::opShFill},
  {"v",   4, {tchkNum,    tchkNum,    tchkNum,    tchkNum},
          &Gfx::opCurveTo1},
  {"w",   1, {tchkNum},
          &Gfx::opSetLineWidth},
  {"y",   4, {tchkNum,    tchkNum,    tchkNum,    tchkNum},
          &Gfx::opCurveTo2},
};

#ifdef WIN32 // this works around a bug in the VC7 compiler
#  pragma optimize("",on)
#endif

#define numOps (sizeof(opTab) / sizeof(Operator))

//------------------------------------------------------------------------
// GfxResources
//------------------------------------------------------------------------

GfxResources::GfxResources(XRef *xref, Dict *resDict, GfxResources *nextA) {
  Object obj1, obj2;
  Ref r;

  if (resDict) {

    // build font dictionary
    fonts = NULL;
    resDict->lookupNF("Font", &obj1);
    if (obj1.isRef()) {
      obj1.fetch(xref, &obj2);
      if (obj2.isDict()) {
        r = obj1.getRef();
        fonts = new GfxFontDict(xref, &r, obj2.getDict());
      }
      obj2.free();
    } else if (obj1.isDict()) {
      fonts = new GfxFontDict(xref, NULL, obj1.getDict());
    }
    obj1.free();

    // get XObject dictionary
    resDict->lookup("XObject", &xObjDict);

    // get color space dictionary
    resDict->lookup("ColorSpace", &colorSpaceDict);

    // get pattern dictionary
    resDict->lookup("Pattern", &patternDict);

    // get shading dictionary
    resDict->lookup("Shading", &shadingDict);

    // get graphics state parameter dictionary
    resDict->lookup("ExtGState", &gStateDict);

  } else {
    fonts = NULL;
    xObjDict.initNull();
    colorSpaceDict.initNull();
    patternDict.initNull();
    shadingDict.initNull();
    gStateDict.initNull();
  }

  next = nextA;
}

GfxResources::~GfxResources() {
  if (fonts) {
    delete fonts;
  }
  xObjDict.free();
  colorSpaceDict.free();
  patternDict.free();
  shadingDict.free();
  gStateDict.free();
}

GfxFont *GfxResources::lookupFont(char *name) {
  GfxFont *font;
  GfxResources *resPtr;

  for (resPtr = this; resPtr; resPtr = resPtr->next) {
    if (resPtr->fonts) {
      if ((font = resPtr->fonts->lookup(name)))
        return font;
    }
  }
  error(-1, "Unknown font tag '%s'", name);
  return NULL;
}

GBool GfxResources::lookupXObject(char *name, Object *obj) {
  GfxResources *resPtr;

  for (resPtr = this; resPtr; resPtr = resPtr->next) {
    if (resPtr->xObjDict.isDict()) {
      if (!resPtr->xObjDict.dictLookup(name, obj)->isNull())
        return gTrue;
      obj->free();
    }
  }
  error(-1, "XObject '%s' is unknown", name);
  return gFalse;
}

GBool GfxResources::lookupXObjectNF(char *name, Object *obj) {
  GfxResources *resPtr;

  for (resPtr = this; resPtr; resPtr = resPtr->next) {
    if (resPtr->xObjDict.isDict()) {
      if (!resPtr->xObjDict.dictLookupNF(name, obj)->isNull())
        return gTrue;
      obj->free();
    }
  }
  error(-1, "XObject '%s' is unknown", name);
  return gFalse;
}

void GfxResources::lookupColorSpace(char *name, Object *obj) {
  GfxResources *resPtr;

  for (resPtr = this; resPtr; resPtr = resPtr->next) {
    if (resPtr->colorSpaceDict.isDict()) {
      if (!resPtr->colorSpaceDict.dictLookup(name, obj)->isNull()) {
        return;
      }
      obj->free();
    }
  }
  obj->initNull();
}

GfxPattern *GfxResources::lookupPattern(char *name) {
  GfxResources *resPtr;
  GfxPattern *pattern;
  Object obj;

  for (resPtr = this; resPtr; resPtr = resPtr->next) {
    if (resPtr->patternDict.isDict()) {
      if (!resPtr->patternDict.dictLookup(name, &obj)->isNull()) {
        pattern = GfxPattern::parse(&obj);
        obj.free();
        return pattern;
      }
      obj.free();
    }
  }
  error(-1, "Unknown pattern '%s'", name);
  return NULL;
}

GfxShading *GfxResources::lookupShading(char *name) {
  GfxResources *resPtr;
  GfxShading *shading;
  Object obj;

  for (resPtr = this; resPtr; resPtr = resPtr->next) {
    if (resPtr->shadingDict.isDict()) {
      if (!resPtr->shadingDict.dictLookup(name, &obj)->isNull()) {
        shading = GfxShading::parse(&obj);
        obj.free();
        return shading;
      }
      obj.free();
    }
  }
  error(-1, "Unknown shading '%s'", name);
  return NULL;
}

GBool GfxResources::lookupGState(char *name, Object *obj) {
  GfxResources *resPtr;

  for (resPtr = this; resPtr; resPtr = resPtr->next) {
    if (resPtr->gStateDict.isDict()) {
      if (!resPtr->gStateDict.dictLookup(name, obj)->isNull()) {
        return gTrue;
      }
      obj->free();
    }
  }
  error(-1, "ExtGState '%s' is unknown", name);
  return gFalse;
}

//------------------------------------------------------------------------
// Gfx
//------------------------------------------------------------------------

Gfx::Gfx(XRef *xrefA, OutputDev *outA, int pageNum, Dict *resDict,
         double hDPI, double vDPI, PDFRectangle *box,
         PDFRectangle *cropBox, int rotate,
         GBool (*abortCheckCbkA)(void *data),
         void *abortCheckCbkDataA) {
  int i;

  xref = xrefA;
  subPage = gFalse;
  printCommands = globalParams->getPrintCommands();

  // start the resource stack
  res = new GfxResources(xref, resDict, NULL);

  // initialize
  out = outA;
  state = new GfxState(hDPI, vDPI, box, rotate, out->upsideDown());
  fontChanged = gFalse;
  clip = clipNone;
  ignoreUndef = 0;
  if(cropBox) {
      out->startPage(pageNum, state, cropBox->x1,cropBox->y1,cropBox->x2,cropBox->y2);
  } else {
      out->startPage(pageNum, state, 0,0,0,0);
  }
  out->setDefaultCTM(state->getCTM());
  out->updateAll(state);
  for (i = 0; i < 6; ++i) {
    baseMatrix[i] = state->getCTM()[i];
  }
  formDepth = 0;
  abortCheckCbk = abortCheckCbkA;
  abortCheckCbkData = abortCheckCbkDataA;

  // set crop box
#ifdef XPDFEXE
  if (cropBox) {
    state->moveTo(cropBox->x1, cropBox->y1);
    state->lineTo(cropBox->x2, cropBox->y1);
    state->lineTo(cropBox->x2, cropBox->y2);
    state->lineTo(cropBox->x1, cropBox->y2);
    state->closePath();
    state->clip();
    out->clip(state);
    state->clearPath();
  }
#endif
}

Gfx::Gfx(XRef *xrefA, OutputDev *outA, Dict *resDict,
         PDFRectangle *box, PDFRectangle *cropBox,
         GBool (*abortCheckCbkA)(void *data),
         void *abortCheckCbkDataA) {
  int i;

  xref = xrefA;
  subPage = gTrue;
  printCommands = globalParams->getPrintCommands();

  // start the resource stack
  res = new GfxResources(xref, resDict, NULL);

  // initialize
  out = outA;
  state = new GfxState(72, 72, box, 0, gFalse);
  fontChanged = gFalse;
  clip = clipNone;
  ignoreUndef = 0;
  for (i = 0; i < 6; ++i) {
    baseMatrix[i] = state->getCTM()[i];
  }
  formDepth = 0;
  abortCheckCbk = abortCheckCbkA;
  abortCheckCbkData = abortCheckCbkDataA;

  // set crop box
  if (cropBox) {
    state->moveTo(cropBox->x1, cropBox->y1);
    state->lineTo(cropBox->x2, cropBox->y1);
    state->lineTo(cropBox->x2, cropBox->y2);
    state->lineTo(cropBox->x1, cropBox->y2);
    state->closePath();
    state->clip();
    out->clip(state);
    state->clearPath();
  }
}

Gfx::~Gfx() {
  while (state->hasSaves()) {
    restoreState();
  }
  if (!subPage) {
    out->endPage();
  }
  while (res) {
    popResources();
  }
  if (state) {
    delete state;
  }
}

void Gfx::display(Object *obj, GBool topLevel) {
  Object obj2;
  int i;

  if (obj->isArray()) {
    for (i = 0; i < obj->arrayGetLength(); ++i) {
      obj->arrayGet(i, &obj2);
      if (!obj2.isStream()) {
        error(-1, "Weird page contents");
        obj2.free();
        return;
      }
      obj2.free();
    }
  } else if (!obj->isStream()) {
    error(-1, "Weird page contents");
    return;
  }
  parser = new Parser(xref, new Lexer(xref, obj), gFalse);
  go(topLevel);
  delete parser;
  parser = NULL;
}

void Gfx::go(GBool topLevel) {
  Object obj;
  Object args[maxArgs];
  int numArgs, i;
  int lastAbortCheck;

  // scan a sequence of objects
  updateLevel = lastAbortCheck = 0;
  numArgs = 0;
  parser->getObj(&obj);
  while (!obj.isEOF()) {

    // got a command - execute it
    if (obj.isCmd()) {
      if (printCommands) {
        obj.print(stdout);
        for (i = 0; i < numArgs; ++i) {
          printf(" ");
          args[i].print(stdout);
        }
        printf("\n");
        fflush(stdout);
      }
      execOp(&obj, args, numArgs);
      obj.free();
      for (i = 0; i < numArgs; ++i)
        args[i].free();
      numArgs = 0;

      // periodically update display
      if (++updateLevel >= 20000) {
        out->dump();
        updateLevel = 0;
      }

      // check for an abort
      if (abortCheckCbk) {
        if (updateLevel - lastAbortCheck > 10) {
          if ((*abortCheckCbk)(abortCheckCbkData)) {
            break;
          }
          lastAbortCheck = updateLevel;
        }
      }

    // got an argument - save it
    } else if (numArgs < maxArgs) {
      args[numArgs++] = obj;

    // too many arguments - something is wrong
    } else {
      error(getPos(), "Too many args in content stream");
      if (printCommands) {
        printf("throwing away arg: ");
        obj.print(stdout);
        printf("\n");
        fflush(stdout);
      }
      obj.free();
    }

    // grab the next object
    parser->getObj(&obj);
  }
  obj.free();

  // args at end with no command
  if (numArgs > 0) {
    error(getPos(), "Leftover args in content stream");
    if (printCommands) {
      printf("%d leftovers:", numArgs);
      for (i = 0; i < numArgs; ++i) {
        printf(" ");
        args[i].print(stdout);
      }
      printf("\n");
      fflush(stdout);
    }
    for (i = 0; i < numArgs; ++i)
      args[i].free();
  }

  // update display
  if (topLevel && updateLevel > 0) {
    out->dump();
  }
}

void Gfx::execOp(Object *cmd, Object args[], int numArgs) {
  Operator *op;
  char *name;
  Object *argPtr;
  int i;

  // find operator
  name = cmd->getCmd();
  if (!(op = findOp(name))) {
    if (ignoreUndef == 0)
      error(getPos(), "Unknown operator '%s'", name);
    return;
  }

  // type check args
  argPtr = args;
  if (op->numArgs >= 0) {
    if (numArgs < op->numArgs) {
      error(getPos(), "Too few (%d) args to '%s' operator", numArgs, name);
      return;
    }
    if (numArgs > op->numArgs) {
#if 0
      error(getPos(), "Too many (%d) args to '%s' operator", numArgs, name);
#endif
      argPtr += numArgs - op->numArgs;
      numArgs = op->numArgs;
    }
  } else {
    if (numArgs > -op->numArgs) {
      error(getPos(), "Too many (%d) args to '%s' operator",
            numArgs, name);
      return;
    }
  }
  for (i = 0; i < numArgs; ++i) {
    if (!checkArg(&argPtr[i], op->tchk[i])) {
      error(getPos(), "Arg #%d to '%s' operator is wrong type (%s)",
            i, name, argPtr[i].getTypeName());
      return;
    }
  }

  // do it
  (this->*op->func)(argPtr, numArgs);
}

Operator *Gfx::findOp(char *name) {
  int a, b, m, cmp;

  a = -1;
  b = numOps;
  // invariant: opTab[a] < name < opTab[b]
  while (b - a > 1) {
    m = (a + b) / 2;
    cmp = strcmp(opTab[m].name, name);
    if (cmp < 0)
      a = m;
    else if (cmp > 0)
      b = m;
    else
      a = b = m;
  }
  if (cmp != 0)
    return NULL;
  return &opTab[a];
}

GBool Gfx::checkArg(Object *arg, TchkType type) {
  switch (type) {
  case tchkBool:   return arg->isBool();
  case tchkInt:    return arg->isInt();
  case tchkNum:    return arg->isNum();
  case tchkString: return arg->isString();
  case tchkName:   return arg->isName();
  case tchkArray:  return arg->isArray();
  case tchkProps:  return arg->isDict() || arg->isName();
  case tchkSCN:    return arg->isNum() || arg->isName();
  case tchkNone:   return gFalse;
  }
  return gFalse;
}

int Gfx::getPos() {
  return parser ? parser->getPos() : -1;
}

//------------------------------------------------------------------------
// graphics state operators
//------------------------------------------------------------------------

void Gfx::opSave(Object args[], int numArgs) {
  saveState();
}

void Gfx::opRestore(Object args[], int numArgs) {
  restoreState();
}

void Gfx::opConcat(Object args[], int numArgs) {
  state->concatCTM(args[0].getNum(), args[1].getNum(),
                   args[2].getNum(), args[3].getNum(),
                   args[4].getNum(), args[5].getNum());
  out->updateCTM(state, args[0].getNum(), args[1].getNum(),
                 args[2].getNum(), args[3].getNum(),
                 args[4].getNum(), args[5].getNum());
  fontChanged = gTrue;
}

void Gfx::opSetDash(Object args[], int numArgs) {
  Array *a;
  int length;
  Object obj;
  double *dash;
  int i;

  a = args[0].getArray();
  length = a->getLength();
  if (length == 0) {
    dash = NULL;
  } else {
    dash = (double *)gmallocn(length, sizeof(double));
    for (i = 0; i < length; ++i) {
      dash[i] = a->get(i, &obj)->getNum();
      obj.free();
    }
  }
  state->setLineDash(dash, length, args[1].getNum());
  out->updateLineDash(state);
}

void Gfx::opSetFlat(Object args[], int numArgs) {
  state->setFlatness((int)args[0].getNum());
  out->updateFlatness(state);
}

void Gfx::opSetLineJoin(Object args[], int numArgs) {
  state->setLineJoin(args[0].getInt());
  out->updateLineJoin(state);
}

void Gfx::opSetLineCap(Object args[], int numArgs) {
  state->setLineCap(args[0].getInt());
  out->updateLineCap(state);
}

void Gfx::opSetMiterLimit(Object args[], int numArgs) {
  state->setMiterLimit(args[0].getNum());
  out->updateMiterLimit(state);
}

void Gfx::opSetLineWidth(Object args[], int numArgs) {
  state->setLineWidth(args[0].getNum());
  out->updateLineWidth(state);
}

void Gfx::opSetExtGState(Object args[], int numArgs) {
  Object obj1, obj2, obj3, obj4, obj5;
  GfxBlendMode mode;
  GBool haveFillOP;
  Function *funcs[4];
  GfxColor backdropColor;
  GBool haveBackdropColor;
  GfxColorSpace *blendingColorSpace;
  GBool alpha, isolated, knockout;
  int i;

  if (!res->lookupGState(args[0].getName(), &obj1)) {
    return;
  }
  if (!obj1.isDict()) {
    error(getPos(), "ExtGState '%s' is wrong type", args[0].getName());
    obj1.free();
    return;
  }
  if (printCommands) {
    printf("  gfx state dict: ");
    obj1.print();
    printf("\n");
  }

