root/src/arm/simulator-arm.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. InitializeCoverage
  2. Stop
  3. InitializeCoverage
  4. Stop
  5. GetRegisterValue
  6. GetRegisterPairDoubleValue
  7. GetVFPDoubleRegisterValue
  8. GetValue
  9. GetVFPSingleValue
  10. GetVFPDoubleValue
  11. SetBreakpoint
  12. DeleteBreakpoint
  13. UndoBreakpoints
  14. RedoBreakpoints
  15. ICacheMatch
  16. ICacheHash
  17. AllOnOnePage
  18. set_last_debugger_input
  19. FlushICache
  20. GetCachePage
  21. FlushOnePage
  22. CheckICache
  23. Initialize
  24. next_
  25. address_of_swi_instruction
  26. external_function
  27. type
  28. Get
  29. FromSwiInstruction
  30. RedirectExternalReference
  31. current
  32. set_register
  33. get_register
  34. get_double_from_register_pair
  35. set_dw_register
  36. set_pc
  37. has_bad_pc
  38. get_pc
  39. set_s_register
  40. get_s_register
  41. set_s_register_from_float
  42. set_s_register_from_sinteger
  43. set_d_register_from_double
  44. get_float_from_s_register
  45. get_sinteger_from_s_register
  46. get_double_from_d_register
  47. GetFpArgs
  48. GetFpArgs
  49. GetFpArgs
  50. SetFpResult
  51. TrashCallerSaveRegisters
  52. ReadW
  53. WriteW
  54. ReadHU
  55. ReadH
  56. WriteH
  57. WriteH
  58. ReadBU
  59. ReadB
  60. WriteB
  61. WriteB
  62. ReadDW
  63. WriteDW
  64. StackLimit
  65. Format
  66. ConditionallyExecute
  67. SetNZFlags
  68. SetCFlag
  69. SetVFlag
  70. CarryFrom
  71. BorrowFrom
  72. OverflowFrom
  73. Compute_FPSCR_Flags
  74. Copy_FPSCR_to_APSR
  75. GetShiftRm
  76. GetImm
  77. count_bits
  78. ProcessPUW
  79. HandleRList
  80. HandleVList
  81. SoftwareInterrupt
  82. isStopInstruction
  83. isWatchedStop
  84. isEnabledStop
  85. EnableStop
  86. DisableStop
  87. IncreaseStopCounter
  88. PrintStopInfo
  89. DecodeType01
  90. DecodeType2
  91. DecodeType3
  92. DecodeType4
  93. DecodeType5
  94. DecodeType6
  95. DecodeType7
  96. DecodeTypeVFP
  97. DecodeVMOVBetweenCoreAndSinglePrecisionRegisters
  98. DecodeVCMP
  99. DecodeVCVTBetweenDoubleAndSingle
  100. get_inv_op_vfp_flag
  101. VFPConversionSaturate
  102. DecodeVCVTBetweenFloatingPointAndInteger
  103. DecodeType6CoprocessorIns
  104. InstructionDecode
  105. Execute
  106. Call
  107. PushAddress
  108. PopAddress

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>
#include <math.h>
#include <cstdarg>
#include "v8.h"

#if defined(V8_TARGET_ARCH_ARM)

#include "disasm.h"
#include "assembler.h"
#include "arm/constants-arm.h"
#include "arm/simulator-arm.h"

#if defined(USE_SIMULATOR)

// Only build the simulator if not compiling for real ARM hardware.
namespace v8 {
namespace internal {

// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent way through
// ::v8::internal::OS in the same way as SNPrintF is that the
// Windows C Run-Time Library does not provide vsscanf.
#define SScanF sscanf  // NOLINT

// The ArmDebugger class is used by the simulator while debugging simulated ARM
// code.
class ArmDebugger {
 public:
  explicit ArmDebugger(Simulator* sim) : sim_(sim) { }
  ~ArmDebugger();

  void Stop(Instruction* instr);
  void Debug();

 private:
  static const Instr kBreakpointInstr =
      (al | (7*B25) | (1*B24) | kBreakpoint);
  static const Instr kNopInstr = (al | (13*B21));

  Simulator* sim_;

  int32_t GetRegisterValue(int regnum);
  double GetRegisterPairDoubleValue(int regnum);
  double GetVFPDoubleRegisterValue(int regnum);
  bool GetValue(const char* desc, int32_t* value);
  bool GetVFPSingleValue(const char* desc, float* value);
  bool GetVFPDoubleValue(const char* desc, double* value);

  // Set or delete a breakpoint. Returns true if successful.
  bool SetBreakpoint(Instruction* breakpc);
  bool DeleteBreakpoint(Instruction* breakpc);

  // Undo and redo all breakpoints. This is needed to bracket disassembly and
  // execution to skip past breakpoints when run from the debugger.
  void UndoBreakpoints();
  void RedoBreakpoints();
};


ArmDebugger::~ArmDebugger() {
}



#ifdef GENERATED_CODE_COVERAGE
static FILE* coverage_log = NULL;


static void InitializeCoverage() {
  char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
  if (file_name != NULL) {
    coverage_log = fopen(file_name, "aw+");
  }
}


void ArmDebugger::Stop(Instruction* instr) {
  // Get the stop code.
  uint32_t code = instr->SvcValue() & kStopCodeMask;
  // Retrieve the encoded address, which comes just after this stop.
  char** msg_address =
    reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
  char* msg = *msg_address;
  ASSERT(msg != NULL);

  // Update this stop description.
  if (isWatchedStop(code) && !watched_stops[code].desc) {
    watched_stops[code].desc = msg;
  }

  if (strlen(msg) > 0) {
    if (coverage_log != NULL) {
      fprintf(coverage_log, "%s\n", msg);
      fflush(coverage_log);
    }
    // Overwrite the instruction and address with nops.
    instr->SetInstructionBits(kNopInstr);
    reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
  }
  sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize);
}

#else  // ndef GENERATED_CODE_COVERAGE

static void InitializeCoverage() {
}


void ArmDebugger::Stop(Instruction* instr) {
  // Get the stop code.
  uint32_t code = instr->SvcValue() & kStopCodeMask;
  // Retrieve the encoded address, which comes just after this stop.
  char* msg = *reinterpret_cast<char**>(sim_->get_pc()
                                        + Instruction::kInstrSize);
  // Update this stop description.
  if (sim_->isWatchedStop(code) && !sim_->watched_stops[code].desc) {
    sim_->watched_stops[code].desc = msg;
  }
  // Print the stop message and code if it is not the default code.
  if (code != kMaxStopCode) {
    PrintF("Simulator hit stop %u: %s\n", code, msg);
  } else {
    PrintF("Simulator hit %s\n", msg);
  }
  sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize);
  Debug();
}
#endif


int32_t ArmDebugger::GetRegisterValue(int regnum) {
  if (regnum == kPCRegister) {
    return sim_->get_pc();
  } else {
    return sim_->get_register(regnum);
  }
}


double ArmDebugger::GetRegisterPairDoubleValue(int regnum) {
  return sim_->get_double_from_register_pair(regnum);
}


double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) {
  return sim_->get_double_from_d_register(regnum);
}


bool ArmDebugger::GetValue(const char* desc, int32_t* value) {
  int regnum = Registers::Number(desc);
  if (regnum != kNoRegister) {
    *value = GetRegisterValue(regnum);
    return true;
  } else {
    if (strncmp(desc, "0x", 2) == 0) {
      return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
    } else {
      return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1;
    }
  }
  return false;
}


bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) {
  bool is_double;
  int regnum = VFPRegisters::Number(desc, &is_double);
  if (regnum != kNoRegister && !is_double) {
    *value = sim_->get_float_from_s_register(regnum);
    return true;
  }
  return false;
}


bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) {
  bool is_double;
  int regnum = VFPRegisters::Number(desc, &is_double);
  if (regnum != kNoRegister && is_double) {
    *value = sim_->get_double_from_d_register(regnum);
    return true;
  }
  return false;
}


bool ArmDebugger::SetBreakpoint(Instruction* breakpc) {
  // Check if a breakpoint can be set. If not return without any side-effects.
  if (sim_->break_pc_ != NULL) {
    return false;
  }