  // transparency support: blend mode, fill/stroke opacity
  if (!obj1.dictLookup("BM", &obj2)->isNull()) {
    if (state->parseBlendMode(&obj2, &mode)) {
      state->setBlendMode(mode);
      out->updateBlendMode(state);
    } else {
      error(getPos(), "Invalid blend mode in ExtGState");
    }
  }
  obj2.free();
  if (obj1.dictLookup("ca", &obj2)->isNum()) {
    state->setFillOpacity(obj2.getNum());
    out->updateFillOpacity(state);
  }
  obj2.free();
  if (obj1.dictLookup("CA", &obj2)->isNum()) {
    state->setStrokeOpacity(obj2.getNum());
    out->updateStrokeOpacity(state);
  }
  obj2.free();

  // fill/stroke overprint
  if ((haveFillOP = (obj1.dictLookup("op", &obj2)->isBool()))) {
    state->setFillOverprint(obj2.getBool());
    out->updateFillOverprint(state);
  }
  obj2.free();
  if (obj1.dictLookup("OP", &obj2)->isBool()) {
    state->setStrokeOverprint(obj2.getBool());
    out->updateStrokeOverprint(state);
    if (!haveFillOP) {
      state->setFillOverprint(obj2.getBool());
      out->updateFillOverprint(state);
    }
  }
  obj2.free();

  // stroke adjust
  if (obj1.dictLookup("SA", &obj2)->isBool()) {
    state->setStrokeAdjust(obj2.getBool());
    out->updateStrokeAdjust(state);
  }
  obj2.free();

  // transfer function
  if (obj1.dictLookup("TR2", &obj2)->isNull()) {
    obj2.free();
    obj1.dictLookup("TR", &obj2);
  }
  if (obj2.isName("Default") ||
      obj2.isName("Identity")) {
    funcs[0] = funcs[1] = funcs[2] = funcs[3] = NULL;
    state->setTransfer(funcs);
    out->updateTransfer(state);
  } else if (obj2.isArray() && obj2.arrayGetLength() == 4) {
    for (i = 0; i < 4; ++i) {
      obj2.arrayGet(i, &obj3);
      funcs[i] = Function::parse(&obj3);
      obj3.free();
      if (!funcs[i]) {
        break;
      }
    }
    if (i == 4) {
      state->setTransfer(funcs);
      out->updateTransfer(state);
    }
  } else if (obj2.isName() || obj2.isDict() || obj2.isStream()) {
    if ((funcs[0] = Function::parse(&obj2))) {
      funcs[1] = funcs[2] = funcs[3] = NULL;
      state->setTransfer(funcs);
      out->updateTransfer(state);
    }
  } else if (!obj2.isNull()) {
    error(getPos(), "Invalid transfer function in ExtGState");
  }
  obj2.free();

  // soft mask
  if (!obj1.dictLookup("SMask", &obj2)->isNull()) {
    if (obj2.isName("None")) {
      out->clearSoftMask(state);
    } else if (obj2.isDict()) {
      if (obj2.dictLookup("S", &obj3)->isName("Alpha")) {
        alpha = gTrue;
      } else { // "Luminosity"
        alpha = gFalse;
      }
      obj3.free();
      funcs[0] = NULL;
      if (!obj2.dictLookup("TR", &obj3)->isNull()) {
        funcs[0] = Function::parse(&obj3);
        if (funcs[0]->getInputSize() != 1 ||
            funcs[0]->getOutputSize() != 1) {
          error(getPos(),
                "Invalid transfer function in soft mask in ExtGState");
          delete funcs[0];
          funcs[0] = NULL;
        }
      }
      obj3.free();
      if ((haveBackdropColor = obj2.dictLookup("BC", &obj3)->isArray())) {
        for (i = 0; i < gfxColorMaxComps; ++i) {
          backdropColor.c[i] = 0;
        }
        for (i = 0; i < obj3.arrayGetLength() && i < gfxColorMaxComps; ++i) {
          obj3.arrayGet(i, &obj4);
          if (obj4.isNum()) {
            backdropColor.c[i] = dblToCol(obj4.getNum());
          }
          obj4.free();
        }
      }
      obj3.free();
      if (obj2.dictLookup("G", &obj3)->isStream()) {
        if (obj3.streamGetDict()->lookup("Group", &obj4)->isDict()) {
          blendingColorSpace = NULL;
          isolated = knockout = gFalse;
          if (!obj4.dictLookup("CS", &obj5)->isNull()) {
            blendingColorSpace = GfxColorSpace::parse(&obj5);
          }
          obj5.free();
          if (obj4.dictLookup("I", &obj5)->isBool()) {
            isolated = obj5.getBool();
          }
          obj5.free();
          if (obj4.dictLookup("K", &obj5)->isBool()) {
            knockout = obj5.getBool();
          }
          obj5.free();
          if (!haveBackdropColor) {
            if (blendingColorSpace) {
              blendingColorSpace->getDefaultColor(&backdropColor);
            } else {
              //~ need to get the parent or default color space (?)
              for (i = 0; i < gfxColorMaxComps; ++i) {
                backdropColor.c[i] = 0;
              }
            }
          }
          doSoftMask(&obj3, alpha, blendingColorSpace,
                     isolated, knockout, funcs[0], &backdropColor);
          if (funcs[0]) {
            delete funcs[0];
          }
        } else {
          error(getPos(), "Invalid soft mask in ExtGState - missing group");
        }
        obj4.free();
      } else {
        error(getPos(), "Invalid soft mask in ExtGState - missing group");
      }
      obj3.free();
    } else if (!obj2.isNull()) {
      error(getPos(), "Invalid soft mask in ExtGState");
    }
  }
  obj2.free();

  obj1.free();
}

void Gfx::doSoftMask(Object *str, GBool alpha,
                     GfxColorSpace *blendingColorSpace,
                     GBool isolated, GBool knockout,
                     Function *transferFunc, GfxColor *backdropColor) {
  Dict *dict, *resDict;
  double m[6], bbox[4];
  Object obj1, obj2;
  int i;

  // check for excessive recursion
  if (formDepth > 20) {
    return;
  }

  // get stream dict
  dict = str->streamGetDict();

  // check form type
  dict->lookup("FormType", &obj1);
  if (!(obj1.isNull() || (obj1.isInt() && obj1.getInt() == 1))) {
    error(getPos(), "Unknown form type");
  }
  obj1.free();

  // get bounding box
  dict->lookup("BBox", &obj1);
  if (!obj1.isArray()) {
    obj1.free();
    error(getPos(), "Bad form bounding box");
    return;
  }
  for (i = 0; i < 4; ++i) {
    obj1.arrayGet(i, &obj2);
    bbox[i] = obj2.getNum();
    obj2.free();
  }
  obj1.free();

  // get matrix
  dict->lookup("Matrix", &obj1);
  if (obj1.isArray()) {
    for (i = 0; i < 6; ++i) {
      obj1.arrayGet(i, &obj2);
      m[i] = obj2.getNum();
      obj2.free();
    }
  } else {
    m[0] = 1; m[1] = 0;
    m[2] = 0; m[3] = 1;
    m[4] = 0; m[5] = 0;
  }
  obj1.free();

  // get resources
  dict->lookup("Resources", &obj1);
  resDict = obj1.isDict() ? obj1.getDict() : (Dict *)NULL;

  // draw it
  ++formDepth;
  doForm1(str, resDict, m, bbox, gTrue, gTrue,
          blendingColorSpace, isolated, knockout,
          alpha, transferFunc, backdropColor);
  --formDepth;

  if (blendingColorSpace) {
    delete blendingColorSpace;
  }
  obj1.free();
}

void Gfx::opSetRenderingIntent(Object args[], int numArgs) {
}

//------------------------------------------------------------------------
// color operators
//------------------------------------------------------------------------

void Gfx::opSetFillGray(Object args[], int numArgs) {
  GfxColor color;

  state->setFillPattern(NULL);
  state->setFillColorSpace(new GfxDeviceGrayColorSpace());
  out->updateFillColorSpace(state);
  color.c[0] = dblToCol(args[0].getNum());
  state->setFillColor(&color);
  out->updateFillColor(state);
}

void Gfx::opSetStrokeGray(Object args[], int numArgs) {
  GfxColor color;

  state->setStrokePattern(NULL);
  state->setStrokeColorSpace(new GfxDeviceGrayColorSpace());
  out->updateStrokeColorSpace(state);
  color.c[0] = dblToCol(args[0].getNum());
  state->setStrokeColor(&color);
  out->updateStrokeColor(state);
}

void Gfx::opSetFillCMYKColor(Object args[], int numArgs) {
  GfxColor color;
  int i;

  state->setFillPattern(NULL);
  state->setFillColorSpace(new GfxDeviceCMYKColorSpace());
  out->updateFillColorSpace(state);
  for (i = 0; i < 4; ++i) {
    color.c[i] = dblToCol(args[i].getNum());
  }
  state->setFillColor(&color);
  out->updateFillColor(state);
}

void Gfx::opSetStrokeCMYKColor(Object args[], int numArgs) {
  GfxColor color;
  int i;

  state->setStrokePattern(NULL);
  state->setStrokeColorSpace(new GfxDeviceCMYKColorSpace());
  out->updateStrokeColorSpace(state);
  for (i = 0; i < 4; ++i) {
    color.c[i] = dblToCol(args[i].getNum());
  }
  state->setStrokeColor(&color);
  out->updateStrokeColor(state);
}

void Gfx::opSetFillRGBColor(Object args[], int numArgs) {
  GfxColor color;
  int i;

  state->setFillPattern(NULL);
  state->setFillColorSpace(new GfxDeviceRGBColorSpace());
  out->updateFillColorSpace(state);
  for (i = 0; i < 3; ++i) {
    color.c[i] = dblToCol(args[i].getNum());
  }
  state->setFillColor(&color);
  out->updateFillColor(state);
}

void Gfx::opSetStrokeRGBColor(Object args[], int numArgs) {
  GfxColor color;
  int i;

  state->setStrokePattern(NULL);
  state->setStrokeColorSpace(new GfxDeviceRGBColorSpace());
  out->updateStrokeColorSpace(state);
  for (i = 0; i < 3; ++i) {
    color.c[i] = dblToCol(args[i].getNum());
  }
  state->setStrokeColor(&color);
  out->updateStrokeColor(state);
}

void Gfx::opSetFillColorSpace(Object args[], int numArgs) {
  Object obj;
  GfxColorSpace *colorSpace;
  GfxColor color;

  state->setFillPattern(NULL);
  res->lookupColorSpace(args[0].getName(), &obj);
  if (obj.isNull()) {
    colorSpace = GfxColorSpace::parse(&args[0]);
  } else {
    colorSpace = GfxColorSpace::parse(&obj);
  }
  obj.free();
  if (colorSpace) {
    state->setFillColorSpace(colorSpace);
    out->updateFillColorSpace(state);
    colorSpace->getDefaultColor(&color);
    state->setFillColor(&color);
    out->updateFillColor(state);
  } else {
    error(getPos(), "Bad color space (fill)");
  }
}

void Gfx::opSetStrokeColorSpace(Object args[], int numArgs) {
  Object obj;
  GfxColorSpace *colorSpace;
  GfxColor color;

  state->setStrokePattern(NULL);
  res->lookupColorSpace(args[0].getName(), &obj);
  if (obj.isNull()) {
    colorSpace = GfxColorSpace::parse(&args[0]);
  } else {
    colorSpace = GfxColorSpace::parse(&obj);
  }
  obj.free();
  if (colorSpace) {
    state->setStrokeColorSpace(colorSpace);
    out->updateStrokeColorSpace(state);
    colorSpace->getDefaultColor(&color);
    state->setStrokeColor(&color);
    out->updateStrokeColor(state);
  } else {
    error(getPos(), "Bad color space (stroke)");
  }
}

void Gfx::opSetFillColor(Object args[], int numArgs) {
  GfxColor color;
  int i;

  if (numArgs != state->getFillColorSpace()->getNComps()) {
    error(getPos(), "Incorrect number of arguments in 'sc' command");
    return;
  }
  state->setFillPattern(NULL);
  for (i = 0; i < numArgs; ++i) {
    color.c[i] = dblToCol(args[i].getNum());
  }
  state->setFillColor(&color);
  out->updateFillColor(state);
}

void Gfx::opSetStrokeColor(Object args[], int numArgs) {
  GfxColor color;
  int i;

  if (numArgs != state->getStrokeColorSpace()->getNComps()) {
    error(getPos(), "Incorrect number of arguments in 'SC' command");
    return;
  }
  state->setStrokePattern(NULL);
  for (i = 0; i < numArgs; ++i) {
    color.c[i] = dblToCol(args[i].getNum());
  }
  state->setStrokeColor(&color);
  out->updateStrokeColor(state);
}

void Gfx::opSetFillColorN(Object args[], int numArgs) {
  GfxColor color;
  GfxPattern *pattern;
  int i;

  if (state->getFillColorSpace()->getMode() == csPattern) {
    if (numArgs > 1) {
      if (!((GfxPatternColorSpace *)state->getFillColorSpace())->getUnder() ||
          numArgs - 1 != ((GfxPatternColorSpace *)state->getFillColorSpace())
                             ->getUnder()->getNComps()) {
        error(getPos(), "Incorrect number of arguments in 'scn' command");
        return;
      }
      for (i = 0; i < numArgs - 1 && i < gfxColorMaxComps; ++i) {
        if (args[i].isNum()) {
          color.c[i] = dblToCol(args[i].getNum());
        }
      }
      state->setFillColor(&color);
      out->updateFillColor(state);
    }
    if (args[numArgs-1].isName() &&
        (pattern = res->lookupPattern(args[numArgs-1].getName()))) {
      state->setFillPattern(pattern);
    }

  } else {
    if (numArgs != state->getFillColorSpace()->getNComps()) {
      error(getPos(), "Incorrect number of arguments in 'scn' command");
      return;
    }
    state->setFillPattern(NULL);
    for (i = 0; i < numArgs && i < gfxColorMaxComps; ++i) {
      if (args[i].isNum()) {
        color.c[i] = dblToCol(args[i].getNum());
      }
    }
    state->setFillColor(&color);
    out->updateFillColor(state);
  }
}

void Gfx::opSetStrokeColorN(Object args[], int numArgs) {
  GfxColor color;
  GfxPattern *pattern;
  int i;

  if (state->getStrokeColorSpace()->getMode() == csPattern) {
    if (numArgs > 1) {
      if (!((GfxPatternColorSpace *)state->getStrokeColorSpace())
               ->getUnder() ||
          numArgs - 1 != ((GfxPatternColorSpace *)state->getStrokeColorSpace())
                             ->getUnder()->getNComps()) {
        error(getPos(), "Incorrect number of arguments in 'SCN' command");
        return;
      }
      for (i = 0; i < numArgs - 1 && i < gfxColorMaxComps; ++i) {
        if (args[i].isNum()) {
          color.c[i] = dblToCol(args[i].getNum());
        }
      }
      state->setStrokeColor(&color);
      out->updateStrokeColor(state);
    }
    if (args[numArgs-1].isName() &&
        (pattern = res->lookupPattern(args[numArgs-1].getName()))) {
      state->setStrokePattern(pattern);
    }

  } else {
    if (numArgs != state->getStrokeColorSpace()->getNComps()) {
      error(getPos(), "Incorrect number of arguments in 'SCN' command");
      return;
    }
    state->setStrokePattern(NULL);
    for (i = 0; i < numArgs && i < gfxColorMaxComps; ++i) {
      if (args[i].isNum()) {
        color.c[i] = dblToCol(args[i].getNum());
      }
    }
    state->setStrokeColor(&color);
    out->updateStrokeColor(state);
  }
}

//------------------------------------------------------------------------
// path segment operators
//------------------------------------------------------------------------

void Gfx::opMoveTo(Object args[], int numArgs) {
  state->moveTo(args[0].getNum(), args[1].getNum());
}

void Gfx::opLineTo(Object args[], int numArgs) {
  if (!state->isCurPt()) {
    error(getPos(), "No current point in lineto");
    return;
  }
  state->lineTo(args[0].getNum(), args[1].getNum());
}

void Gfx::opCurveTo(Object args[], int numArgs) {
  double x1, y1, x2, y2, x3, y3;

  if (!state->isCurPt()) {
    error(getPos(), "No current point in curveto");
    return;
  }
  x1 = args[0].getNum();
  y1 = args[1].getNum();
  x2 = args[2].getNum();
  y2 = args[3].getNum();
  x3 = args[4].getNum();
  y3 = args[5].getNum();
  state->curveTo(x1, y1, x2, y2, x3, y3);
}

void Gfx::opCurveTo1(Object args[], int numArgs) {
  double x1, y1, x2, y2, x3, y3;

  if (!state->isCurPt()) {
    error(getPos(), "No current point in curveto1");
    return;
  }
  x1 = state->getCurX();
  y1 = state->getCurY();
  x2 = args[0].getNum();
  y2 = args[1].getNum();
  x3 = args[2].getNum();
  y3 = args[3].getNum();
  state->curveTo(x1, y1, x2, y2, x3, y3);
}

void Gfx::opCurveTo2(Object args[], int numArgs) {
  double x1, y1, x2, y2, x3, y3;

  if (!state->isCurPt()) {
    error(getPos(), "No current point in curveto2");
    return;
  }
  x1 = args[0].getNum();
  y1 = args[1].getNum();
  x2 = args[2].getNum();
  y2 = args[3].getNum();
  x3 = x2;
  y3 = y2;
  state->curveTo(x1, y1, x2, y2, x3, y3);
}

void Gfx::opRectangle(Object args[], int numArgs) {
  double x, y, w, h;

  x = args[0].getNum();
  y = args[1].getNum();
  w = args[2].getNum();
  h = args[3].getNum();
  state->moveTo(x, y);
  state->lineTo(x + w, y);
  state->lineTo(x + w, y + h);
  state->lineTo(x, y + h);
  state->closePath();
}

void Gfx::opClosePath(Object args[], int numArgs) {
  if (!state->isCurPt()) {
    error(getPos(), "No current point in closepath");
    return;
  }
  state->closePath();
}

//------------------------------------------------------------------------
// path painting operators
//------------------------------------------------------------------------

void Gfx::opEndPath(Object args[], int numArgs) {
  doEndPath();
}

void Gfx::opStroke(Object args[], int numArgs) {
  if (!state->isCurPt()) {
    //error(getPos(), "No path in stroke");
    return;
  }
  if (state->isPath()) {
    if (state->getStrokeColorSpace()->getMode() == csPattern) {
      doPatternStroke();
    } else {
      out->stroke(state);
    }
  }
  doEndPath();
}

void Gfx::opCloseStroke(Object args[], int numArgs) {
  if (!state->isCurPt()) {
    //error(getPos(), "No path in closepath/stroke");
    return;
  }
  if (state->isPath()) {
    state->closePath();
    if (state->getStrokeColorSpace()->getMode() == csPattern) {
      doPatternStroke();
    } else {
      out->stroke(state);
    }
  }
  doEndPath();
}

void Gfx::opFill(Object args[], int numArgs) {
  if (!state->isCurPt()) {
    //error(getPos(), "No path in fill");
    return;
  }
  if (state->isPath()) {
    if (state->getFillColorSpace()->getMode() == csPattern) {
      doPatternFill(gFalse);
    } else {
      out->fill(state);
    }
  }
  doEndPath();
}

void Gfx::opEOFill(Object args[], int numArgs) {
  if (!state->isCurPt()) {
    //error(getPos(), "No path in eofill");
    return;
  }
  if (state->isPath()) {
    if (state->getFillColorSpace()->getMode() == csPattern) {
      doPatternFill(gTrue);
    } else {
      out->eoFill(state);
    }
  }
  doEndPath();
}

void Gfx::opFillStroke(Object args[], int numArgs) {
  if (!state->isCurPt()) {
    //error(getPos(), "No path in fill/stroke");
    return;
  }
  if (state->isPath()) {
    if (state->getFillColorSpace()->getMode() == csPattern) {
      doPatternFill(gFalse);
    } else {
      out->fill(state);
    }
    if (state->getStrokeColorSpace()->getMode() == csPattern) {
      doPatternStroke();
    } else {
      out->stroke(state);
    }
  }
  doEndPath();
}

void Gfx::opCloseFillStroke(Object args[], int numArgs) {
  if (!state->isCurPt()) {
    //error(getPos(), "No path in closepath/fill/stroke");
    return;
  }
  if (state->isPath()) {
    state->closePath();
    if (state->getFillColorSpace()->getMode() == csPattern) {
      doPatternFill(gFalse);
    } else {
      out->fill(state);
    }
    if (state->getStrokeColorSpace()->getMode() == csPattern) {
      doPatternStroke();
    } else {
      out->stroke(state);
    }
  }
  doEndPath();
}

void Gfx::opEOFillStroke(Object args[], int numArgs) {
  if (!state->isCurPt()) {
    //error(getPos(), "No path in eofill/stroke");
    return;
  }
  if (state->isPath()) {
    if (state->getFillColorSpace()->getMode() == csPattern) {
      doPatternFill(gTrue);
    } else {
      out->eoFill(state);
    }
    if (state->getStrokeColorSpace()->getMode() == csPattern) {
      doPatternStroke();
    } else {
      out->stroke(state);
    }
  }
  doEndPath();
}

void Gfx::opCloseEOFillStroke(Object args[], int numArgs) {
  if (!state->isCurPt()) {
    //error(getPos(), "No path in closepath/eofill/stroke");
    return;
  }
  if (state->isPath()) {
    state->closePath();
    if (state->getFillColorSpace()->getMode() == csPattern) {
      doPatternFill(gTrue);
    } else {
      out->eoFill(state);
    }
    if (state->getStrokeColorSpace()->getMode() == csPattern) {
      doPatternStroke();
    } else {
      out->stroke(state);
    }
  }
  doEndPath();
}

void Gfx::doPatternFill(GBool eoFill) {
  GfxPattern *pattern;

  // this is a bit of a kludge -- patterns can be really slow, so we
  // skip them if we're only doing text extraction, since they almost
  // certainly don't contain any text
  if (!out->needNonText()) {
    return;
  }

  if (!(pattern = state->getFillPattern())) {
    return;
  }
  switch (pattern->getType()) {
  case 1:
    doTilingPatternFill((GfxTilingPattern *)pattern, gFalse, eoFill);
    break;
  case 2:
    doShadingPatternFill((GfxShadingPattern *)pattern, gFalse, eoFill);
    break;
  default:
    error(getPos(), "Unimplemented pattern type (%d) in fill",
          pattern->getType());
    break;
  }
}

void Gfx::doPatternStroke() {
  GfxPattern *pattern;

  // this is a bit of a kludge -- patterns can be really slow, so we
  // skip them if we're only doing text extraction, since they almost
  // certainly don't contain any text
  if (!out->needNonText()) {
    return;
  }

  if (!(pattern = state->getStrokePattern())) {
    return;
  }
  switch (pattern->getType()) {
  case 1:
    doTilingPatternFill((GfxTilingPattern *)pattern, gTrue, gFalse);
    break;
  case 2:
    doShadingPatternFill((GfxShadingPattern *)pattern, gTrue, gFalse);
    break;
  default:
    error(getPos(), "Unimplemented pattern type (%d) in stroke",
          pattern->getType());
    break;
  }
}

void Gfx::doTilingPatternFill(GfxTilingPattern *tPat,
                              GBool stroke, GBool eoFill) {
  GfxPatternColorSpace *patCS;
  GfxColorSpace *cs;
  GfxPath *savedPath;
  double xMin, yMin, xMax, yMax, x, y, x1, y1;
  double cxMin, cyMin, cxMax, cyMax;
  int xi0, yi0, xi1, yi1, xi, yi;
  double *ctm, *btm, *ptm;
  double m[6], ictm[6], m1[6], imb[6];
  double det;
  double xstep, ystep;
  int i;

  // get color space
  patCS = (GfxPatternColorSpace *)(stroke ? state->getStrokeColorSpace()
                                          : state->getFillColorSpace());

  // construct a (pattern space) -> (current space) transform matrix
  ctm = state->getCTM();
  btm = baseMatrix;
  ptm = tPat->getMatrix();
  // iCTM = invert CTM
  det = 1 / (ctm[0] * ctm[3] - ctm[1] * ctm[2]);
  ictm[0] = ctm[3] * det;
  ictm[1] = -ctm[1] * det;
  ictm[2] = -ctm[2] * det;
  ictm[3] = ctm[0] * det;
  ictm[4] = (ctm[2] * ctm[5] - ctm[3] * ctm[4]) * det;
  ictm[5] = (ctm[1] * ctm[4] - ctm[0] * ctm[5]) * det;
  // m1 = PTM * BTM = PTM * base transform matrix
  m1[0] = ptm[0] * btm[0] + ptm[1] * btm[2];
  m1[1] = ptm[0] * btm[1] + ptm[1] * btm[3];
  m1[2] = ptm[2] * btm[0] + ptm[3] * btm[2];
  m1[3] = ptm[2] * btm[1] + ptm[3] * btm[3];
  m1[4] = ptm[4] * btm[0] + ptm[5] * btm[2] + btm[4];
  m1[5] = ptm[4] * btm[1] + ptm[5] * btm[3] + btm[5];
  // m = m1 * iCTM = (PTM * BTM) * (iCTM)
  m[0] = m1[0] * ictm[0] + m1[1] * ictm[2];
  m[1] = m1[0] * ictm[1] + m1[1] * ictm[3];
  m[2] = m1[2] * ictm[0] + m1[3] * ictm[2];
  m[3] = m1[2] * ictm[1] + m1[3] * ictm[3];
  m[4] = m1[4] * ictm[0] + m1[5] * ictm[2] + ictm[4];
  m[5] = m1[4] * ictm[1] + m1[5] * ictm[3] + ictm[5];

  // construct a (device space) -> (pattern space) transform matrix
  det = 1 / (m1[0] * m1[3] - m1[1] * m1[2]);
  imb[0] = m1[3] * det;
  imb[1] = -m1[1] * det;
  imb[2] = -m1[2] * det;
  imb[3] = m1[0] * det;
  imb[4] = (m1[2] * m1[5] - m1[3] * m1[4]) * det;
  imb[5] = (m1[1] * m1[4] - m1[0] * m1[5]) * det;

  // save current graphics state
  savedPath = state->getPath()->copy();
  saveState();

  // set underlying color space (for uncolored tiling patterns); set
  // various other parameters (stroke color, line width) to match
  // Adobe's behavior
  if (tPat->getPaintType() == 2 && (cs = patCS->getUnder())) {
    state->setFillColorSpace(cs->copy());
    out->updateFillColorSpace(state);
    state->setStrokeColorSpace(cs->copy());
    out->updateStrokeColorSpace(state);
    state->setStrokeColor(state->getFillColor());
  } else {
    state->setFillColorSpace(new GfxDeviceGrayColorSpace());
    out->updateFillColorSpace(state);
    state->setStrokeColorSpace(new GfxDeviceGrayColorSpace());
    out->updateStrokeColorSpace(state);
  }
  state->setFillPattern(NULL);
  out->updateFillColor(state);
  state->setStrokePattern(NULL);
  out->updateStrokeColor(state);
  if (!stroke) {
    state->setLineWidth(0);
    out->updateLineWidth(state);
  }

  // clip to current path
  if (stroke) {
    state->clipToStrokePath();
    out->clipToStrokePath(state);
  } else {
    state->clip();
    if (eoFill) {
      out->eoClip(state);
    } else {
      out->clip(state);
    }
  }
  state->clearPath();

  // get the clip region, check for empty
  state->getClipBBox(&cxMin, &cyMin, &cxMax, &cyMax);
  if (cxMin > cxMax || cyMin > cyMax) {
    goto err;
  }

  // transform clip region bbox to pattern space
  xMin = xMax = cxMin * imb[0] + cyMin * imb[2] + imb[4];
  yMin = yMax = cxMin * imb[1] + cyMin * imb[3] + imb[5];
  x1 = cxMin * imb[0] + cyMax * imb[2] + imb[4];
  y1 = cxMin * imb[1] + cyMax * imb[3] + imb[5];
  if (x1 < xMin) {
    xMin = x1;
  } else if (x1 > xMax) {
    xMax = x1;
  }
  if (y1 < yMin) {
    yMin = y1;
  } else if (y1 > yMax) {
    yMax = y1;
  }
  x1 = cxMax * imb[0] + cyMin * imb[2] + imb[4];
  y1 = cxMax * imb[1] + cyMin * imb[3] + imb[5];
  if (x1 < xMin) {
    xMin = x1;
  } else if (x1 > xMax) {
    xMax = x1;
  }
  if (y1 < yMin) {
    yMin = y1;
  } else if (y1 > yMax) {
    yMax = y1;
  }
  x1 = cxMax * imb[0] + cyMax * imb[2] + imb[4];
  y1 = cxMax * imb[1] + cyMax * imb[3] + imb[5];
  if (x1 < xMin) {
    xMin = x1;
  } else if (x1 > xMax) {
    xMax = x1;
  }
  if (y1 < yMin) {
    yMin = y1;
  } else if (y1 > yMax) {
    yMax = y1;
  }

  // draw the pattern
  //~ this should treat negative steps differently -- start at right/top
  //~ edge instead of left/bottom (?)
  xstep = fabs(tPat->getXStep());
  ystep = fabs(tPat->getYStep());
  xi0 = (int)ceil((xMin - tPat->getBBox()[2]) / xstep);
  xi1 = (int)floor((xMax - tPat->getBBox()[0]) / xstep) + 1;
  yi0 = (int)ceil((yMin - tPat->getBBox()[3]) / ystep);
  yi1 = (int)floor((yMax - tPat->getBBox()[1]) / ystep) + 1;
  for (i = 0; i < 4; ++i) {
    m1[i] = m[i];
  }
  if (out->useTilingPatternFill()) {
    m1[4] = m[4];
    m1[5] = m[5];
    out->tilingPatternFill(state, tPat->getContentStream(),
                           tPat->getPaintType(), tPat->getResDict(),
                           m1, tPat->getBBox(),
                           xi0, yi0, xi1, yi1, xstep, ystep);
  } else {
    for (yi = yi0; yi < yi1; ++yi) {
      for (xi = xi0; xi < xi1; ++xi) {
        x = xi * xstep;
        y = yi * ystep;
        m1[4] = x * m[0] + y * m[2] + m[4];
        m1[5] = x * m[1] + y * m[3] + m[5];
        doForm1(tPat->getContentStream(), tPat->getResDict(),
                m1, tPat->getBBox());
      }
    }
  }

  // restore graphics state
 err:
  restoreState();
  state->setPath(savedPath);
}

void Gfx::doShadingPatternFill(GfxShadingPattern *sPat,
                               GBool stroke, GBool eoFill) {
  GfxShading *shading;
  GfxPath *savedPath;
  double *ctm, *btm, *ptm;
  double m[6], ictm[6], m1[6];
  double xMin, yMin, xMax, yMax;
  double det;

  shading = sPat->getShading();

  // save current graphics state
  savedPath = state->getPath()->copy();
  saveState();

  // clip to bbox
  if (shading->getHasBBox()) {
    shading->getBBox(&xMin, &yMin, &xMax, &yMax);
    state->moveTo(xMin, yMin);
    state->lineTo(xMax, yMin);
    state->lineTo(xMax, yMax);
    state->lineTo(xMin, yMax);
    state->closePath();
    state->clip();
    out->clip(state);
    state->setPath(savedPath->copy());
  }