  // Set the breakpoint.
  sim_->break_pc_ = breakpc;
  sim_->break_instr_ = breakpc->InstructionBits();
  // Not setting the breakpoint instruction in the code itself. It will be set
  // when the debugger shell continues.
  return true;
}


bool ArmDebugger::DeleteBreakpoint(Instruction* breakpc) {
  if (sim_->break_pc_ != NULL) {
    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
  }

  sim_->break_pc_ = NULL;
  sim_->break_instr_ = 0;
  return true;
}


void ArmDebugger::UndoBreakpoints() {
  if (sim_->break_pc_ != NULL) {
    sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
  }
}


void ArmDebugger::RedoBreakpoints() {
  if (sim_->break_pc_ != NULL) {
    sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
  }
}


void ArmDebugger::Debug() {
  intptr_t last_pc = -1;
  bool done = false;

#define COMMAND_SIZE 63
#define ARG_SIZE 255

#define STR(a) #a
#define XSTR(a) STR(a)

  char cmd[COMMAND_SIZE + 1];
  char arg1[ARG_SIZE + 1];
  char arg2[ARG_SIZE + 1];
  char* argv[3] = { cmd, arg1, arg2 };

  // make sure to have a proper terminating character if reaching the limit
  cmd[COMMAND_SIZE] = 0;
  arg1[ARG_SIZE] = 0;
  arg2[ARG_SIZE] = 0;

  // Undo all set breakpoints while running in the debugger shell. This will
  // make them invisible to all commands.
  UndoBreakpoints();

  while (!done && !sim_->has_bad_pc()) {
    if (last_pc != sim_->get_pc()) {
      disasm::NameConverter converter;
      disasm::Disassembler dasm(converter);
      // use a reasonably large buffer
      v8::internal::EmbeddedVector<char, 256> buffer;
      dasm.InstructionDecode(buffer,
                             reinterpret_cast<byte*>(sim_->get_pc()));
      PrintF("  0x%08x  %s\n", sim_->get_pc(), buffer.start());
      last_pc = sim_->get_pc();
    }
    char* line = ReadLine("sim> ");
    if (line == NULL) {
      break;
    } else {
      char* last_input = sim_->last_debugger_input();
      if (strcmp(line, "\n") == 0 && last_input != NULL) {
        line = last_input;
      } else {
        // Ownership is transferred to sim_;
        sim_->set_last_debugger_input(line);
      }
      // Use sscanf to parse the individual parts of the command line. At the
      // moment no command expects more than two parameters.
      int argc = SScanF(line,
                        "%" XSTR(COMMAND_SIZE) "s "
                        "%" XSTR(ARG_SIZE) "s "
                        "%" XSTR(ARG_SIZE) "s",
                        cmd, arg1, arg2);
      if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
        sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
      } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
        // Execute the one instruction we broke at with breakpoints disabled.
        sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
        // Leave the debugger shell.
        done = true;
      } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
        if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
          int32_t value;
          float svalue;
          double dvalue;
          if (strcmp(arg1, "all") == 0) {
            for (int i = 0; i < kNumRegisters; i++) {
              value = GetRegisterValue(i);
              PrintF("%3s: 0x%08x %10d", Registers::Name(i), value, value);
              if ((argc == 3 && strcmp(arg2, "fp") == 0) &&
                  i < 8 &&
                  (i % 2) == 0) {
                dvalue = GetRegisterPairDoubleValue(i);
                PrintF(" (%f)\n", dvalue);
              } else {
                PrintF("\n");
              }
            }
            for (int i = 0; i < kNumVFPDoubleRegisters; i++) {
              dvalue = GetVFPDoubleRegisterValue(i);
              uint64_t as_words = BitCast<uint64_t>(dvalue);
              PrintF("%3s: %f 0x%08x %08x\n",
                     VFPRegisters::Name(i, true),
                     dvalue,
                     static_cast<uint32_t>(as_words >> 32),
                     static_cast<uint32_t>(as_words & 0xffffffff));
            }
          } else {
            if (GetValue(arg1, &value)) {
              PrintF("%s: 0x%08x %d \n", arg1, value, value);
            } else if (GetVFPSingleValue(arg1, &svalue)) {
              uint32_t as_word = BitCast<uint32_t>(svalue);
              PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word);
            } else if (GetVFPDoubleValue(arg1, &dvalue)) {
              uint64_t as_words = BitCast<uint64_t>(dvalue);
              PrintF("%s: %f 0x%08x %08x\n",
                     arg1,
                     dvalue,
                     static_cast<uint32_t>(as_words >> 32),
                     static_cast<uint32_t>(as_words & 0xffffffff));
            } else {
              PrintF("%s unrecognized\n", arg1);
            }
          }
        } else {
          PrintF("print <register>\n");
        }
      } else if ((strcmp(cmd, "po") == 0)
                 || (strcmp(cmd, "printobject") == 0)) {
        if (argc == 2) {
          int32_t value;
          if (GetValue(arg1, &value)) {
            Object* obj = reinterpret_cast<Object*>(value);
            PrintF("%s: \n", arg1);
#ifdef DEBUG
            obj->PrintLn();
#else
            obj->ShortPrint();
            PrintF("\n");
#endif
          } else {
            PrintF("%s unrecognized\n", arg1);
          }
        } else {
          PrintF("printobject <value>\n");
        }
      } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
        int32_t* cur = NULL;
        int32_t* end = NULL;
        int next_arg = 1;

        if (strcmp(cmd, "stack") == 0) {
          cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
        } else {  // "mem"
          int32_t value;
          if (!GetValue(arg1, &value)) {
            PrintF("%s unrecognized\n", arg1);
            continue;
          }
          cur = reinterpret_cast<int32_t*>(value);
          next_arg++;
        }

        int32_t words;
        if (argc == next_arg) {
          words = 10;
        } else if (argc == next_arg + 1) {
          if (!GetValue(argv[next_arg], &words)) {
            words = 10;
          }
        }
        end = cur + words;

        while (cur < end) {
          PrintF("  0x%08x:  0x%08x %10d",
                 reinterpret_cast<intptr_t>(cur), *cur, *cur);
          HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
          int value = *cur;
          Heap* current_heap = v8::internal::Isolate::Current()->heap();
          if (current_heap->Contains(obj) || ((value & 1) == 0)) {
            PrintF(" (");
            if ((value & 1) == 0) {
              PrintF("smi %d", value / 2);
            } else {
              obj->ShortPrint();
            }
            PrintF(")");
          }
          PrintF("\n");
          cur++;
        }
      } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
        disasm::NameConverter converter;
        disasm::Disassembler dasm(converter);
        // use a reasonably large buffer
        v8::internal::EmbeddedVector<char, 256> buffer;

        byte* prev = NULL;
        byte* cur = NULL;
        byte* end = NULL;