  // clip to current path
  if (stroke) {
    state->clipToStrokePath();
    out->clipToStrokePath(state);
  } else {
    state->clip();
    if (eoFill) {
      out->eoClip(state);
    } else {
      out->clip(state);
    }
  }

  // set the color space
  state->setFillColorSpace(shading->getColorSpace()->copy());
  out->updateFillColorSpace(state);

  // background color fill
  if (shading->getHasBackground()) {
    state->setFillColor(shading->getBackground());
    out->updateFillColor(state);
    out->fill(state);
  }
  state->clearPath();

  // construct a (pattern space) -> (current space) transform matrix
  ctm = state->getCTM();
  btm = baseMatrix;
  ptm = sPat->getMatrix();
  // iCTM = invert CTM
  det = 1 / (ctm[0] * ctm[3] - ctm[1] * ctm[2]);
  ictm[0] = ctm[3] * det;
  ictm[1] = -ctm[1] * det;
  ictm[2] = -ctm[2] * det;
  ictm[3] = ctm[0] * det;
  ictm[4] = (ctm[2] * ctm[5] - ctm[3] * ctm[4]) * det;
  ictm[5] = (ctm[1] * ctm[4] - ctm[0] * ctm[5]) * det;
  // m1 = PTM * BTM = PTM * base transform matrix
  m1[0] = ptm[0] * btm[0] + ptm[1] * btm[2];
  m1[1] = ptm[0] * btm[1] + ptm[1] * btm[3];
  m1[2] = ptm[2] * btm[0] + ptm[3] * btm[2];
  m1[3] = ptm[2] * btm[1] + ptm[3] * btm[3];
  m1[4] = ptm[4] * btm[0] + ptm[5] * btm[2] + btm[4];
  m1[5] = ptm[4] * btm[1] + ptm[5] * btm[3] + btm[5];
  // m = m1 * iCTM = (PTM * BTM) * (iCTM)
  m[0] = m1[0] * ictm[0] + m1[1] * ictm[2];
  m[1] = m1[0] * ictm[1] + m1[1] * ictm[3];
  m[2] = m1[2] * ictm[0] + m1[3] * ictm[2];
  m[3] = m1[2] * ictm[1] + m1[3] * ictm[3];
  m[4] = m1[4] * ictm[0] + m1[5] * ictm[2] + ictm[4];
  m[5] = m1[4] * ictm[1] + m1[5] * ictm[3] + ictm[5];

  // set the new matrix
  state->concatCTM(m[0], m[1], m[2], m[3], m[4], m[5]);
  out->updateCTM(state, m[0], m[1], m[2], m[3], m[4], m[5]);

#if 1 //~tmp: turn off anti-aliasing temporarily
  GBool vaa = out->getVectorAntialias();
  if (vaa) {
    out->setVectorAntialias(gFalse);
  }
#endif

  // do shading type-specific operations
  switch (shading->getType()) {
  case 1:
    doFunctionShFill((GfxFunctionShading *)shading);
    break;
  case 2:
    doAxialShFill((GfxAxialShading *)shading);
    break;
  case 3:
    doRadialShFill((GfxRadialShading *)shading);
    break;
  case 4:
  case 5:
    doGouraudTriangleShFill((GfxGouraudTriangleShading *)shading);
    break;
  case 6:
  case 7:
    doPatchMeshShFill((GfxPatchMeshShading *)shading);
    break;
  }

#if 1 //~tmp: turn off anti-aliasing temporarily
  if (vaa) {
    out->setVectorAntialias(gTrue);
  }
#endif

  // restore graphics state
  restoreState();
  state->setPath(savedPath);
}

void Gfx::opShFill(Object args[], int numArgs) {
  GfxShading *shading;
  GfxPath *savedPath;
  double xMin, yMin, xMax, yMax;

  if (!(shading = res->lookupShading(args[0].getName()))) {
    return;
  }

  // save current graphics state
  savedPath = state->getPath()->copy();
  saveState();

  // clip to bbox
  if (shading->getHasBBox()) {
    shading->getBBox(&xMin, &yMin, &xMax, &yMax);
    state->moveTo(xMin, yMin);
    state->lineTo(xMax, yMin);
    state->lineTo(xMax, yMax);
    state->lineTo(xMin, yMax);
    state->closePath();
    state->clip();
    out->clip(state);
    state->clearPath();
  }

  // set the color space
  state->setFillColorSpace(shading->getColorSpace()->copy());
  out->updateFillColorSpace(state);

#if 1 //~tmp: turn off anti-aliasing temporarily
  GBool vaa = out->getVectorAntialias();
  if (vaa) {
    out->setVectorAntialias(gFalse);
  }
#endif

  // do shading type-specific operations
  switch (shading->getType()) {
  case 1:
    doFunctionShFill((GfxFunctionShading *)shading);
    break;
  case 2:
    doAxialShFill((GfxAxialShading *)shading);
    break;
  case 3:
    doRadialShFill((GfxRadialShading *)shading);
    break;
  case 4:
  case 5:
    doGouraudTriangleShFill((GfxGouraudTriangleShading *)shading);
    break;
  case 6:
  case 7:
    doPatchMeshShFill((GfxPatchMeshShading *)shading);
    break;
  }

#if 1 //~tmp: turn off anti-aliasing temporarily
  if (vaa) {
    out->setVectorAntialias(gTrue);
  }
#endif

  // restore graphics state
  restoreState();
  state->setPath(savedPath);

  delete shading;
}

void Gfx::doFunctionShFill(GfxFunctionShading *shading) {
  double x0, y0, x1, y1;
  GfxColor colors[4];

  if (out->useShadedFills() &&
      out->functionShadedFill(state, shading)) {
    return;
  }

  shading->getDomain(&x0, &y0, &x1, &y1);
  shading->getColor(x0, y0, &colors[0]);
  shading->getColor(x0, y1, &colors[1]);
  shading->getColor(x1, y0, &colors[2]);
  shading->getColor(x1, y1, &colors[3]);
  doFunctionShFill1(shading, x0, y0, x1, y1, colors, 0);
}

void Gfx::doFunctionShFill1(GfxFunctionShading *shading,
                            double x0, double y0,
                            double x1, double y1,
                            GfxColor *colors, int depth) {
  GfxColor fillColor;
  GfxColor color0M, color1M, colorM0, colorM1, colorMM;
  GfxColor colors2[4];
  double *matrix;
  double xM, yM;
  int nComps, i, j;

  nComps = shading->getColorSpace()->getNComps();
  matrix = shading->getMatrix();

  // compare the four corner colors
  for (i = 0; i < 4; ++i) {
    for (j = 0; j < nComps; ++j) {
      if (abs(colors[i].c[j] - colors[(i+1)&3].c[j]) > functionColorDelta) {
        break;
      }
    }
    if (j < nComps) {
      break;
    }
  }

  // center of the rectangle
  xM = 0.5 * (x0 + x1);
  yM = 0.5 * (y0 + y1);

  // the four corner colors are close (or we hit the recursive limit)
  // -- fill the rectangle; but require at least one subdivision
  // (depth==0) to avoid problems when the four outer corners of the
  // shaded region are the same color
  if ((i == 4 && depth > 0) || depth == functionMaxDepth) {

    // use the center color
    shading->getColor(xM, yM, &fillColor);
    state->setFillColor(&fillColor);
    out->updateFillColor(state);

    // fill the rectangle
    state->moveTo(x0 * matrix[0] + y0 * matrix[2] + matrix[4],
                  x0 * matrix[1] + y0 * matrix[3] + matrix[5]);
    state->lineTo(x1 * matrix[0] + y0 * matrix[2] + matrix[4],
                  x1 * matrix[1] + y0 * matrix[3] + matrix[5]);
    state->lineTo(x1 * matrix[0] + y1 * matrix[2] + matrix[4],
                  x1 * matrix[1] + y1 * matrix[3] + matrix[5]);
    state->lineTo(x0 * matrix[0] + y1 * matrix[2] + matrix[4],
                  x0 * matrix[1] + y1 * matrix[3] + matrix[5]);
    state->closePath();
    out->fill(state);
    state->clearPath();

  // the four corner colors are not close enough -- subdivide the
  // rectangle
  } else {

    // colors[0]       colorM0       colors[2]
    //   (x0,y0)       (xM,y0)       (x1,y0)
    //         +----------+----------+
    //         |          |          |
    //         |    UL    |    UR    |
    // color0M |       colorMM       | color1M
    // (x0,yM) +----------+----------+ (x1,yM)
    //         |       (xM,yM)       |
    //         |    LL    |    LR    |
    //         |          |          |
    //         +----------+----------+
    // colors[1]       colorM1       colors[3]
    //   (x0,y1)       (xM,y1)       (x1,y1)

    shading->getColor(x0, yM, &color0M);
    shading->getColor(x1, yM, &color1M);
    shading->getColor(xM, y0, &colorM0);
    shading->getColor(xM, y1, &colorM1);
    shading->getColor(xM, yM, &colorMM);

    // upper-left sub-rectangle
    colors2[0] = colors[0];
    colors2[1] = color0M;
    colors2[2] = colorM0;
    colors2[3] = colorMM;
    doFunctionShFill1(shading, x0, y0, xM, yM, colors2, depth + 1);
    
    // lower-left sub-rectangle
    colors2[0] = color0M;
    colors2[1] = colors[1];
    colors2[2] = colorMM;
    colors2[3] = colorM1;
    doFunctionShFill1(shading, x0, yM, xM, y1, colors2, depth + 1);
    
    // upper-right sub-rectangle
    colors2[0] = colorM0;
    colors2[1] = colorMM;
    colors2[2] = colors[2];
    colors2[3] = color1M;
    doFunctionShFill1(shading, xM, y0, x1, yM, colors2, depth + 1);

    // lower-right sub-rectangle
    colors2[0] = colorMM;
    colors2[1] = colorM1;
    colors2[2] = color1M;
    colors2[3] = colors[3];
    doFunctionShFill1(shading, xM, yM, x1, y1, colors2, depth + 1);
  }
}

void Gfx::doAxialShFill(GfxAxialShading *shading) {
  double xMin, yMin, xMax, yMax;
  double x0, y0, x1, y1;
  double dx, dy, mul;
  GBool dxZero, dyZero;
  double tMin, tMax, t, tx, ty;
  double s[4], sMin, sMax, tmp;
  double ux0, uy0, ux1, uy1, vx0, vy0, vx1, vy1;
  double t0, t1, tt;
  double ta[axialMaxSplits + 1];
  int next[axialMaxSplits + 1];
  GfxColor color0, color1;
  int nComps;
  int i, j, k, kk;

  if (out->useShadedFills() &&
      out->axialShadedFill(state, shading)) {
    return;
  }

  // get the clip region bbox
  state->getUserClipBBox(&xMin, &yMin, &xMax, &yMax);

  // compute min and max t values, based on the four corners of the
  // clip region bbox
  shading->getCoords(&x0, &y0, &x1, &y1);
  dx = x1 - x0;
  dy = y1 - y0;
  dxZero = fabs(dx) < 0.01;
  dyZero = fabs(dy) < 0.01;
  if (dxZero && dyZero) {
    tMin = tMax = 0;
  } else {
    mul = 1 / (dx * dx + dy * dy);
    tMin = tMax = ((xMin - x0) * dx + (yMin - y0) * dy) * mul;
    t = ((xMin - x0) * dx + (yMax - y0) * dy) * mul;
    if (t < tMin) {
      tMin = t;
    } else if (t > tMax) {
      tMax = t;
    }
    t = ((xMax - x0) * dx + (yMin - y0) * dy) * mul;
    if (t < tMin) {
      tMin = t;
    } else if (t > tMax) {
      tMax = t;
    }
    t = ((xMax - x0) * dx + (yMax - y0) * dy) * mul;
    if (t < tMin) {
      tMin = t;
    } else if (t > tMax) {
      tMax = t;
    }
    if (tMin < 0 && !shading->getExtend0()) {
      tMin = 0;
    }
    if (tMax > 1 && !shading->getExtend1()) {
      tMax = 1;
    }
  }

  // get the function domain
  t0 = shading->getDomain0();
  t1 = shading->getDomain1();

  // Traverse the t axis and do the shading.
  //
  // For each point (tx, ty) on the t axis, consider a line through
  // that point perpendicular to the t axis:
  //
  //     x(s) = tx + s * -dy   -->   s = (x - tx) / -dy
  //     y(s) = ty + s * dx    -->   s = (y - ty) / dx
  //
  // Then look at the intersection of this line with the bounding box
  // (xMin, yMin, xMax, yMax).  In the general case, there are four
  // intersection points:
  //
  //     s0 = (xMin - tx) / -dy
  //     s1 = (xMax - tx) / -dy
  //     s2 = (yMin - ty) / dx
  //     s3 = (yMax - ty) / dx
  //
  // and we want the middle two s values.
  //
  // In the case where dx = 0, take s0 and s1; in the case where dy =
  // 0, take s2 and s3.
  //
  // Each filled polygon is bounded by two of these line segments
  // perpdendicular to the t axis.
  //
  // The t axis is bisected into smaller regions until the color
  // difference across a region is small enough, and then the region
  // is painted with a single color.

  // set up: require at least one split to avoid problems when the two
  // ends of the t axis have the same color
  nComps = shading->getColorSpace()->getNComps();
  ta[0] = tMin;
  next[0] = axialMaxSplits / 2;
  ta[axialMaxSplits / 2] = 0.5 * (tMin + tMax);
  next[axialMaxSplits / 2] = axialMaxSplits;
  ta[axialMaxSplits] = tMax;

  // compute the color at t = tMin
  if (tMin < 0) {
    tt = t0;
  } else if (tMin > 1) {
    tt = t1;
  } else {
    tt = t0 + (t1 - t0) * tMin;
  }
  shading->getColor(tt, &color0);

  // compute the coordinates of the point on the t axis at t = tMin;
  // then compute the intersection of the perpendicular line with the
  // bounding box
  tx = x0 + tMin * dx;
  ty = y0 + tMin * dy;
  if (dxZero && dyZero) {
    sMin = sMax = 0;
  } else if (dxZero) {
    sMin = (xMin - tx) / -dy;
    sMax = (xMax - tx) / -dy;
    if (sMin > sMax) { tmp = sMin; sMin = sMax; sMax = tmp; }
  } else if (dyZero) {
    sMin = (yMin - ty) / dx;
    sMax = (yMax - ty) / dx;
    if (sMin > sMax) { tmp = sMin; sMin = sMax; sMax = tmp; }
  } else {
    s[0] = (yMin - ty) / dx;
    s[1] = (yMax - ty) / dx;
    s[2] = (xMin - tx) / -dy;
    s[3] = (xMax - tx) / -dy;
    for (j = 0; j < 3; ++j) {
      kk = j;
      for (k = j + 1; k < 4; ++k) {
        if (s[k] < s[kk]) {
          kk = k;
        }
      }
      tmp = s[j]; s[j] = s[kk]; s[kk] = tmp;
    }
    sMin = s[1];
    sMax = s[2];
  }
  ux0 = tx - sMin * dy;
  uy0 = ty + sMin * dx;
  vx0 = tx - sMax * dy;
  vy0 = ty + sMax * dx;

  i = 0;
  while (i < axialMaxSplits) {

    // bisect until color difference is small enough or we hit the
    // bisection limit
    j = next[i];
    while (j > i + 1) {
      if (ta[j] < 0) {
        tt = t0;
      } else if (ta[j] > 1) {
        tt = t1;
      } else {
        tt = t0 + (t1 - t0) * ta[j];
      }
      shading->getColor(tt, &color1);
      for (k = 0; k < nComps; ++k) {
        if (abs(color1.c[k] - color0.c[k]) > axialColorDelta) {
          break;
        }
      }
      if (k == nComps) {
        break;
      }
      k = (i + j) / 2;
      ta[k] = 0.5 * (ta[i] + ta[j]);
      next[i] = k;
      next[k] = j;
      j = k;
    }

    // use the average of the colors of the two sides of the region
    for (k = 0; k < nComps; ++k) {
      color0.c[k] = (color0.c[k] + color1.c[k]) / 2;
    }

    // compute the coordinates of the point on the t axis; then
    // compute the intersection of the perpendicular line with the
    // bounding box
    tx = x0 + ta[j] * dx;
    ty = y0 + ta[j] * dy;
    if (dxZero && dyZero) {
      sMin = sMax = 0;
    } else if (dxZero) {
      sMin = (xMin - tx) / -dy;
      sMax = (xMax - tx) / -dy;
      if (sMin > sMax) { tmp = sMin; sMin = sMax; sMax = tmp; }
    } else if (dyZero) {
      sMin = (yMin - ty) / dx;
      sMax = (yMax - ty) / dx;
      if (sMin > sMax) { tmp = sMin; sMin = sMax; sMax = tmp; }
    } else {
      s[0] = (yMin - ty) / dx;
      s[1] = (yMax - ty) / dx;
      s[2] = (xMin - tx) / -dy;
      s[3] = (xMax - tx) / -dy;
      for (j = 0; j < 3; ++j) {
        kk = j;
        for (k = j + 1; k < 4; ++k) {
          if (s[k] < s[kk]) {
            kk = k;
          }
        }
        tmp = s[j]; s[j] = s[kk]; s[kk] = tmp;
      }
      sMin = s[1];
      sMax = s[2];
    }
    ux1 = tx - sMin * dy;
    uy1 = ty + sMin * dx;
    vx1 = tx - sMax * dy;
    vy1 = ty + sMax * dx;

    // set the color
    state->setFillColor(&color0);
    out->updateFillColor(state);

    // fill the region
    state->moveTo(ux0, uy0);
    state->lineTo(vx0, vy0);
    state->lineTo(vx1, vy1);
    state->lineTo(ux1, uy1);
    state->closePath();
    out->fill(state);
    state->clearPath();

    // set up for next region
    ux0 = ux1;
    uy0 = uy1;
    vx0 = vx1;
    vy0 = vy1;
    color0 = color1;
    i = next[i];
  }
}

void Gfx::doRadialShFill(GfxRadialShading *shading) {
  double xMin, yMin, xMax, yMax;
  double x0, y0, r0, x1, y1, r1, t0, t1;
  int nComps;
  GfxColor colorA, colorB;
  double xa, ya, xb, yb, ra, rb;
  double ta, tb, sa, sb;
  double sz, xz, yz, sMin, sMax;
  GBool enclosed;
  int ia, ib, k, n;
  double *ctm;
  double theta, alpha, angle, t;

  if (out->useShadedFills() &&
      out->radialShadedFill(state, shading)) {
    return;
  }

  // get the shading info
  shading->getCoords(&x0, &y0, &r0, &x1, &y1, &r1);
  t0 = shading->getDomain0();
  t1 = shading->getDomain1();
  nComps = shading->getColorSpace()->getNComps();

  // Compute the point at which r(s) = 0; check for the enclosed
  // circles case; and compute the angles for the tangent lines.
  if (x0 == x1 && y0 == y1) {
    enclosed = gTrue;
    theta = 0; // make gcc happy
    sz = 0; // make gcc happy
  } else if (r0 == r1) {
    enclosed = gFalse;
    theta = 0;
    sz = 0; // make gcc happy
  } else {
    sz = -r0 / (r1 - r0);
    xz = x0 + sz * (x1 - x0);
    yz = y0 + sz * (y1 - y0);
    enclosed = (xz - x0) * (xz - x0) + (yz - y0) * (yz - y0) <= r0 * r0;
    theta = asin(r0 / sqrt((x0 - xz) * (x0 - xz) + (y0 - yz) * (y0 - yz)));
    if (r0 > r1) {
      theta = -theta;
    }
  }
  if (enclosed) {
    alpha = 0;
  } else {
    alpha = atan2(y1 - y0, x1 - x0);
  }

  // compute the (possibly extended) s range
  state->getUserClipBBox(&xMin, &yMin, &xMax, &yMax);
  if (enclosed) {
    sMin = 0;
    sMax = 1;
  } else {
    sMin = 1;
    sMax = 0;
    // solve for x(s) + r(s) = xMin
    if ((x1 + r1) - (x0 + r0) != 0) {
      sa = (xMin - (x0 + r0)) / ((x1 + r1) - (x0 + r0));
      if (sa < sMin) {
        sMin = sa;
      } else if (sa > sMax) {
        sMax = sa;
      }
    }
    // solve for x(s) - r(s) = xMax
    if ((x1 - r1) - (x0 - r0) != 0) {
      sa = (xMax - (x0 - r0)) / ((x1 - r1) - (x0 - r0));
      if (sa < sMin) {
        sMin = sa;
      } else if (sa > sMax) {
        sMax = sa;
      }
    }
    // solve for y(s) + r(s) = yMin
    if ((y1 + r1) - (y0 + r0) != 0) {
      sa = (yMin - (y0 + r0)) / ((y1 + r1) - (y0 + r0));
      if (sa < sMin) {
        sMin = sa;
      } else if (sa > sMax) {
        sMax = sa;
      }
    }
    // solve for y(s) - r(s) = yMax
    if ((y1 - r1) - (y0 - r0) != 0) {
      sa = (yMax - (y0 - r0)) / ((y1 - r1) - (y0 - r0));
      if (sa < sMin) {
        sMin = sa;
      } else if (sa > sMax) {
        sMax = sa;
      }
    }
    // check against sz
    if (r0 < r1) {
      if (sMin < sz) {
        sMin = sz;
      }
    } else if (r0 > r1) {
      if (sMax > sz) {
        sMax = sz;
      }
    }
    // check the 'extend' flags
    if (!shading->getExtend0() && sMin < 0) {
      sMin = 0;
    }
    if (!shading->getExtend1() && sMax > 1) {
      sMax = 1;
    }
  }

  // compute the number of steps into which circles must be divided to
  // achieve a curve flatness of 0.1 pixel in device space for the
  // largest circle (note that "device space" is 72 dpi when generating
  // PostScript, hence the relatively small 0.1 pixel accuracy)
  ctm = state->getCTM();
  t = fabs(ctm[0]);
  if (fabs(ctm[1]) > t) {
    t = fabs(ctm[1]);
  }
  if (fabs(ctm[2]) > t) {
    t = fabs(ctm[2]);
  }
  if (fabs(ctm[3]) > t) {
    t = fabs(ctm[3]);
  }
  if (r0 > r1) {
    t *= r0;
  } else {
    t *= r1;
  }
  if (t < 1) {
    n = 3;
  } else {
    n = (int)(M_PI / acos(1 - 0.1 / t));
    if (n < 3) {
      n = 3;
    } else if (n > 200) {
      n = 200;
    }
  }

  // setup for the start circle
  ia = 0;
  sa = sMin;
  ta = t0 + sa * (t1 - t0);
  xa = x0 + sa * (x1 - x0);
  ya = y0 + sa * (y1 - y0);
  ra = r0 + sa * (r1 - r0);
  if (ta < t0) {
    shading->getColor(t0, &colorA);
  } else if (ta > t1) {
    shading->getColor(t1, &colorA);
  } else {
    shading->getColor(ta, &colorA);
  }

  // fill the circles
  while (ia < radialMaxSplits) {

    // go as far along the t axis (toward t1) as we can, such that the
    // color difference is within the tolerance (radialColorDelta) --
    // this uses bisection (between the current value, t, and t1),
    // limited to radialMaxSplits points along the t axis; require at
    // least one split to avoid problems when the innermost and
    // outermost colors are the same
    ib = radialMaxSplits;
    sb = sMax;
    tb = t0 + sb * (t1 - t0);
    if (tb < t0) {
      shading->getColor(t0, &colorB);
    } else if (tb > t1) {
      shading->getColor(t1, &colorB);
    } else {
      shading->getColor(tb, &colorB);
    }
    while (ib - ia > 1) {
      for (k = 0; k < nComps; ++k) {
        if (abs(colorB.c[k] - colorA.c[k]) > radialColorDelta) {
          break;
        }
      }
      if (k == nComps && ib < radialMaxSplits) {
        break;
      }
      ib = (ia + ib) / 2;
      sb = sMin + ((double)ib / (double)radialMaxSplits) * (sMax - sMin);
      tb = t0 + sb * (t1 - t0);
      if (tb < t0) {
        shading->getColor(t0, &colorB);
      } else if (tb > t1) {
        shading->getColor(t1, &colorB);
      } else {
        shading->getColor(tb, &colorB);
      }
    }

    // compute center and radius of the circle
    xb = x0 + sb * (x1 - x0);
    yb = y0 + sb * (y1 - y0);
    rb = r0 + sb * (r1 - r0);

    // use the average of the colors at the two circles
    for (k = 0; k < nComps; ++k) {
      colorA.c[k] = (colorA.c[k] + colorB.c[k]) / 2;
    }
    state->setFillColor(&colorA);
    out->updateFillColor(state);

    if (enclosed) {

      // construct path for first circle (counterclockwise)
      state->moveTo(xa + ra, ya);
      for (k = 1; k < n; ++k) {
        angle = ((double)k / (double)n) * 2 * M_PI;
        state->lineTo(xa + ra * cos(angle), ya + ra * sin(angle));
      }
      state->closePath();

      // construct and append path for second circle (clockwise)
      state->moveTo(xb + rb, yb);
      for (k = 1; k < n; ++k) {
        angle = -((double)k / (double)n) * 2 * M_PI;
        state->lineTo(xb + rb * cos(angle), yb + rb * sin(angle));
      }
      state->closePath();

    } else {

      // construct the first subpath (clockwise)
      state->moveTo(xa + ra * cos(alpha + theta + 0.5 * M_PI),
                    ya + ra * sin(alpha + theta + 0.5 * M_PI));
      for (k = 0; k < n; ++k) {
        angle = alpha + theta + 0.5 * M_PI
          - ((double)k / (double)n) * (2 * theta + M_PI);
        state->lineTo(xb + rb * cos(angle), yb + rb * sin(angle));
      }
      for (k = 0; k < n; ++k) {
        angle = alpha - theta - 0.5 * M_PI
          + ((double)k / (double)n) * (2 * theta - M_PI);
        state->lineTo(xa + ra * cos(angle), ya + ra * sin(angle));
      }
      state->closePath();

      // construct the second subpath (counterclockwise)
      state->moveTo(xa + ra * cos(alpha + theta + 0.5 * M_PI),
                    ya + ra * sin(alpha + theta + 0.5 * M_PI));
      for (k = 0; k < n; ++k) {
        angle = alpha + theta + 0.5 * M_PI
                + ((double)k / (double)n) * (-2 * theta + M_PI);
        state->lineTo(xb + rb * cos(angle), yb + rb * sin(angle));
      }
      for (k = 0; k < n; ++k) {
        angle = alpha - theta - 0.5 * M_PI
                + ((double)k / (double)n) * (2 * theta + M_PI);
        state->lineTo(xa + ra * cos(angle), ya + ra * sin(angle));
      }
      state->closePath();
    }

    // fill the path
    out->fill(state);
    state->clearPath();

    // step to the next value of t
    ia = ib;
    sa = sb;
    ta = tb;
    xa = xb;
    ya = yb;
    ra = rb;
    colorA = colorB;
  }

  if (enclosed) {
    // extend the smaller circle
    if ((shading->getExtend0() && r0 <= r1) ||
        (shading->getExtend1() && r1 < r0)) {
      if (r0 <= r1) {
        ta = t0;
        ra = r0;
        xa = x0;
        ya = y0;
      } else {
        ta = t1;
        ra = r1;
        xa = x1;
        ya = y1;
      }
      shading->getColor(ta, &colorA);
      state->setFillColor(&colorA);
      out->updateFillColor(state);
      state->moveTo(xa + ra, ya);
      for (k = 1; k < n; ++k) {
        angle = ((double)k / (double)n) * 2 * M_PI;
        state->lineTo(xa + ra * cos(angle), ya + ra * sin(angle));
      }
      state->closePath();
      out->fill(state);
      state->clearPath();
    }

    // extend the larger circle
    if ((shading->getExtend0() && r0 > r1) ||
        (shading->getExtend1() && r1 >= r0)) {
      if (r0 > r1) {
        ta = t0;
        ra = r0;
        xa = x0;
        ya = y0;
      } else {
        ta = t1;
        ra = r1;
        xa = x1;
        ya = y1;
      }
      shading->getColor(ta, &colorA);
      state->setFillColor(&colorA);
      out->updateFillColor(state);
      state->moveTo(xMin, yMin);
      state->lineTo(xMin, yMax);
      state->lineTo(xMax, yMax);
      state->lineTo(xMax, yMin);
      state->closePath();
      state->moveTo(xa + ra, ya);
      for (k = 1; k < n; ++k) {
        angle = ((double)k / (double)n) * 2 * M_PI;
        state->lineTo(xa + ra * cos(angle), ya + ra * sin(angle));
      }
      state->closePath();
      out->fill(state);
      state->clearPath();
    }
  }
}

void Gfx::doGouraudTriangleShFill(GfxGouraudTriangleShading *shading) {
  double x0, y0, x1, y1, x2, y2;
  GfxColor color0, color1, color2;
  int i;

  for (i = 0; i < shading->getNTriangles(); ++i) {
    shading->getTriangle(i, &x0, &y0, &color0,
                         &x1, &y1, &color1,
                         &x2, &y2, &color2);
    gouraudFillTriangle(x0, y0, &color0, x1, y1, &color1, x2, y2, &color2,
                        shading->getColorSpace()->getNComps(), 0);
  }
}

void Gfx::gouraudFillTriangle(double x0, double y0, GfxColor *color0,
                              double x1, double y1, GfxColor *color1,
                              double x2, double y2, GfxColor *color2,
                              int nComps, int depth) {
  double x01, y01, x12, y12, x20, y20;
  GfxColor color01, color12, color20;
  int i;

  for (i = 0; i < nComps; ++i) {
    if (abs(color0->c[i] - color1->c[i]) > gouraudColorDelta ||
        abs(color1->c[i] - color2->c[i]) > gouraudColorDelta) {
      break;
    }
  }
  if (i == nComps || depth == gouraudMaxDepth) {
    state->setFillColor(color0);
    out->updateFillColor(state);
    state->moveTo(x0, y0);
    state->lineTo(x1, y1);
    state->lineTo(x2, y2);
    state->closePath();
    out->fill(state);
    state->clearPath();
  } else {
    x01 = 0.5 * (x0 + x1);
    y01 = 0.5 * (y0 + y1);
    x12 = 0.5 * (x1 + x2);
    y12 = 0.5 * (y1 + y2);
    x20 = 0.5 * (x2 + x0);
    y20 = 0.5 * (y2 + y0);
    //~ if the shading has a Function, this should interpolate on the
    //~ function parameter, not on the color components
    for (i = 0; i < nComps; ++i) {
      color01.c[i] = (color0->c[i] + color1->c[i]) / 2;
      color12.c[i] = (color1->c[i] + color2->c[i]) / 2;
      color20.c[i] = (color2->c[i] + color0->c[i]) / 2;
    }
    gouraudFillTriangle(x0, y0, color0, x01, y01, &color01,
                        x20, y20, &color20, nComps, depth + 1);
    gouraudFillTriangle(x01, y01, &color01, x1, y1, color1,
                        x12, y12, &color12, nComps, depth + 1);
    gouraudFillTriangle(x01, y01, &color01, x12, y12, &color12,
                        x20, y20, &color20, nComps, depth + 1);
    gouraudFillTriangle(x20, y20, &color20, x12, y12, &color12,
                        x2, y2, color2, nComps, depth + 1);
  }
}

void Gfx::doPatchMeshShFill(GfxPatchMeshShading *shading) {
  int start, i;

  if (shading->getNPatches() > 128) {
    start = 3;
  } else if (shading->getNPatches() > 64) {
    start = 2;
  } else if (shading->getNPatches() > 16) {
    start = 1;
  } else {
    start = 0;
  }
  for (i = 0; i < shading->getNPatches(); ++i) {
    fillPatch(shading->getPatch(i), shading->getColorSpace()->getNComps(),
              start);
  }
}