        if (argc == 1) {
          cur = reinterpret_cast<byte*>(sim_->get_pc());
          end = cur + (10 * Instruction::kInstrSize);
        } else if (argc == 2) {
          int regnum = Registers::Number(arg1);
          if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
            // The argument is an address or a register name.
            int32_t value;
            if (GetValue(arg1, &value)) {
              cur = reinterpret_cast<byte*>(value);
              // Disassemble 10 instructions at <arg1>.
              end = cur + (10 * Instruction::kInstrSize);
            }
          } else {
            // The argument is the number of instructions.
            int32_t value;
            if (GetValue(arg1, &value)) {
              cur = reinterpret_cast<byte*>(sim_->get_pc());
              // Disassemble <arg1> instructions.
              end = cur + (value * Instruction::kInstrSize);
            }
          }
        } else {
          int32_t value1;
          int32_t value2;
          if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
            cur = reinterpret_cast<byte*>(value1);
            end = cur + (value2 * Instruction::kInstrSize);
          }
        }

        while (cur < end) {
          prev = cur;
          cur += dasm.InstructionDecode(buffer, cur);
          PrintF("  0x%08x  %s\n",
                 reinterpret_cast<intptr_t>(prev), buffer.start());
        }
      } else if (strcmp(cmd, "gdb") == 0) {
        PrintF("relinquishing control to gdb\n");
        v8::internal::OS::DebugBreak();
        PrintF("regaining control from gdb\n");
      } else if (strcmp(cmd, "break") == 0) {
        if (argc == 2) {
          int32_t value;
          if (GetValue(arg1, &value)) {
            if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
              PrintF("setting breakpoint failed\n");
            }
          } else {
            PrintF("%s unrecognized\n", arg1);
          }
        } else {
          PrintF("break <address>\n");
        }
      } else if (strcmp(cmd, "del") == 0) {
        if (!DeleteBreakpoint(NULL)) {
          PrintF("deleting breakpoint failed\n");
        }
      } else if (strcmp(cmd, "flags") == 0) {
        PrintF("N flag: %d; ", sim_->n_flag_);
        PrintF("Z flag: %d; ", sim_->z_flag_);
        PrintF("C flag: %d; ", sim_->c_flag_);
        PrintF("V flag: %d\n", sim_->v_flag_);
        PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_);
        PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_);
        PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_);
        PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_);
        PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_);
      } else if (strcmp(cmd, "stop") == 0) {
        int32_t value;
        intptr_t stop_pc = sim_->get_pc() - 2 * Instruction::kInstrSize;
        Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
        Instruction* msg_address =
          reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
        if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
          // Remove the current stop.
          if (sim_->isStopInstruction(stop_instr)) {
            stop_instr->SetInstructionBits(kNopInstr);
            msg_address->SetInstructionBits(kNopInstr);
          } else {
            PrintF("Not at debugger stop.\n");
          }
        } else if (argc == 3) {
          // Print information about all/the specified breakpoint(s).
          if (strcmp(arg1, "info") == 0) {
            if (strcmp(arg2, "all") == 0) {
              PrintF("Stop information:\n");
              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
                sim_->PrintStopInfo(i);
              }
            } else if (GetValue(arg2, &value)) {
              sim_->PrintStopInfo(value);
            } else {
              PrintF("Unrecognized argument.\n");
            }
          } else if (strcmp(arg1, "enable") == 0) {
            // Enable all/the specified breakpoint(s).
            if (strcmp(arg2, "all") == 0) {
              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
                sim_->EnableStop(i);
              }
            } else if (GetValue(arg2, &value)) {
              sim_->EnableStop(value);
            } else {
              PrintF("Unrecognized argument.\n");
            }
          } else if (strcmp(arg1, "disable") == 0) {
            // Disable all/the specified breakpoint(s).
            if (strcmp(arg2, "all") == 0) {
              for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
                sim_->DisableStop(i);
              }
            } else if (GetValue(arg2, &value)) {
              sim_->DisableStop(value);
            } else {
              PrintF("Unrecognized argument.\n");
            }
          }
        } else {
          PrintF("Wrong usage. Use help command for more information.\n");
        }
      } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
        ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
        PrintF("Trace of executed instructions is %s\n",
               ::v8::internal::FLAG_trace_sim ? "on" : "off");
      } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
        PrintF("cont\n");
        PrintF("  continue execution (alias 'c')\n");
        PrintF("stepi\n");
        PrintF("  step one instruction (alias 'si')\n");
        PrintF("print <register>\n");
        PrintF("  print register content (alias 'p')\n");
        PrintF("  use register name 'all' to print all registers\n");
        PrintF("  add argument 'fp' to print register pair double values\n");
        PrintF("printobject <register>\n");
        PrintF("  print an object from a register (alias 'po')\n");
        PrintF("flags\n");
        PrintF("  print flags\n");
        PrintF("stack [<words>]\n");
        PrintF("  dump stack content, default dump 10 words)\n");
        PrintF("mem <address> [<words>]\n");
        PrintF("  dump memory content, default dump 10 words)\n");
        PrintF("disasm [<instructions>]\n");
        PrintF("disasm [<address/register>]\n");
        PrintF("disasm [[<address/register>] <instructions>]\n");
        PrintF("  disassemble code, default is 10 instructions\n");
        PrintF("  from pc (alias 'di')\n");
        PrintF("gdb\n");
        PrintF("  enter gdb\n");
        PrintF("break <address>\n");
        PrintF("  set a break point on the address\n");
        PrintF("del\n");
        PrintF("  delete the breakpoint\n");
        PrintF("trace (alias 't')\n");
        PrintF("  toogle the tracing of all executed statements\n");
        PrintF("stop feature:\n");
        PrintF("  Description:\n");
        PrintF("    Stops are debug instructions inserted by\n");
        PrintF("    the Assembler::stop() function.\n");
        PrintF("    When hitting a stop, the Simulator will\n");
        PrintF("    stop and and give control to the ArmDebugger.\n");
        PrintF("    The first %d stop codes are watched:\n",
               Simulator::kNumOfWatchedStops);
        PrintF("    - They can be enabled / disabled: the Simulator\n");
        PrintF("      will / won't stop when hitting them.\n");
        PrintF("    - The Simulator keeps track of how many times they \n");
        PrintF("      are met. (See the info command.) Going over a\n");
        PrintF("      disabled stop still increases its counter. \n");
        PrintF("  Commands:\n");
        PrintF("    stop info all/<code> : print infos about number <code>\n");
        PrintF("      or all stop(s).\n");
        PrintF("    stop enable/disable all/<code> : enables / disables\n");
        PrintF("      all or number <code> stop(s)\n");
        PrintF("    stop unstop\n");
        PrintF("      ignore the stop instruction at the current location\n");
        PrintF("      from now on\n");
      } else {
        PrintF("Unknown command: %s\n", cmd);
      }
    }
  }

  // Add all the breakpoints back to stop execution and enter the debugger
  // shell when hit.
  RedoBreakpoints();

#undef COMMAND_SIZE
#undef ARG_SIZE

#undef STR
#undef XSTR
}


static bool ICacheMatch(void* one, void* two) {
  ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
  ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
  return one == two;
}


static uint32_t ICacheHash(void* key) {
  return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
}


static bool AllOnOnePage(uintptr_t start, int size) {
  intptr_t start_page = (start & ~CachePage::kPageMask);
  intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
  return start_page == end_page;
}


void Simulator::set_last_debugger_input(char* input) {
  DeleteArray(last_debugger_input_);
  last_debugger_input_ = input;
}


void Simulator::FlushICache(v8::internal::HashMap* i_cache,
                            void* start_addr,
                            size_t size) {
  intptr_t start = reinterpret_cast<intptr_t>(start_addr);
  int intra_line = (start & CachePage::kLineMask);
  start -= intra_line;
  size += intra_line;
  size = ((size - 1) | CachePage::kLineMask) + 1;
  int offset = (start & CachePage::kPageMask);
  while (!AllOnOnePage(start, size - 1)) {
    int bytes_to_flush = CachePage::kPageSize - offset;
    FlushOnePage(i_cache, start, bytes_to_flush);
    start += bytes_to_flush;
    size -= bytes_to_flush;
    ASSERT_EQ(0, start & CachePage::kPageMask);
    offset = 0;
  }
  if (size != 0) {
    FlushOnePage(i_cache, start, size);
  }
}


CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
  v8::internal::HashMap::Entry* entry = i_cache->Lookup(page,
                                                        ICacheHash(page),
                                                        true);
  if (entry->value == NULL) {
    CachePage* new_page = new CachePage();
    entry->value = new_page;
  }
  return reinterpret_cast<CachePage*>(entry->value);
}


// Flush from start up to and not including start + size.
void Simulator::FlushOnePage(v8::internal::HashMap* i_cache,
                             intptr_t start,
                             int size) {
  ASSERT(size <= CachePage::kPageSize);
  ASSERT(AllOnOnePage(start, size - 1));
  ASSERT((start & CachePage::kLineMask) == 0);
  ASSERT((size & CachePage::kLineMask) == 0);
  void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
  int offset = (start & CachePage::kPageMask);
  CachePage* cache_page = GetCachePage(i_cache, page);
  char* valid_bytemap = cache_page->ValidityByte(offset);
  memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
}


void Simulator::CheckICache(v8::internal::HashMap* i_cache,
                            Instruction* instr) {
  intptr_t address = reinterpret_cast<intptr_t>(instr);
  void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
  void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
  int offset = (address & CachePage::kPageMask);
  CachePage* cache_page = GetCachePage(i_cache, page);
  char* cache_valid_byte = cache_page->ValidityByte(offset);
  bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
  char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
  if (cache_hit) {
    // Check that the data in memory matches the contents of the I-cache.
    CHECK(memcmp(reinterpret_cast<void*>(instr),
                 cache_page->CachedData(offset),
                 Instruction::kInstrSize) == 0);
  } else {
    // Cache miss.  Load memory into the cache.
    memcpy(cached_line, line, CachePage::kLineLength);
    *cache_valid_byte = CachePage::LINE_VALID;
  }
}


void Simulator::Initialize(Isolate* isolate) {
  if (isolate->simulator_initialized()) return;
  isolate->set_simulator_initialized(true);
  ::v8::internal::ExternalReference::set_redirector(isolate,
                                                    &RedirectExternalReference);
}


Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
  i_cache_ = isolate_->simulator_i_cache();
  if (i_cache_ == NULL) {
    i_cache_ = new v8::internal::HashMap(&ICacheMatch);
    isolate_->set_simulator_i_cache(i_cache_);
  }
  Initialize(isolate);
  // Set up simulator support first. Some of this information is needed to
  // setup the architecture state.
  size_t stack_size = 1 * 1024*1024;  // allocate 1MB for stack
  stack_ = reinterpret_cast<char*>(malloc(stack_size));
  pc_modified_ = false;
  icount_ = 0;
  break_pc_ = NULL;
  break_instr_ = 0;

  // Set up architecture state.
  // All registers are initialized to zero to start with.
  for (int i = 0; i < num_registers; i++) {
    registers_[i] = 0;
  }
  n_flag_ = false;
  z_flag_ = false;
  c_flag_ = false;
  v_flag_ = false;

  // Initializing VFP registers.
  // All registers are initialized to zero to start with
  // even though s_registers_ & d_registers_ share the same
  // physical registers in the target.
  for (int i = 0; i < num_s_registers; i++) {
    vfp_register[i] = 0;
  }
  n_flag_FPSCR_ = false;
  z_flag_FPSCR_ = false;
  c_flag_FPSCR_ = false;
  v_flag_FPSCR_ = false;
  FPSCR_rounding_mode_ = RZ;

  inv_op_vfp_flag_ = false;
  div_zero_vfp_flag_ = false;
  overflow_vfp_flag_ = false;
  underflow_vfp_flag_ = false;
  inexact_vfp_flag_ = false;

  // The sp is initialized to point to the bottom (high address) of the
  // allocated stack area. To be safe in potential stack underflows we leave
  // some buffer below.
  registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64;
  // The lr and pc are initialized to a known bad value that will cause an
  // access violation if the simulator ever tries to execute it.
  registers_[pc] = bad_lr;
  registers_[lr] = bad_lr;
  InitializeCoverage();

  last_debugger_input_ = NULL;
}


// When the generated code calls an external reference we need to catch that in
// the simulator.  The external reference will be a function compiled for the
// host architecture.  We need to call that function instead of trying to
// execute it with the simulator.  We do that by redirecting the external
// reference to a svc (Supervisor Call) instruction that is handled by
// the simulator.  We write the original destination of the jump just at a known
// offset from the svc instruction so the simulator knows what to call.
class Redirection {
 public:
  Redirection(void* external_function, ExternalReference::Type type)
      : external_function_(external_function),
        swi_instruction_(al | (0xf*B24) | kCallRtRedirected),
        type_(type),
        next_(NULL) {
    Isolate* isolate = Isolate::Current();
    next_ = isolate->simulator_redirection();
    Simulator::current(isolate)->
        FlushICache(isolate->simulator_i_cache(),
                    reinterpret_cast<void*>(&swi_instruction_),
                    Instruction::kInstrSize);
    isolate->set_simulator_redirection(this);
  }

  void* address_of_swi_instruction() {
    return reinterpret_cast<void*>(&swi_instruction_);
  }

  void* external_function() { return external_function_; }
  ExternalReference::Type type() { return type_; }

  static Redirection* Get(void* external_function,
                          ExternalReference::Type type) {
    Isolate* isolate = Isolate::Current();
    Redirection* current = isolate->simulator_redirection();
    for (; current != NULL; current = current->next_) {
      if (current->external_function_ == external_function) return current;
    }
    return new Redirection(external_function, type);
  }

  static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
    char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
    char* addr_of_redirection =
        addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
    return reinterpret_cast<Redirection*>(addr_of_redirection);
  }

 private:
  void* external_function_;
  uint32_t swi_instruction_;
  ExternalReference::Type type_;
  Redirection* next_;
};


void* Simulator::RedirectExternalReference(void* external_function,
                                           ExternalReference::Type type) {
  Redirection* redirection = Redirection::Get(external_function, type);
  return redirection->address_of_swi_instruction();
}


// Get the active Simulator for the current thread.
Simulator* Simulator::current(Isolate* isolate) {
  v8::internal::Isolate::PerIsolateThreadData* isolate_data =
      isolate->FindOrAllocatePerThreadDataForThisThread();
  ASSERT(isolate_data != NULL);

  Simulator* sim = isolate_data->simulator();
  if (sim == NULL) {
    // TODO(146): delete the simulator object when a thread/isolate goes away.
    sim = new Simulator(isolate);
    isolate_data->set_simulator(sim);
  }
  return sim;
}


// Sets the register in the architecture state. It will also deal with updating
// Simulator internal state for special registers such as PC.
void Simulator::set_register(int reg, int32_t value) {
  ASSERT((reg >= 0) && (reg < num_registers));
  if (reg == pc) {
    pc_modified_ = true;
  }
  registers_[reg] = value;
}