void Gfx::fillPatch(GfxPatch *patch, int nComps, int depth) {
  GfxPatch patch00, patch01, patch10, patch11;
  double xx[4][8], yy[4][8];
  double xxm, yym;
  int i;

  for (i = 0; i < nComps; ++i) {
    if (abs(patch->color[0][0].c[i] - patch->color[0][1].c[i])
          > patchColorDelta ||
        abs(patch->color[0][1].c[i] - patch->color[1][1].c[i])
          > patchColorDelta ||
        abs(patch->color[1][1].c[i] - patch->color[1][0].c[i])
          > patchColorDelta ||
        abs(patch->color[1][0].c[i] - patch->color[0][0].c[i])
          > patchColorDelta) {
      break;
    }
  }
  if (i == nComps || depth == patchMaxDepth) {
    state->setFillColor(&patch->color[0][0]);
    out->updateFillColor(state);
    state->moveTo(patch->x[0][0], patch->y[0][0]);
    state->curveTo(patch->x[0][1], patch->y[0][1],
                   patch->x[0][2], patch->y[0][2],
                   patch->x[0][3], patch->y[0][3]);
    state->curveTo(patch->x[1][3], patch->y[1][3],
                   patch->x[2][3], patch->y[2][3],
                   patch->x[3][3], patch->y[3][3]);
    state->curveTo(patch->x[3][2], patch->y[3][2],
                   patch->x[3][1], patch->y[3][1],
                   patch->x[3][0], patch->y[3][0]);
    state->curveTo(patch->x[2][0], patch->y[2][0],
                   patch->x[1][0], patch->y[1][0],
                   patch->x[0][0], patch->y[0][0]);
    state->closePath();
    out->fill(state);
    state->clearPath();
  } else {
    for (i = 0; i < 4; ++i) {
      xx[i][0] = patch->x[i][0];
      yy[i][0] = patch->y[i][0];
      xx[i][1] = 0.5 * (patch->x[i][0] + patch->x[i][1]);
      yy[i][1] = 0.5 * (patch->y[i][0] + patch->y[i][1]);
      xxm = 0.5 * (patch->x[i][1] + patch->x[i][2]);
      yym = 0.5 * (patch->y[i][1] + patch->y[i][2]);
      xx[i][6] = 0.5 * (patch->x[i][2] + patch->x[i][3]);
      yy[i][6] = 0.5 * (patch->y[i][2] + patch->y[i][3]);
      xx[i][2] = 0.5 * (xx[i][1] + xxm);
      yy[i][2] = 0.5 * (yy[i][1] + yym);
      xx[i][5] = 0.5 * (xxm + xx[i][6]);
      yy[i][5] = 0.5 * (yym + yy[i][6]);
      xx[i][3] = xx[i][4] = 0.5 * (xx[i][2] + xx[i][5]);
      yy[i][3] = yy[i][4] = 0.5 * (yy[i][2] + yy[i][5]);
      xx[i][7] = patch->x[i][3];
      yy[i][7] = patch->y[i][3];
    }
    for (i = 0; i < 4; ++i) {
      patch00.x[0][i] = xx[0][i];
      patch00.y[0][i] = yy[0][i];
      patch00.x[1][i] = 0.5 * (xx[0][i] + xx[1][i]);
      patch00.y[1][i] = 0.5 * (yy[0][i] + yy[1][i]);
      xxm = 0.5 * (xx[1][i] + xx[2][i]);
      yym = 0.5 * (yy[1][i] + yy[2][i]);
      patch10.x[2][i] = 0.5 * (xx[2][i] + xx[3][i]);
      patch10.y[2][i] = 0.5 * (yy[2][i] + yy[3][i]);
      patch00.x[2][i] = 0.5 * (patch00.x[1][i] + xxm);
      patch00.y[2][i] = 0.5 * (patch00.y[1][i] + yym);
      patch10.x[1][i] = 0.5 * (xxm + patch10.x[2][i]);
      patch10.y[1][i] = 0.5 * (yym + patch10.y[2][i]);
      patch00.x[3][i] = 0.5 * (patch00.x[2][i] + patch10.x[1][i]);
      patch00.y[3][i] = 0.5 * (patch00.y[2][i] + patch10.y[1][i]);
      patch10.x[0][i] = patch00.x[3][i];
      patch10.y[0][i] = patch00.y[3][i];
      patch10.x[3][i] = xx[3][i];
      patch10.y[3][i] = yy[3][i];
    }
    for (i = 4; i < 8; ++i) {
      patch01.x[0][i-4] = xx[0][i];
      patch01.y[0][i-4] = yy[0][i];
      patch01.x[1][i-4] = 0.5 * (xx[0][i] + xx[1][i]);
      patch01.y[1][i-4] = 0.5 * (yy[0][i] + yy[1][i]);
      xxm = 0.5 * (xx[1][i] + xx[2][i]);
      yym = 0.5 * (yy[1][i] + yy[2][i]);
      patch11.x[2][i-4] = 0.5 * (xx[2][i] + xx[3][i]);
      patch11.y[2][i-4] = 0.5 * (yy[2][i] + yy[3][i]);
      patch01.x[2][i-4] = 0.5 * (patch01.x[1][i-4] + xxm);
      patch01.y[2][i-4] = 0.5 * (patch01.y[1][i-4] + yym);
      patch11.x[1][i-4] = 0.5 * (xxm + patch11.x[2][i-4]);
      patch11.y[1][i-4] = 0.5 * (yym + patch11.y[2][i-4]);
      patch01.x[3][i-4] = 0.5 * (patch01.x[2][i-4] + patch11.x[1][i-4]);
      patch01.y[3][i-4] = 0.5 * (patch01.y[2][i-4] + patch11.y[1][i-4]);
      patch11.x[0][i-4] = patch01.x[3][i-4];
      patch11.y[0][i-4] = patch01.y[3][i-4];
      patch11.x[3][i-4] = xx[3][i];
      patch11.y[3][i-4] = yy[3][i];
    }
    //~ if the shading has a Function, this should interpolate on the
    //~ function parameter, not on the color components
    for (i = 0; i < nComps; ++i) {
      patch00.color[0][0].c[i] = patch->color[0][0].c[i];
      patch00.color[0][1].c[i] = (patch->color[0][0].c[i] +
                                  patch->color[0][1].c[i]) / 2;
      patch01.color[0][0].c[i] = patch00.color[0][1].c[i];
      patch01.color[0][1].c[i] = patch->color[0][1].c[i];
      patch01.color[1][1].c[i] = (patch->color[0][1].c[i] +
                                  patch->color[1][1].c[i]) / 2;
      patch11.color[0][1].c[i] = patch01.color[1][1].c[i];
      patch11.color[1][1].c[i] = patch->color[1][1].c[i];
      patch11.color[1][0].c[i] = (patch->color[1][1].c[i] +
                                  patch->color[1][0].c[i]) / 2;
      patch10.color[1][1].c[i] = patch11.color[1][0].c[i];
      patch10.color[1][0].c[i] = patch->color[1][0].c[i];
      patch10.color[0][0].c[i] = (patch->color[1][0].c[i] +
                                  patch->color[0][0].c[i]) / 2;
      patch00.color[1][0].c[i] = patch10.color[0][0].c[i];
      patch00.color[1][1].c[i] = (patch00.color[1][0].c[i] +
                                  patch01.color[1][1].c[i]) / 2;
      patch01.color[1][0].c[i] = patch00.color[1][1].c[i];
      patch11.color[0][0].c[i] = patch00.color[1][1].c[i];
      patch10.color[0][1].c[i] = patch00.color[1][1].c[i];
    }
    fillPatch(&patch00, nComps, depth + 1);
    fillPatch(&patch10, nComps, depth + 1);
    fillPatch(&patch01, nComps, depth + 1);
    fillPatch(&patch11, nComps, depth + 1);
  }
}

void Gfx::doEndPath() {
  if (state->isCurPt() && clip != clipNone) {
    state->clip();
    if (clip == clipNormal) {
      out->clip(state);
    } else {
      out->eoClip(state);
    }
  }
  clip = clipNone;
  state->clearPath();
}

//------------------------------------------------------------------------
// path clipping operators
//------------------------------------------------------------------------

void Gfx::opClip(Object args[], int numArgs) {
  clip = clipNormal;
}

void Gfx::opEOClip(Object args[], int numArgs) {
  clip = clipEO;
}

//------------------------------------------------------------------------
// text object operators
//------------------------------------------------------------------------

void Gfx::opBeginText(Object args[], int numArgs) {
  state->setTextMat(1, 0, 0, 1, 0, 0);
  state->textMoveTo(0, 0);
  out->updateTextMat(state);
  out->updateTextPos(state);
  fontChanged = gTrue;
}

void Gfx::opEndText(Object args[], int numArgs) {
  out->endTextObject(state);
}

//------------------------------------------------------------------------
// text state operators
//------------------------------------------------------------------------

void Gfx::opSetCharSpacing(Object args[], int numArgs) {
  state->setCharSpace(args[0].getNum());
  out->updateCharSpace(state);
}

void Gfx::opSetFont(Object args[], int numArgs) {
  GfxFont *font;

  if (!(font = res->lookupFont(args[0].getName()))) {
    return;
  }
  if (printCommands) {
    printf("  font: tag=%s name='%s' %g\n",
           font->getTag()->getCString(),
           font->getName() ? font->getName()->getCString() : "???",
           args[1].getNum());
    fflush(stdout);
  }
  state->setFont(font, args[1].getNum());
  fontChanged = gTrue;
}

void Gfx::opSetTextLeading(Object args[], int numArgs) {
  state->setLeading(args[0].getNum());
}

void Gfx::opSetTextRender(Object args[], int numArgs) {
  state->setRender(args[0].getInt());
  out->updateRender(state);
}

void Gfx::opSetTextRise(Object args[], int numArgs) {
  state->setRise(args[0].getNum());
  out->updateRise(state);
}

void Gfx::opSetWordSpacing(Object args[], int numArgs) {
  state->setWordSpace(args[0].getNum());
  out->updateWordSpace(state);
}

void Gfx::opSetHorizScaling(Object args[], int numArgs) {
  state->setHorizScaling(args[0].getNum());
  out->updateHorizScaling(state);
  fontChanged = gTrue;
}

//------------------------------------------------------------------------
// text positioning operators
//------------------------------------------------------------------------

void Gfx::opTextMove(Object args[], int numArgs) {
  double tx, ty;

  tx = state->getLineX() + args[0].getNum();
  ty = state->getLineY() + args[1].getNum();
  state->textMoveTo(tx, ty);
  out->updateTextPos(state);
}

void Gfx::opTextMoveSet(Object args[], int numArgs) {
  double tx, ty;

  tx = state->getLineX() + args[0].getNum();
  ty = args[1].getNum();
  state->setLeading(-ty);
  ty += state->getLineY();
  state->textMoveTo(tx, ty);
  out->updateTextPos(state);
}

void Gfx::opSetTextMatrix(Object args[], int numArgs) {
  state->setTextMat(args[0].getNum(), args[1].getNum(),
                    args[2].getNum(), args[3].getNum(),
                    args[4].getNum(), args[5].getNum());
  state->textMoveTo(0, 0);
  out->updateTextMat(state);
  out->updateTextPos(state);
  fontChanged = gTrue;
}

void Gfx::opTextNextLine(Object args[], int numArgs) {
  double tx, ty;

  tx = state->getLineX();
  ty = state->getLineY() - state->getLeading();
  state->textMoveTo(tx, ty);
  out->updateTextPos(state);
}

//------------------------------------------------------------------------
// text string operators
//------------------------------------------------------------------------

void Gfx::opShowText(Object args[], int numArgs) {
  if (!state->getFont()) {
    error(getPos(), "No font in show");
    return;
  }
  if (fontChanged) {
    out->updateFont(state);
    fontChanged = gFalse;
  }
  out->beginStringOp(state);
  doShowText(args[0].getString());
  out->endStringOp(state);
}

void Gfx::opMoveShowText(Object args[], int numArgs) {
  double tx, ty;

  if (!state->getFont()) {
    error(getPos(), "No font in move/show");
    return;
  }
  if (fontChanged) {
    out->updateFont(state);
    fontChanged = gFalse;
  }
  tx = state->getLineX();
  ty = state->getLineY() - state->getLeading();
  state->textMoveTo(tx, ty);
  out->updateTextPos(state);
  out->beginStringOp(state);
  doShowText(args[0].getString());
  out->endStringOp(state);
}

void Gfx::opMoveSetShowText(Object args[], int numArgs) {
  double tx, ty;

  if (!state->getFont()) {
    error(getPos(), "No font in move/set/show");
    return;
  }
  if (fontChanged) {
    out->updateFont(state);
    fontChanged = gFalse;
  }
  state->setWordSpace(args[0].getNum());
  state->setCharSpace(args[1].getNum());
  tx = state->getLineX();
  ty = state->getLineY() - state->getLeading();
  state->textMoveTo(tx, ty);
  out->updateWordSpace(state);
  out->updateCharSpace(state);
  out->updateTextPos(state);
  out->beginStringOp(state);
  doShowText(args[2].getString());
  out->endStringOp(state);
}

void Gfx::opShowSpaceText(Object args[], int numArgs) {
  Array *a;
  Object obj;
  int wMode;
  int i;

  if (!state->getFont()) {
    error(getPos(), "No font in show/space");
    return;
  }
  if (fontChanged) {
    out->updateFont(state);
    fontChanged = gFalse;
  }
  out->beginStringOp(state);
  wMode = state->getFont()->getWMode();
  a = args[0].getArray();
  for (i = 0; i < a->getLength(); ++i) {
    a->get(i, &obj);
    if (obj.isNum()) {
      // this uses the absolute value of the font size to match
      // Acrobat's behavior
      if (wMode) {
        state->textShift(0, -obj.getNum() * 0.001 *
                            fabs(state->getFontSize()));
      } else {
        state->textShift(-obj.getNum() * 0.001 *
                         fabs(state->getFontSize()), 0);
      }
      out->updateTextShift(state, obj.getNum());
    } else if (obj.isString()) {
      doShowText(obj.getString());
    } else {
      error(getPos(), "Element of show/space array must be number or string");
    }
    obj.free();
  }
  out->endStringOp(state);
}

void Gfx::doShowText(GString *s) {
  GfxFont *font;
  int wMode;
  double riseX, riseY;
  CharCode code;
  Unicode u[8];
  double x, y, dx, dy, dx2, dy2, curX, curY, tdx, tdy, lineX, lineY;
  double originX, originY, tOriginX, tOriginY;
  double oldCTM[6], newCTM[6];
  double *mat;
  Object charProc;
  Dict *resDict;
  Parser *oldParser;
  char *p;
  int len, n, uLen, nChars, nSpaces, i;

  font = state->getFont();
  wMode = font->getWMode();