// Get the register from the architecture state. This function does handle
// the special case of accessing the PC register.
int32_t Simulator::get_register(int reg) const {
  ASSERT((reg >= 0) && (reg < num_registers));
  // Stupid code added to avoid bug in GCC.
  // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
  if (reg >= num_registers) return 0;
  // End stupid code.
  return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
}


double Simulator::get_double_from_register_pair(int reg) {
  ASSERT((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));

  double dm_val = 0.0;
  // Read the bits from the unsigned integer register_[] array
  // into the double precision floating point value and return it.
  char buffer[2 * sizeof(vfp_register[0])];
  memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
  memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
  return(dm_val);
}


void Simulator::set_dw_register(int dreg, const int* dbl) {
  ASSERT((dreg >= 0) && (dreg < num_d_registers));
  registers_[dreg] = dbl[0];
  registers_[dreg + 1] = dbl[1];
}


// Raw access to the PC register.
void Simulator::set_pc(int32_t value) {
  pc_modified_ = true;
  registers_[pc] = value;
}


bool Simulator::has_bad_pc() const {
  return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc));
}


// Raw access to the PC register without the special adjustment when reading.
int32_t Simulator::get_pc() const {
  return registers_[pc];
}


// Getting from and setting into VFP registers.
void Simulator::set_s_register(int sreg, unsigned int value) {
  ASSERT((sreg >= 0) && (sreg < num_s_registers));
  vfp_register[sreg] = value;
}


unsigned int Simulator::get_s_register(int sreg) const {
  ASSERT((sreg >= 0) && (sreg < num_s_registers));
  return vfp_register[sreg];
}


void Simulator::set_s_register_from_float(int sreg, const float flt) {
  ASSERT((sreg >= 0) && (sreg < num_s_registers));
  // Read the bits from the single precision floating point value
  // into the unsigned integer element of vfp_register[] given by index=sreg.
  char buffer[sizeof(vfp_register[0])];
  memcpy(buffer, &flt, sizeof(vfp_register[0]));
  memcpy(&vfp_register[sreg], buffer, sizeof(vfp_register[0]));
}


void Simulator::set_s_register_from_sinteger(int sreg, const int sint) {
  ASSERT((sreg >= 0) && (sreg < num_s_registers));
  // Read the bits from the integer value into the unsigned integer element of
  // vfp_register[] given by index=sreg.
  char buffer[sizeof(vfp_register[0])];
  memcpy(buffer, &sint, sizeof(vfp_register[0]));
  memcpy(&vfp_register[sreg], buffer, sizeof(vfp_register[0]));
}


void Simulator::set_d_register_from_double(int dreg, const double& dbl) {
  ASSERT((dreg >= 0) && (dreg < num_d_registers));
  // Read the bits from the double precision floating point value into the two
  // consecutive unsigned integer elements of vfp_register[] given by index
  // 2*sreg and 2*sreg+1.
  char buffer[2 * sizeof(vfp_register[0])];
  memcpy(buffer, &dbl, 2 * sizeof(vfp_register[0]));
  memcpy(&vfp_register[dreg * 2], buffer, 2 * sizeof(vfp_register[0]));
}


float Simulator::get_float_from_s_register(int sreg) {
  ASSERT((sreg >= 0) && (sreg < num_s_registers));

  float sm_val = 0.0;
  // Read the bits from the unsigned integer vfp_register[] array
  // into the single precision floating point value and return it.
  char buffer[sizeof(vfp_register[0])];
  memcpy(buffer, &vfp_register[sreg], sizeof(vfp_register[0]));
  memcpy(&sm_val, buffer, sizeof(vfp_register[0]));
  return(sm_val);
}


int Simulator::get_sinteger_from_s_register(int sreg) {
  ASSERT((sreg >= 0) && (sreg < num_s_registers));

  int sm_val = 0;
  // Read the bits from the unsigned integer vfp_register[] array
  // into the single precision floating point value and return it.
  char buffer[sizeof(vfp_register[0])];
  memcpy(buffer, &vfp_register[sreg], sizeof(vfp_register[0]));
  memcpy(&sm_val, buffer, sizeof(vfp_register[0]));
  return(sm_val);
}


double Simulator::get_double_from_d_register(int dreg) {
  ASSERT((dreg >= 0) && (dreg < num_d_registers));

  double dm_val = 0.0;
  // Read the bits from the unsigned integer vfp_register[] array
  // into the double precision floating point value and return it.
  char buffer[2 * sizeof(vfp_register[0])];
  memcpy(buffer, &vfp_register[2 * dreg], 2 * sizeof(vfp_register[0]));
  memcpy(&dm_val, buffer, 2 * sizeof(vfp_register[0]));
  return(dm_val);
}


// For use in calls that take two double values, constructed either
// from r0-r3 or d0 and d1.
void Simulator::GetFpArgs(double* x, double* y) {
  if (use_eabi_hardfloat()) {
    *x = vfp_register[0];
    *y = vfp_register[1];
  } else {
    // We use a char buffer to get around the strict-aliasing rules which
    // otherwise allow the compiler to optimize away the copy.
    char buffer[sizeof(*x)];
    // Registers 0 and 1 -> x.
    memcpy(buffer, registers_, sizeof(*x));
    memcpy(x, buffer, sizeof(*x));
    // Registers 2 and 3 -> y.
    memcpy(buffer, registers_ + 2, sizeof(*y));
    memcpy(y, buffer, sizeof(*y));
  }
}

// For use in calls that take one double value, constructed either
// from r0 and r1 or d0.
void Simulator::GetFpArgs(double* x) {
  if (use_eabi_hardfloat()) {
    *x = vfp_register[0];
  } else {
    // We use a char buffer to get around the strict-aliasing rules which
    // otherwise allow the compiler to optimize away the copy.
    char buffer[sizeof(*x)];
    // Registers 0 and 1 -> x.
    memcpy(buffer, registers_, sizeof(*x));
    memcpy(x, buffer, sizeof(*x));
  }
}


// For use in calls that take one double value constructed either
// from r0 and r1 or d0 and one integer value.
void Simulator::GetFpArgs(double* x, int32_t* y) {
  if (use_eabi_hardfloat()) {
    *x = vfp_register[0];
    *y = registers_[1];
  } else {
    // We use a char buffer to get around the strict-aliasing rules which
    // otherwise allow the compiler to optimize away the copy.
    char buffer[sizeof(*x)];
    // Registers 0 and 1 -> x.
    memcpy(buffer, registers_, sizeof(*x));
    memcpy(x, buffer, sizeof(*x));
    // Register 2 -> y.
    memcpy(buffer, registers_ + 2, sizeof(*y));
    memcpy(y, buffer, sizeof(*y));
  }
}


// The return value is either in r0/r1 or d0.
void Simulator::SetFpResult(const double& result) {
  if (use_eabi_hardfloat()) {
    char buffer[2 * sizeof(vfp_register[0])];
    memcpy(buffer, &result, sizeof(buffer));
    // Copy result to d0.
    memcpy(vfp_register, buffer, sizeof(buffer));
  } else {
    char buffer[2 * sizeof(registers_[0])];
    memcpy(buffer, &result, sizeof(buffer));
    // Copy result to r0 and r1.
    memcpy(registers_, buffer, sizeof(buffer));
  }
}


void Simulator::TrashCallerSaveRegisters() {
  // We don't trash the registers with the return value.
  registers_[2] = 0x50Bad4U;
  registers_[3] = 0x50Bad4U;
  registers_[12] = 0x50Bad4U;
}

// Some Operating Systems allow unaligned access on ARMv7 targets. We
// assume that unaligned accesses are not allowed unless the v8 build system
// defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero.
// The following statements below describes the behavior of the ARM CPUs
// that don't support unaligned access.
// Some ARM platforms raise an interrupt on detecting unaligned access.
// On others it does a funky rotation thing.  For now we
// simply disallow unaligned reads.  Note that simulator runs have the runtime
// system running directly on the host system and only generated code is
// executed in the simulator.  Since the host is typically IA32 we will not
// get the correct ARM-like behaviour on unaligned accesses for those ARM
// targets that don't support unaligned loads and stores.


int Simulator::ReadW(int32_t addr, Instruction* instr) {
#if V8_TARGET_CAN_READ_UNALIGNED
  intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
  return *ptr;
#else
  if ((addr & 3) == 0) {
    intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
    return *ptr;
  }
  PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  UNIMPLEMENTED();
  return 0;
#endif
}


void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
#if V8_TARGET_CAN_READ_UNALIGNED
  intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
  *ptr = value;
  return;
#else
  if ((addr & 3) == 0) {
    intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
    *ptr = value;
    return;
  }
  PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  UNIMPLEMENTED();
#endif
}


uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) {
#if V8_TARGET_CAN_READ_UNALIGNED
  uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
  return *ptr;
#else
  if ((addr & 1) == 0) {
    uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
    return *ptr;
  }
  PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  UNIMPLEMENTED();
  return 0;
#endif
}


int16_t Simulator::ReadH(int32_t addr, Instruction* instr) {
#if V8_TARGET_CAN_READ_UNALIGNED
  int16_t* ptr = reinterpret_cast<int16_t*>(addr);
  return *ptr;
#else
  if ((addr & 1) == 0) {
    int16_t* ptr = reinterpret_cast<int16_t*>(addr);
    return *ptr;
  }
  PrintF("Unaligned signed halfword read at 0x%08x\n", addr);
  UNIMPLEMENTED();
  return 0;
#endif
}


void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) {
#if V8_TARGET_CAN_READ_UNALIGNED
  uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
  *ptr = value;
  return;
#else
  if ((addr & 1) == 0) {
    uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
    *ptr = value;
    return;
  }
  PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  UNIMPLEMENTED();
#endif
}


void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) {
#if V8_TARGET_CAN_READ_UNALIGNED
  int16_t* ptr = reinterpret_cast<int16_t*>(addr);
  *ptr = value;
  return;
#else
  if ((addr & 1) == 0) {
    int16_t* ptr = reinterpret_cast<int16_t*>(addr);
    *ptr = value;
    return;
  }
  PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
         addr,
         reinterpret_cast<intptr_t>(instr));
  UNIMPLEMENTED();
#endif
}


uint8_t Simulator::ReadBU(int32_t addr) {
  uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
  return *ptr;
}


int8_t Simulator::ReadB(int32_t addr) {
  int8_t* ptr = reinterpret_cast<int8_t*>(addr);
  return *ptr;
}


void Simulator::WriteB(int32_t addr, uint8_t value) {
  uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
  *ptr = value;
}


void Simulator::WriteB(int32_t addr, int8_t value) {
  int8_t* ptr = reinterpret_cast<int8_t*>(addr);
  *ptr = value;
}


int32_t* Simulator::ReadDW(int32_t addr) {
#if V8_TARGET_CAN_READ_UNALIGNED
  int32_t* ptr = reinterpret_cast<int32_t*>(addr);
  return ptr;
#else
  if ((addr & 3) == 0) {
    int32_t* ptr = reinterpret_cast<int32_t*>(addr);
    return ptr;
  }
  PrintF("Unaligned read at 0x%08x\n", addr);
  UNIMPLEMENTED();
  return 0;
#endif
}


void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) {
#if V8_TARGET_CAN_READ_UNALIGNED
  int32_t* ptr = reinterpret_cast<int32_t*>(addr);
  *ptr++ = value1;
  *ptr = value2;
  return;
#else
  if ((addr & 3) == 0) {
    int32_t* ptr = reinterpret_cast<int32_t*>(addr);
    *ptr++ = value1;
    *ptr = value2;
    return;
  }
  PrintF("Unaligned write at 0x%08x\n", addr);
  UNIMPLEMENTED();
#endif
}


// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit() const {
  // Leave a safety margin of 1024 bytes to prevent overrunning the stack when
  // pushing values.
  return reinterpret_cast<uintptr_t>(stack_) + 1024;
}


// Unsupported instructions use Format to print an error and stop execution.
void Simulator::Format(Instruction* instr, const char* format) {
  PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n",
         reinterpret_cast<intptr_t>(instr), format);
  UNIMPLEMENTED();
}


// Checks if the current instruction should be executed based on its
// condition bits.
bool Simulator::ConditionallyExecute(Instruction* instr) {
  switch (instr->ConditionField()) {
    case eq: return z_flag_;
    case ne: return !z_flag_;
    case cs: return c_flag_;
    case cc: return !c_flag_;
    case mi: return n_flag_;
    case pl: return !n_flag_;
    case vs: return v_flag_;
    case vc: return !v_flag_;
    case hi: return c_flag_ && !z_flag_;
    case ls: return !c_flag_ || z_flag_;
    case ge: return n_flag_ == v_flag_;
    case lt: return n_flag_ != v_flag_;
    case gt: return !z_flag_ && (n_flag_ == v_flag_);
    case le: return z_flag_ || (n_flag_ != v_flag_);
    case al: return true;
    default: UNREACHABLE();
  }
  return false;
}


// Calculate and set the Negative and Zero flags.
void Simulator::SetNZFlags(int32_t val) {
  n_flag_ = (val < 0);
  z_flag_ = (val == 0);
}


// Set the Carry flag.
void Simulator::SetCFlag(bool val) {
  c_flag_ = val;
}


// Set the oVerflow flag.
void Simulator::SetVFlag(bool val) {
  v_flag_ = val;
}


// Calculate C flag value for additions.
bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
  uint32_t uleft = static_cast<uint32_t>(left);
  uint32_t uright = static_cast<uint32_t>(right);
  uint32_t urest  = 0xffffffffU - uleft;

  return (uright > urest) ||
         (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
}


// Calculate C flag value for subtractions.
bool Simulator::BorrowFrom(int32_t left, int32_t right) {
  uint32_t uleft = static_cast<uint32_t>(left);
  uint32_t uright = static_cast<uint32_t>(right);

  return (uright > uleft);
}


// Calculate V flag value for additions and subtractions.
bool Simulator::OverflowFrom(int32_t alu_out,
                             int32_t left, int32_t right, bool addition) {
  bool overflow;
  if (addition) {
               // operands have the same sign
    overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
               // and operands and result have different sign
               && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
  } else {
               // operands have different signs
    overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
               // and first operand and result have different signs
               && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
  }
  return overflow;
}


// Support for VFP comparisons.
void Simulator::Compute_FPSCR_Flags(double val1, double val2) {
  if (isnan(val1) || isnan(val2)) {
    n_flag_FPSCR_ = false;
    z_flag_FPSCR_ = false;
    c_flag_FPSCR_ = true;
    v_flag_FPSCR_ = true;
  // All non-NaN cases.
  } else if (val1 == val2) {
    n_flag_FPSCR_ = false;
    z_flag_FPSCR_ = true;
    c_flag_FPSCR_ = true;
    v_flag_FPSCR_ = false;
  } else if (val1 < val2) {
    n_flag_FPSCR_ = true;
    z_flag_FPSCR_ = false;
    c_flag_FPSCR_ = false;
    v_flag_FPSCR_ = false;
  } else {
    // Case when (val1 > val2).
    n_flag_FPSCR_ = false;
    z_flag_FPSCR_ = false;
    c_flag_FPSCR_ = true;
    v_flag_FPSCR_ = false;
  }
}


void Simulator::Copy_FPSCR_to_APSR() {
  n_flag_ = n_flag_FPSCR_;
  z_flag_ = z_flag_FPSCR_;
  c_flag_ = c_flag_FPSCR_;
  v_flag_ = v_flag_FPSCR_;
}