  if (out->useDrawChar()) {
    out->beginString(state, s);
  }

  // handle a Type 3 char
  if (font->getType() == fontType3 && out->interpretType3Chars()) {
    mat = state->getCTM();
    for (i = 0; i < 6; ++i) {
      oldCTM[i] = mat[i];
    }
    mat = state->getTextMat();
    newCTM[0] = mat[0] * oldCTM[0] + mat[1] * oldCTM[2];
    newCTM[1] = mat[0] * oldCTM[1] + mat[1] * oldCTM[3];
    newCTM[2] = mat[2] * oldCTM[0] + mat[3] * oldCTM[2];
    newCTM[3] = mat[2] * oldCTM[1] + mat[3] * oldCTM[3];
    mat = font->getFontMatrix();
    newCTM[0] = mat[0] * newCTM[0] + mat[1] * newCTM[2];
    newCTM[1] = mat[0] * newCTM[1] + mat[1] * newCTM[3];
    newCTM[2] = mat[2] * newCTM[0] + mat[3] * newCTM[2];
    newCTM[3] = mat[2] * newCTM[1] + mat[3] * newCTM[3];
    newCTM[0] *= state->getFontSize();
    newCTM[1] *= state->getFontSize();
    newCTM[2] *= state->getFontSize();
    newCTM[3] *= state->getFontSize();
    newCTM[0] *= state->getHorizScaling();
    newCTM[2] *= state->getHorizScaling();
    state->textTransformDelta(0, state->getRise(), &riseX, &riseY);
    curX = state->getCurX();
    curY = state->getCurY();
    lineX = state->getLineX();
    lineY = state->getLineY();
    oldParser = parser;
    p = s->getCString();
    len = s->getLength();
    while (len > 0) {
      n = font->getNextChar(p, len, &code,
                            u, (int)(sizeof(u) / sizeof(Unicode)), &uLen,
                            &dx, &dy, &originX, &originY);
      dx = dx * state->getFontSize() + state->getCharSpace();
      if (n == 1 && (*p == ' ' || *p == 0)) {
        double w=state->getWordSpace();
        if (w==0 && dx==0)
          w=state->getFontSize()/3; // workaround for zero word space
        dx += w;
      }
      dx *= state->getHorizScaling();
      dy *= state->getFontSize();
      state->textTransformDelta(dx, dy, &tdx, &tdy);
      state->transform(curX + riseX, curY + riseY, &x, &y);
      saveState();
      state->setCTM(newCTM[0], newCTM[1], newCTM[2], newCTM[3], x, y);
      //~ the CTM concat values here are wrong (but never used)
      out->updateCTM(state, 1, 0, 0, 1, 0, 0);
      if (!out->beginType3Char(state, curX + riseX, curY + riseY, tdx, tdy,
                               code, u, uLen)) {
        ((Gfx8BitFont *)font)->getCharProc(code, &charProc);
        if ((resDict = ((Gfx8BitFont *)font)->getResources())) {
          pushResources(resDict);
        }
        if (charProc.isStream()) {
          display(&charProc, gFalse);
        } else {
          error(getPos(), "Missing or bad Type3 CharProc entry");
        }
        out->endType3Char(state);
        if (resDict) {
          popResources();
        }
        charProc.free();
      }
      restoreState();
      // GfxState::restore() does *not* restore the current position,
      // so we deal with it here using (curX, curY) and (lineX, lineY)
      curX += tdx;
      curY += tdy;
      state->moveTo(curX, curY);
      state->textSetPos(lineX, lineY);
      p += n;
      len -= n;
    }
    parser = oldParser;

  } else if (out->useDrawChar()) {
    state->textTransformDelta(0, state->getRise(), &riseX, &riseY);
    p = s->getCString();
    len = s->getLength();
    while (len > 0) {
      n = font->getNextChar(p, len, &code,
                            u, (int)(sizeof(u) / sizeof(Unicode)), &uLen,
                            &dx, &dy, &originX, &originY);
      if (wMode) {
        dx *= state->getFontSize();
        dy = dy * state->getFontSize() + state->getCharSpace();
        if (n == 1 && *p == ' ') {
          dy += state->getWordSpace();
        }
      } else {
        dx = dx * state->getFontSize() + state->getCharSpace();
        if (n == 1 && *p == ' ') {
          dx += state->getWordSpace();
        }
        dx *= state->getHorizScaling();
        dy *= state->getFontSize();
      }
      state->textTransformDelta(dx, dy, &tdx, &tdy);
      originX *= state->getFontSize();
      originY *= state->getFontSize();
      state->textTransformDelta(originX, originY, &tOriginX, &tOriginY);
      out->drawChar(state, state->getCurX() + riseX, state->getCurY() + riseY,
                    tdx, tdy, tOriginX, tOriginY, code, n, u, uLen);
      state->shift(tdx, tdy);
      p += n;
      len -= n;
    }

  } else {
    dx = dy = 0;
    p = s->getCString();
    len = s->getLength();
    nChars = nSpaces = 0;
    while (len > 0) {
      n = font->getNextChar(p, len, &code,
                            u, (int)(sizeof(u) / sizeof(Unicode)), &uLen,
                            &dx2, &dy2, &originX, &originY);
      dx += dx2;
      dy += dy2;
      if (n == 1 && *p == ' ') {
        ++nSpaces;
      }
      ++nChars;
      p += n;
      len -= n;
    }
    if (wMode) {
      dx *= state->getFontSize();
      dy = dy * state->getFontSize()
           + nChars * state->getCharSpace()
           + nSpaces * state->getWordSpace();
    } else {
      dx = dx * state->getFontSize()
           + nChars * state->getCharSpace()
           + nSpaces * state->getWordSpace();
      dx *= state->getHorizScaling();
      dy *= state->getFontSize();
    }
    state->textTransformDelta(dx, dy, &tdx, &tdy);
    out->drawString(state, s);
    state->shift(tdx, tdy);
  }

  if (out->useDrawChar()) {
    out->endString(state);
  }

  updateLevel += 10 * s->getLength();
}

//------------------------------------------------------------------------
// XObject operators
//------------------------------------------------------------------------

void Gfx::opXObject(Object args[], int numArgs) {
  char *name;
  Object obj1, obj2, obj3, refObj;
#if OPI_SUPPORT
  Object opiDict;
#endif

  name = args[0].getName();
  if (!res->lookupXObject(name, &obj1)) {
    return;
  }
  if (!obj1.isStream()) {
    error(getPos(), "XObject '%s' is wrong type", name);
    obj1.free();
    return;
  }
#if OPI_SUPPORT
  obj1.streamGetDict()->lookup("OPI", &opiDict);
  if (opiDict.isDict()) {
    out->opiBegin(state, opiDict.getDict());
  }
#endif
  obj1.streamGetDict()->lookup("Subtype", &obj2);
  if (obj2.isName("Image")) {
    if (out->needNonText()) {
      res->lookupXObjectNF(name, &refObj);
      doImage(&refObj, obj1.getStream(), gFalse);
      refObj.free();
    }
  } else if (obj2.isName("Form")) {
    res->lookupXObjectNF(name, &refObj);
    if (out->useDrawForm() && refObj.isRef()) {
      out->drawForm(refObj.getRef());
    } else {
      doForm(&obj1);
    }
    refObj.free();
  } else if (obj2.isName("PS")) {
    obj1.streamGetDict()->lookup("Level1", &obj3);
    out->psXObject(obj1.getStream(),
                   obj3.isStream() ? obj3.getStream() : (Stream *)NULL);
  } else if (obj2.isName()) {
    error(getPos(), "Unknown XObject subtype '%s'", obj2.getName());
  } else {
    error(getPos(), "XObject subtype is missing or wrong type");
  }
  obj2.free();
#if OPI_SUPPORT
  if (opiDict.isDict()) {
    out->opiEnd(state, opiDict.getDict());
  }
  opiDict.free();
#endif
  obj1.free();
}

void Gfx::doImage(Object *ref, Stream *str, GBool inlineImg) {
  Dict *dict, *maskDict;
  int width, height;
  int bits, maskBits;
  StreamColorSpaceMode csMode;
  GBool mask;
  GBool invert;
  GfxColorSpace *colorSpace, *maskColorSpace;
  GfxImageColorMap *colorMap, *maskColorMap;
  Object maskObj, smaskObj;
  GBool haveColorKeyMask, haveExplicitMask, haveSoftMask;
  int maskColors[2*gfxColorMaxComps];
  int maskWidth, maskHeight;
  GBool maskInvert;
  Stream *maskStr;
  Object obj1, obj2;
  int i;

  // get info from the stream
  bits = 0;
  csMode = streamCSNone;
  str->getImageParams(&bits, &csMode);

  // get stream dict
  dict = str->getDict();

  // get size
  dict->lookup("Width", &obj1);
  if (obj1.isNull()) {
    obj1.free();
    dict->lookup("W", &obj1);
  }
  if (!obj1.isInt())
    goto err2;
  width = obj1.getInt();
  obj1.free();
  dict->lookup("Height", &obj1);
  if (obj1.isNull()) {
    obj1.free();
    dict->lookup("H", &obj1);
  }
  if (!obj1.isInt())
    goto err2;
  height = obj1.getInt();
  obj1.free();

  // image or mask?
  dict->lookup("ImageMask", &obj1);
  if (obj1.isNull()) {
    obj1.free();
    dict->lookup("IM", &obj1);
  }
  mask = gFalse;
  if (obj1.isBool())
    mask = obj1.getBool();
  else if (!obj1.isNull())
    goto err2;
  obj1.free();

  // bit depth
  if (bits == 0) {
    dict->lookup("BitsPerComponent", &obj1);
    if (obj1.isNull()) {
      obj1.free();
      dict->lookup("BPC", &obj1);
    }
    if (obj1.isInt()) {
      bits = obj1.getInt();
    } else if (mask) {
      bits = 1;
    } else {
      goto err2;
    }
    obj1.free();
  }

  // display a mask
  if (mask) {

    // check for inverted mask
    if (bits != 1)
      goto err1;
    invert = gFalse;
    dict->lookup("Decode", &obj1);
    if (obj1.isNull()) {
      obj1.free();
      dict->lookup("D", &obj1);
    }
    if (obj1.isArray()) {
      obj1.arrayGet(0, &obj2);
      if (obj2.isInt() && obj2.getInt() == 1)
        invert = gTrue;
      obj2.free();
    } else if (!obj1.isNull()) {
      goto err2;
    }
    obj1.free();

    // draw it
    out->drawImageMask(state, ref, str, width, height, invert, inlineImg);

  } else {

    // get color space and color map
    dict->lookup("ColorSpace", &obj1);
    if (obj1.isNull()) {
      obj1.free();
      dict->lookup("CS", &obj1);
    }
    if (obj1.isName()) {
      res->lookupColorSpace(obj1.getName(), &obj2);
      if (!obj2.isNull()) {
        obj1.free();
        obj1 = obj2;
      } else {
        obj2.free();
      }
    }
    if (!obj1.isNull()) {
      colorSpace = GfxColorSpace::parse(&obj1, csMode);
    } else if (csMode == streamCSDeviceGray) {
      colorSpace = new GfxDeviceGrayColorSpace();
    } else if (csMode == streamCSDeviceRGB) {
      colorSpace = new GfxDeviceRGBColorSpace();
    } else if (csMode == streamCSDeviceRGBX) {
      colorSpace = new GfxDeviceRGBXColorSpace();
    } else if (csMode == streamCSDeviceCMYK) {
      colorSpace = new GfxDeviceCMYKColorSpace();
    } else {
      colorSpace = NULL;
    }
    obj1.free();
    if (!colorSpace) {
      goto err1;
    }
    dict->lookup("Decode", &obj1);
    if (obj1.isNull()) {
      obj1.free();
      dict->lookup("D", &obj1);
    }
    colorMap = new GfxImageColorMap(bits, &obj1, colorSpace);
    obj1.free();
    if (!colorMap->isOk()) {
      delete colorMap;
      goto err1;
    }

    // get the mask
    haveColorKeyMask = haveExplicitMask = haveSoftMask = gFalse;
    maskStr = NULL; // make gcc happy
    maskWidth = maskHeight = 0; // make gcc happy
    maskInvert = gFalse; // make gcc happy
    maskColorMap = NULL; // make gcc happy
    dict->lookup("Mask", &maskObj);
    dict->lookup("SMask", &smaskObj);
    if (smaskObj.isStream()) {
      // soft mask
      if (inlineImg) {
        goto err1;
      }
      maskStr = smaskObj.getStream();
      maskDict = smaskObj.streamGetDict();
      maskDict->lookup("Width", &obj1);
      if (obj1.isNull()) {
        obj1.free();
        maskDict->lookup("W", &obj1);
      }
      if (!obj1.isInt()) {
        goto err2;
      }
      maskWidth = obj1.getInt();
      obj1.free();
      maskDict->lookup("Height", &obj1);
      if (obj1.isNull()) {
        obj1.free();
        maskDict->lookup("H", &obj1);
      }
      if (!obj1.isInt()) {
        goto err2;
      }
      maskHeight = obj1.getInt();
      obj1.free();
      maskDict->lookup("BitsPerComponent", &obj1);
      if (obj1.isNull()) {
        obj1.free();
        maskDict->lookup("BPC", &obj1);
      }
      if (!obj1.isInt()) {
        goto err2;
      }
      maskBits = obj1.getInt();
      obj1.free();
      maskDict->lookup("ColorSpace", &obj1);
      if (obj1.isNull()) {
        obj1.free();
        maskDict->lookup("CS", &obj1);
      }
      if (obj1.isName()) {
        res->lookupColorSpace(obj1.getName(), &obj2);
        if (!obj2.isNull()) {
          obj1.free();
          obj1 = obj2;
        } else {
          obj2.free();
        }
      }
      maskColorSpace = GfxColorSpace::parse(&obj1);
      obj1.free();
      if (!maskColorSpace || maskColorSpace->getMode() != csDeviceGray) {
        goto err1;
      }
      maskDict->lookup("Decode", &obj1);
      if (obj1.isNull()) {
        obj1.free();
        maskDict->lookup("D", &obj1);
      }
      maskColorMap = new GfxImageColorMap(maskBits, &obj1, maskColorSpace);
      obj1.free();
      if (!maskColorMap->isOk()) {
        delete maskColorMap;
        goto err1;
      }
      //~ handle the Matte entry
      haveSoftMask = gTrue;
    } else if (maskObj.isArray()) {
      // color key mask
      for (i = 0;
           i < maskObj.arrayGetLength() && i < 2*gfxColorMaxComps;
           ++i) {
        maskObj.arrayGet(i, &obj1);
        maskColors[i] = obj1.getInt();
        obj1.free();
      }
      haveColorKeyMask = gTrue;
    } else if (maskObj.isStream()) {
      // explicit mask
      if (inlineImg) {
        goto err1;
      }
      maskStr = maskObj.getStream();
      maskDict = maskObj.streamGetDict();
      maskDict->lookup("Width", &obj1);
      if (obj1.isNull()) {
        obj1.free();
        maskDict->lookup("W", &obj1);
      }
      if (!obj1.isInt()) {
        goto err2;
      }
      maskWidth = obj1.getInt();
      obj1.free();
      maskDict->lookup("Height", &obj1);
      if (obj1.isNull()) {
        obj1.free();
        maskDict->lookup("H", &obj1);
      }
      if (!obj1.isInt()) {
        goto err2;
      }
      maskHeight = obj1.getInt();
      obj1.free();
      maskDict->lookup("ImageMask", &obj1);
      if (obj1.isNull()) {
        obj1.free();
        maskDict->lookup("IM", &obj1);
      }
      if (!obj1.isBool() || !obj1.getBool()) {
        goto err2;
      }
      obj1.free();
      maskInvert = gFalse;
      maskDict->lookup("Decode", &obj1);
      if (obj1.isNull()) {
        obj1.free();
        maskDict->lookup("D", &obj1);
      }
      if (obj1.isArray()) {
        obj1.arrayGet(0, &obj2);
        if (obj2.isInt() && obj2.getInt() == 1) {
          maskInvert = gTrue;
        }
        obj2.free();
      } else if (!obj1.isNull()) {
        goto err2;
      }
      obj1.free();
      haveExplicitMask = gTrue;
    }

    // draw it
    if (haveSoftMask) {
      out->drawSoftMaskedImage(state, ref, str, width, height, colorMap,
                               maskStr, maskWidth, maskHeight, maskColorMap);
      delete maskColorMap;
    } else if (haveExplicitMask) {
      out->drawMaskedImage(state, ref, str, width, height, colorMap,
                           maskStr, maskWidth, maskHeight, maskInvert);
    } else {
      out->drawImage(state, ref, str, width, height, colorMap,
                     haveColorKeyMask ? maskColors : (int *)NULL, inlineImg);
    }
    delete colorMap;

    maskObj.free();
    smaskObj.free();
  }

  if ((i = width * height) > 1000) {
    i = 1000;
  }
  updateLevel += i;

  return;

 err2:
  obj1.free();
 err1:
  error(getPos(), "Bad image parameters");
}

void Gfx::doForm(Object *str) {
  Dict *dict;
  GBool transpGroup, isolated, knockout;
  GfxColorSpace *blendingColorSpace;
  Object matrixObj, bboxObj;
  double m[6], bbox[4];
  Object resObj;
  Dict *resDict;
  Object obj1, obj2, obj3;
  int i;