// Addressing Mode 1 - Data-processing operands:
// Get the value based on the shifter_operand with register.
int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) {
  ShiftOp shift = instr->ShiftField();
  int shift_amount = instr->ShiftAmountValue();
  int32_t result = get_register(instr->RmValue());
  if (instr->Bit(4) == 0) {
    // by immediate
    if ((shift == ROR) && (shift_amount == 0)) {
      UNIMPLEMENTED();
      return result;
    } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
      shift_amount = 32;
    }
    switch (shift) {
      case ASR: {
        if (shift_amount == 0) {
          if (result < 0) {
            result = 0xffffffff;
            *carry_out = true;
          } else {
            result = 0;
            *carry_out = false;
          }
        } else {
          result >>= (shift_amount - 1);
          *carry_out = (result & 1) == 1;
          result >>= 1;
        }
        break;
      }

      case LSL: {
        if (shift_amount == 0) {
          *carry_out = c_flag_;
        } else {
          result <<= (shift_amount - 1);
          *carry_out = (result < 0);
          result <<= 1;
        }
        break;
      }

      case LSR: {
        if (shift_amount == 0) {
          result = 0;
          *carry_out = c_flag_;
        } else {
          uint32_t uresult = static_cast<uint32_t>(result);
          uresult >>= (shift_amount - 1);
          *carry_out = (uresult & 1) == 1;
          uresult >>= 1;
          result = static_cast<int32_t>(uresult);
        }
        break;
      }

      case ROR: {
        UNIMPLEMENTED();
        break;
      }

      default: {
        UNREACHABLE();
        break;
      }
    }
  } else {
    // by register
    int rs = instr->RsValue();
    shift_amount = get_register(rs) &0xff;
    switch (shift) {
      case ASR: {
        if (shift_amount == 0) {
          *carry_out = c_flag_;
        } else if (shift_amount < 32) {
          result >>= (shift_amount - 1);
          *carry_out = (result & 1) == 1;
          result >>= 1;
        } else {
          ASSERT(shift_amount >= 32);
          if (result < 0) {
            *carry_out = true;
            result = 0xffffffff;
          } else {
            *carry_out = false;
            result = 0;
          }
        }
        break;
      }

      case LSL: {
        if (shift_amount == 0) {
          *carry_out = c_flag_;
        } else if (shift_amount < 32) {
          result <<= (shift_amount - 1);
          *carry_out = (result < 0);
          result <<= 1;
        } else if (shift_amount == 32) {
          *carry_out = (result & 1) == 1;
          result = 0;
        } else {
          ASSERT(shift_amount > 32);
          *carry_out = false;
          result = 0;
        }
        break;
      }

      case LSR: {
        if (shift_amount == 0) {
          *carry_out = c_flag_;
        } else if (shift_amount < 32) {
          uint32_t uresult = static_cast<uint32_t>(result);
          uresult >>= (shift_amount - 1);
          *carry_out = (uresult & 1) == 1;
          uresult >>= 1;
          result = static_cast<int32_t>(uresult);
        } else if (shift_amount == 32) {
          *carry_out = (result < 0);
          result = 0;
        } else {
          *carry_out = false;
          result = 0;
        }
        break;
      }

      case ROR: {
        UNIMPLEMENTED();
        break;
      }

      default: {
        UNREACHABLE();
        break;
      }
    }
  }
  return result;
}


// Addressing Mode 1 - Data-processing operands:
// Get the value based on the shifter_operand with immediate.
int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) {
  int rotate = instr->RotateValue() * 2;
  int immed8 = instr->Immed8Value();
  int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
  *carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
  return imm;
}


static int count_bits(int bit_vector) {
  int count = 0;
  while (bit_vector != 0) {
    if ((bit_vector & 1) != 0) {
      count++;
    }
    bit_vector >>= 1;
  }
  return count;
}


void Simulator::ProcessPUW(Instruction* instr,
                           int num_regs,
                           int reg_size,
                           intptr_t* start_address,
                           intptr_t* end_address) {
  int rn = instr->RnValue();
  int32_t rn_val = get_register(rn);
  switch (instr->PUField()) {
    case da_x: {
      UNIMPLEMENTED();
      break;
    }
    case ia_x: {
      *start_address = rn_val;
      *end_address = rn_val + (num_regs * reg_size) - reg_size;
      rn_val = rn_val + (num_regs * reg_size);
      break;
    }
    case db_x: {
      *start_address = rn_val - (num_regs * reg_size);
      *end_address = rn_val - reg_size;
      rn_val = *start_address;
      break;
    }
    case ib_x: {
      *start_address = rn_val + reg_size;
      *end_address = rn_val + (num_regs * reg_size);
      rn_val = *end_address;
      break;
    }
    default: {
      UNREACHABLE();
      break;
    }
  }
  if (instr->HasW()) {
    set_register(rn, rn_val);
  }
}

// Addressing Mode 4 - Load and Store Multiple
void Simulator::HandleRList(Instruction* instr, bool load) {
  int rlist = instr->RlistValue();
  int num_regs = count_bits(rlist);

  intptr_t start_address = 0;
  intptr_t end_address = 0;
  ProcessPUW(instr, num_regs, kPointerSize, &start_address, &end_address);

  intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
  // Catch null pointers a little earlier.
  ASSERT(start_address > 8191 || start_address < 0);
  int reg = 0;
  while (rlist != 0) {
    if ((rlist & 1) != 0) {
      if (load) {
        set_register(reg, *address);
      } else {
        *address = get_register(reg);
      }
      address += 1;
    }
    reg++;
    rlist >>= 1;
  }
  ASSERT(end_address == ((intptr_t)address) - 4);
}


// Addressing Mode 6 - Load and Store Multiple Coprocessor registers.
void Simulator::HandleVList(Instruction* instr) {
  VFPRegPrecision precision =
      (instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision;
  int operand_size = (precision == kSinglePrecision) ? 4 : 8;

  bool load = (instr->VLValue() == 0x1);

  int vd;
  int num_regs;
  vd = instr->VFPDRegValue(precision);
  if (precision == kSinglePrecision) {
    num_regs = instr->Immed8Value();
  } else {
    num_regs = instr->Immed8Value() / 2;
  }

  intptr_t start_address = 0;
  intptr_t end_address = 0;
  ProcessPUW(instr, num_regs, operand_size, &start_address, &end_address);

  intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
  for (int reg = vd; reg < vd + num_regs; reg++) {
    if (precision == kSinglePrecision) {
      if (load) {
        set_s_register_from_sinteger(
            reg, ReadW(reinterpret_cast<int32_t>(address), instr));
      } else {
        WriteW(reinterpret_cast<int32_t>(address),
               get_sinteger_from_s_register(reg), instr);
      }
      address += 1;
    } else {
      if (load) {
        set_s_register_from_sinteger(
            2 * reg, ReadW(reinterpret_cast<int32_t>(address), instr));
        set_s_register_from_sinteger(
            2 * reg + 1, ReadW(reinterpret_cast<int32_t>(address + 1), instr));
      } else {
        WriteW(reinterpret_cast<int32_t>(address),
               get_sinteger_from_s_register(2 * reg), instr);
        WriteW(reinterpret_cast<int32_t>(address + 1),
               get_sinteger_from_s_register(2 * reg + 1), instr);
      }
      address += 2;
    }
  }
  ASSERT(reinterpret_cast<intptr_t>(address) - operand_size == end_address);
}