  // check for excessive recursion
  if (formDepth > 20) {
    return;
  }

  // get stream dict
  dict = str->streamGetDict();

  // check form type
  dict->lookup("FormType", &obj1);
  if (!(obj1.isNull() || (obj1.isInt() && obj1.getInt() == 1))) {
    error(getPos(), "Unknown form type");
  }
  obj1.free();

  // get bounding box
  dict->lookup("BBox", &bboxObj);
  if (!bboxObj.isArray()) {
    bboxObj.free();
    error(getPos(), "Bad form bounding box");
    return;
  }
  for (i = 0; i < 4; ++i) {
    bboxObj.arrayGet(i, &obj1);
    bbox[i] = obj1.getNum();
    obj1.free();
  }
  bboxObj.free();

  // get matrix
  dict->lookup("Matrix", &matrixObj);
  if (matrixObj.isArray()) {
    for (i = 0; i < 6; ++i) {
      matrixObj.arrayGet(i, &obj1);
      m[i] = obj1.getNum();
      obj1.free();
    }
  } else {
    m[0] = 1; m[1] = 0;
    m[2] = 0; m[3] = 1;
    m[4] = 0; m[5] = 0;
  }
  matrixObj.free();

  // get resources
  dict->lookup("Resources", &resObj);
  resDict = resObj.isDict() ? resObj.getDict() : (Dict *)NULL;

  // check for a transparency group
  transpGroup = isolated = knockout = gFalse;
  blendingColorSpace = NULL;
  if (dict->lookup("Group", &obj1)->isDict()) {
    if (obj1.dictLookup("S", &obj2)->isName("Transparency")) {
      transpGroup = gTrue;
      if (!obj1.dictLookup("CS", &obj3)->isNull()) {
        blendingColorSpace = GfxColorSpace::parse(&obj3);
      }
      obj3.free();
      if (obj1.dictLookup("I", &obj3)->isBool()) {
        isolated = obj3.getBool();
      }
      obj3.free();
      if (obj1.dictLookup("K", &obj3)->isBool()) {
        knockout = obj3.getBool();
      }
      obj3.free();
    }
    obj2.free();
  }
  obj1.free();

  // draw it
  ++formDepth;
  doForm1(str, resDict, m, bbox,
          transpGroup, gFalse, blendingColorSpace, isolated, knockout);
  --formDepth;

  if (blendingColorSpace) {
    delete blendingColorSpace;
  }
  resObj.free();
}

void Gfx::doForm1(Object *str, Dict *resDict, double *matrix, double *bbox,
                  GBool transpGroup, GBool softMask,
                  GfxColorSpace *blendingColorSpace,
                  GBool isolated, GBool knockout,
                  GBool alpha, Function *transferFunc,
                  GfxColor *backdropColor) {
  Parser *oldParser;
  double oldBaseMatrix[6];
  int i;

  // push new resources on stack
  pushResources(resDict);

  // save current graphics state
  saveState();

  // kill any pre-existing path
  state->clearPath();

  // save current parser
  oldParser = parser;

  // set form transformation matrix
  state->concatCTM(matrix[0], matrix[1], matrix[2],
                   matrix[3], matrix[4], matrix[5]);
  out->updateCTM(state, matrix[0], matrix[1], matrix[2],
                 matrix[3], matrix[4], matrix[5]);

  // set form bounding box
  state->moveTo(bbox[0], bbox[1]);
  state->lineTo(bbox[2], bbox[1]);
  state->lineTo(bbox[2], bbox[3]);
  state->lineTo(bbox[0], bbox[3]);
  state->closePath();
  state->clip();
  out->clip(state);
  state->clearPath();

  if (softMask || transpGroup) {
    if (state->getBlendMode() != gfxBlendNormal) {
      state->setBlendMode(gfxBlendNormal);
      out->updateBlendMode(state);
    }
    if (state->getFillOpacity() != 1) {
      state->setFillOpacity(1);
      out->updateFillOpacity(state);
    }
    if (state->getStrokeOpacity() != 1) {
      state->setStrokeOpacity(1);
      out->updateStrokeOpacity(state);
    }
    out->clearSoftMask(state);
    out->beginTransparencyGroup(state, bbox, blendingColorSpace,
                                isolated, knockout, softMask);
  }
  GfxState*old_state = state;

  // set new base matrix
  for (i = 0; i < 6; ++i) {
    oldBaseMatrix[i] = baseMatrix[i];
    baseMatrix[i] = state->getCTM()[i];
  }

  // draw the form
  display(str, gFalse);

  if (softMask || transpGroup) {
    // restore graphics state
    while(state != old_state)
        restoreState();
    out->endTransparencyGroup(state);
  }

  // restore base matrix
  for (i = 0; i < 6; ++i) {
    baseMatrix[i] = oldBaseMatrix[i];
  }

  // restore parser
  parser = oldParser;

  // restore graphics state
  restoreState();

  // pop resource stack
  popResources();

  if (softMask) {
    out->setSoftMask(state, bbox, alpha, transferFunc, backdropColor);
  } else if (transpGroup) {
    out->paintTransparencyGroup(state, bbox);
  }

  return;
}

//------------------------------------------------------------------------
// in-line image operators
//------------------------------------------------------------------------

void Gfx::opBeginImage(Object args[], int numArgs) {
  Stream *str;
  int c1, c2;

  // build dict/stream
  str = buildImageStream();

  // display the image
  if (str) {
    doImage(NULL, str, gTrue);
  
    // skip 'EI' tag
    c1 = str->getUndecodedStream()->getChar();
    c2 = str->getUndecodedStream()->getChar();
    while (!(c1 == 'E' && c2 == 'I') && c2 != EOF) {
      c1 = c2;
      c2 = str->getUndecodedStream()->getChar();
    }
    delete str;
  }
}

Stream *Gfx::buildImageStream() {
  Object dict;
  Object obj;
  char *key;
  Stream *str;

  // build dictionary
  dict.initDict(xref);
  parser->getObj(&obj);
  while (!obj.isCmd("ID") && !obj.isEOF()) {
    if (!obj.isName()) {
      error(getPos(), "Inline image dictionary key must be a name object");
      obj.free();
    } else {
      key = copyString(obj.getName());
      obj.free();
      parser->getObj(&obj);
      if (obj.isEOF() || obj.isError()) {
        gfree(key);
        break;
      }
      dict.dictAdd(key, &obj);
    }
    parser->getObj(&obj);
  }
  if (obj.isEOF()) {
    error(getPos(), "End of file in inline image");
    obj.free();
    dict.free();
    return NULL;
  }
  obj.free();

  // make stream
  str = new EmbedStream(parser->getStream(), &dict, gFalse, 0);
  str = str->addFilters(&dict);

  return str;
}

void Gfx::opImageData(Object args[], int numArgs) {
  error(getPos(), "Internal: got 'ID' operator");
}

void Gfx::opEndImage(Object args[], int numArgs) {
  error(getPos(), "Internal: got 'EI' operator");
}

//------------------------------------------------------------------------
// type 3 font operators
//------------------------------------------------------------------------

void Gfx::opSetCharWidth(Object args[], int numArgs) {
  out->type3D0(state, args[0].getNum(), args[1].getNum());
}

void Gfx::opSetCacheDevice(Object args[], int numArgs) {
  out->type3D1(state, args[0].getNum(), args[1].getNum(),
               args[2].getNum(), args[3].getNum(),
               args[4].getNum(), args[5].getNum());
}

//------------------------------------------------------------------------
// compatibility operators
//------------------------------------------------------------------------

void Gfx::opBeginIgnoreUndef(Object args[], int numArgs) {
  ++ignoreUndef;
}

void Gfx::opEndIgnoreUndef(Object args[], int numArgs) {
  if (ignoreUndef > 0)
    --ignoreUndef;
}

//------------------------------------------------------------------------
// marked content operators
//------------------------------------------------------------------------

void Gfx::opBeginMarkedContent(Object args[], int numArgs) {
  if (printCommands) {
    printf("  marked content: %s ", args[0].getName());
    if (numArgs == 2)
      args[2].print(stdout);
    printf("\n");
    fflush(stdout);
  }
}

void Gfx::opEndMarkedContent(Object args[], int numArgs) {
}

void Gfx::opMarkPoint(Object args[], int numArgs) {
  if (printCommands) {
    printf("  mark point: %s ", args[0].getName());
    if (numArgs == 2)
      args[2].print(stdout);
    printf("\n");
    fflush(stdout);
  }
}

//------------------------------------------------------------------------
// misc
//------------------------------------------------------------------------

void Gfx::drawAnnot(Object *str, AnnotBorderStyle *borderStyle,
                    double xMin, double yMin, double xMax, double yMax) {
  Dict *dict, *resDict;
  Object matrixObj, bboxObj, resObj;
  Object obj1;
  double m[6], bbox[4], ictm[6];
  double *ctm;
  double formX0, formY0, formX1, formY1;
  double annotX0, annotY0, annotX1, annotY1;
  double det, x, y, sx, sy;
  double r, g, b;
  GfxColor color;
  double *dash, *dash2;
  int dashLength;
  int i;

  //~ can we assume that we're in default user space?
  //~ (i.e., baseMatrix = ctm)

  // transform the annotation bbox from default user space to user
  // space: (bbox * baseMatrix) * iCTM
  ctm = state->getCTM();
  det = 1 / (ctm[0] * ctm[3] - ctm[1] * ctm[2]);
  ictm[0] = ctm[3] * det;
  ictm[1] = -ctm[1] * det;
  ictm[2] = -ctm[2] * det;
  ictm[3] = ctm[0] * det;
  ictm[4] = (ctm[2] * ctm[5] - ctm[3] * ctm[4]) * det;
  ictm[5] = (ctm[1] * ctm[4] - ctm[0] * ctm[5]) * det;
  x = baseMatrix[0] * xMin + baseMatrix[2] * yMin + baseMatrix[4];
  y = baseMatrix[1] * xMin + baseMatrix[3] * yMin + baseMatrix[5];
  annotX0 = ictm[0] * x + ictm[2] * y + ictm[4];
  annotY0 = ictm[1] * x + ictm[3] * y + ictm[5];
  x = baseMatrix[0] * xMax + baseMatrix[2] * yMax + baseMatrix[4];
  y = baseMatrix[1] * xMax + baseMatrix[3] * yMax + baseMatrix[5];
  annotX1 = ictm[0] * x + ictm[2] * y + ictm[4];
  annotY1 = ictm[1] * x + ictm[3] * y + ictm[5];
  if (annotX0 > annotX1) {
    x = annotX0; annotX0 = annotX1; annotX1 = x;
  }
  if (annotY0 > annotY1) {
    y = annotY0; annotY0 = annotY1; annotY1 = y;
  }

  // draw the appearance stream (if there is one)
  if (str->isStream()) {

    // get stream dict
    dict = str->streamGetDict();

    // get the form bounding box
    dict->lookup("BBox", &bboxObj);
    if (!bboxObj.isArray()) {
      bboxObj.free();
      error(getPos(), "Bad form bounding box");
      return;
    }
    for (i = 0; i < 4; ++i) {
      bboxObj.arrayGet(i, &obj1);
      bbox[i] = obj1.getNum();
      obj1.free();
    }
    bboxObj.free();

    // get the form matrix
    dict->lookup("Matrix", &matrixObj);
    if (matrixObj.isArray()) {
      for (i = 0; i < 6; ++i) {
        matrixObj.arrayGet(i, &obj1);
        m[i] = obj1.getNum();
        obj1.free();
      }
    } else {
      m[0] = 1; m[1] = 0;
      m[2] = 0; m[3] = 1;
      m[4] = 0; m[5] = 0;
    }
    matrixObj.free();

    // transform the form bbox from form space to user space
    formX0 = bbox[0] * m[0] + bbox[1] * m[2] + m[4];
    formY0 = bbox[0] * m[1] + bbox[1] * m[3] + m[5];
    formX1 = bbox[2] * m[0] + bbox[3] * m[2] + m[4];
    formY1 = bbox[2] * m[1] + bbox[3] * m[3] + m[5];
    if (formX0 > formX1) {
      x = formX0; formX0 = formX1; formX1 = x;
    }
    if (formY0 > formY1) {
      y = formY0; formY0 = formY1; formY1 = y;
    }

    // scale the form to fit the annotation bbox
    if (formX1 == formX0) {
      // this shouldn't happen
      sx = 1;
    } else {
      sx = (annotX1 - annotX0) / (formX1 - formX0);
    }
    if (formY1 == formY0) {
      // this shouldn't happen
      sy = 1;
    } else {
      sy = (annotY1 - annotY0) / (formY1 - formY0);
    }
    m[0] *= sx;
    m[2] *= sx;
    m[4] = (m[4] - formX0) * sx + annotX0;
    m[1] *= sy;
    m[3] *= sy;
    m[5] = (m[5] - formY0) * sy + annotY0;

    // get resources
    dict->lookup("Resources", &resObj);
    resDict = resObj.isDict() ? resObj.getDict() : (Dict *)NULL;

    // draw it
    doForm1(str, resDict, m, bbox);

    resObj.free();
  }

  // draw the border
  if (borderStyle && borderStyle->getWidth() > 0) {
    if (state->getStrokeColorSpace()->getMode() != csDeviceRGB) {
      state->setStrokePattern(NULL);
      state->setStrokeColorSpace(new GfxDeviceRGBColorSpace());
      out->updateStrokeColorSpace(state);
    }
    borderStyle->getColor(&r, &g, &b);
    color.c[0] = dblToCol(r);
    color.c[1] = dblToCol(g);
    color.c[2] = dblToCol(b);
    state->setStrokeColor(&color);
    out->updateStrokeColor(state);
    // compute the width scale factor when going from default user
    // space to user space
    x = (baseMatrix[0] + baseMatrix[2]) * ictm[0] +
        (baseMatrix[1] + baseMatrix[3]) * ictm[2];
    y = (baseMatrix[0] + baseMatrix[2]) * ictm[1] +
        (baseMatrix[1] + baseMatrix[3]) * ictm[3];
    x = sqrt(0.5 * (x * x + y * y));
    state->setLineWidth(x * borderStyle->getWidth());
    out->updateLineWidth(state);
    borderStyle->getDash(&dash, &dashLength);
    if (borderStyle->getType() == annotBorderDashed && dashLength > 0) {
      dash2 = (double *)gmallocn(dashLength, sizeof(double));
      for (i = 0; i < dashLength; ++i) {
        dash2[i] = x * dash[i];
      }
      state->setLineDash(dash2, dashLength, 0);
      out->updateLineDash(state);
    }
    //~ this doesn't currently handle the beveled and engraved styles
    state->clearPath();
    state->moveTo(annotX0, out->upsideDown() ? annotY1 : annotY0);
    state->lineTo(annotX1, out->upsideDown() ? annotY1 : annotY0);
    if (borderStyle->getType() != annotBorderUnderlined) {
      state->lineTo(annotX1, out->upsideDown() ? annotY0 : annotY1);
      state->lineTo(annotX0, out->upsideDown() ? annotY0 : annotY1);
      state->closePath();
    }
    out->stroke(state);
  }
}

void Gfx::saveState() {
  out->saveState(state);
  state = state->save();
}

void Gfx::restoreState() {
  state = state->restore();
  out->restoreState(state);
}

void Gfx::pushResources(Dict *resDict) {
  res = new GfxResources(xref, resDict, res);
}

void Gfx::popResources() {
  GfxResources *resPtr;

  resPtr = res->getNext();
  delete res;
  res = resPtr;
}

/* [<][>][^][v][top][bottom][index][help] */