// Calls into the V8 runtime are based on this very simple interface.
// Note: To be able to return two values from some calls the code in runtime.cc
// uses the ObjectPair which is essentially two 32-bit values stuffed into a
// 64-bit value. With the code below we assume that all runtime calls return
// 64 bits of result. If they don't, the r1 result register contains a bogus
// value, which is fine because it is caller-saved.
typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0,
                                        int32_t arg1,
                                        int32_t arg2,
                                        int32_t arg3,
                                        int32_t arg4,
                                        int32_t arg5);
typedef double (*SimulatorRuntimeFPCall)(int32_t arg0,
                                         int32_t arg1,
                                         int32_t arg2,
                                         int32_t arg3);

// This signature supports direct call in to API function native callback
// (refer to InvocationCallback in v8.h).
typedef v8::Handle<v8::Value> (*SimulatorRuntimeDirectApiCall)(int32_t arg0);

// This signature supports direct call to accessor getter callback.
typedef v8::Handle<v8::Value> (*SimulatorRuntimeDirectGetterCall)(int32_t arg0,
                                                                  int32_t arg1);

// Software interrupt instructions are used by the simulator to call into the
// C-based V8 runtime.
void Simulator::SoftwareInterrupt(Instruction* instr) {
  int svc = instr->SvcValue();
  switch (svc) {
    case kCallRtRedirected: {
      // Check if stack is aligned. Error if not aligned is reported below to
      // include information on the function called.
      bool stack_aligned =
          (get_register(sp)
           & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0;
      Redirection* redirection = Redirection::FromSwiInstruction(instr);
      int32_t arg0 = get_register(r0);
      int32_t arg1 = get_register(r1);
      int32_t arg2 = get_register(r2);
      int32_t arg3 = get_register(r3);
      int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
      int32_t arg4 = stack_pointer[0];
      int32_t arg5 = stack_pointer[1];
      bool fp_call =
         (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
         (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
         (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
         (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
      if (use_eabi_hardfloat()) {
        // With the hard floating point calling convention, double
        // arguments are passed in VFP registers. Fetch the arguments
        // from there and call the builtin using soft floating point
        // convention.
        switch (redirection->type()) {
        case ExternalReference::BUILTIN_FP_FP_CALL:
        case ExternalReference::BUILTIN_COMPARE_CALL:
          arg0 = vfp_register[0];
          arg1 = vfp_register[1];
          arg2 = vfp_register[2];
          arg3 = vfp_register[3];
          break;
        case ExternalReference::BUILTIN_FP_CALL:
          arg0 = vfp_register[0];
          arg1 = vfp_register[1];
          break;
        case ExternalReference::BUILTIN_FP_INT_CALL:
          arg0 = vfp_register[0];
          arg1 = vfp_register[1];
          arg2 = get_register(0);
          break;
        default:
          break;
        }
      }
      // This is dodgy but it works because the C entry stubs are never moved.
      // See comment in codegen-arm.cc and bug 1242173.
      int32_t saved_lr = get_register(lr);
      intptr_t external =
          reinterpret_cast<intptr_t>(redirection->external_function());
      if (fp_call) {
        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
          SimulatorRuntimeFPCall target =
              reinterpret_cast<SimulatorRuntimeFPCall>(external);
          double dval0, dval1;
          int32_t ival;
          switch (redirection->type()) {
          case ExternalReference::BUILTIN_FP_FP_CALL:
          case ExternalReference::BUILTIN_COMPARE_CALL:
            GetFpArgs(&dval0, &dval1);
            PrintF("Call to host function at %p with args %f, %f",
                FUNCTION_ADDR(target), dval0, dval1);
            break;
          case ExternalReference::BUILTIN_FP_CALL:
            GetFpArgs(&dval0);
            PrintF("Call to host function at %p with arg %f",
                FUNCTION_ADDR(target), dval0);
            break;
          case ExternalReference::BUILTIN_FP_INT_CALL:
            GetFpArgs(&dval0, &ival);
            PrintF("Call to host function at %p with args %f, %d",
                FUNCTION_ADDR(target), dval0, ival);
            break;
          default:
            UNREACHABLE();
            break;
          }
          if (!stack_aligned) {
            PrintF(" with unaligned stack %08x\n", get_register(sp));
          }
          PrintF("\n");
        }
        CHECK(stack_aligned);
        if (redirection->type() != ExternalReference::BUILTIN_COMPARE_CALL) {
          SimulatorRuntimeFPCall target =
              reinterpret_cast<SimulatorRuntimeFPCall>(external);
          double result = target(arg0, arg1, arg2, arg3);
          SetFpResult(result);
        } else {
          SimulatorRuntimeCall target =
              reinterpret_cast<SimulatorRuntimeCall>(external);
          int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
          int32_t lo_res = static_cast<int32_t>(result);
          int32_t hi_res = static_cast<int32_t>(result >> 32);
          if (::v8::internal::FLAG_trace_sim) {
            PrintF("Returned %08x\n", lo_res);
          }
          set_register(r0, lo_res);
          set_register(r1, hi_res);
        }
      } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
        SimulatorRuntimeDirectApiCall target =
            reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
          PrintF("Call to host function at %p args %08x",
              FUNCTION_ADDR(target), arg0);
          if (!stack_aligned) {
            PrintF(" with unaligned stack %08x\n", get_register(sp));
          }
          PrintF("\n");
        }
        CHECK(stack_aligned);
        v8::Handle<v8::Value> result = target(arg0);
        if (::v8::internal::FLAG_trace_sim) {
          PrintF("Returned %p\n", reinterpret_cast<void *>(*result));
        }
        set_register(r0, (int32_t) *result);
      } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
        SimulatorRuntimeDirectGetterCall target =
            reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
          PrintF("Call to host function at %p args %08x %08x",
              FUNCTION_ADDR(target), arg0, arg1);
          if (!stack_aligned) {
            PrintF(" with unaligned stack %08x\n", get_register(sp));
          }
          PrintF("\n");
        }
        CHECK(stack_aligned);
        v8::Handle<v8::Value> result = target(arg0, arg1);
        if (::v8::internal::FLAG_trace_sim) {
          PrintF("Returned %p\n", reinterpret_cast<void *>(*result));
        }
        set_register(r0, (int32_t) *result);
      } else {
        // builtin call.
        ASSERT(redirection->type() == ExternalReference::BUILTIN_CALL);
        SimulatorRuntimeCall target =
            reinterpret_cast<SimulatorRuntimeCall>(external);
        if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
          PrintF(
              "Call to host function at %p"
              "args %08x, %08x, %08x, %08x, %08x, %08x",
              FUNCTION_ADDR(target),
              arg0,
              arg1,
              arg2,
              arg3,
              arg4,
              arg5);
          if (!stack_aligned) {
            PrintF(" with unaligned stack %08x\n", get_register(sp));
          }
          PrintF("\n");
        }
        CHECK(stack_aligned);
        int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
        int32_t lo_res = static_cast<int32_t>(result);
        int32_t hi_res = static_cast<int32_t>(result >> 32);
        if (::v8::internal::FLAG_trace_sim) {
          PrintF("Returned %08x\n", lo_res);
        }
        set_register(r0, lo_res);
        set_register(r1, hi_res);
      }
      set_register(lr, saved_lr);
      set_pc(get_register(lr));
      break;
    }
    case kBreakpoint: {
      ArmDebugger dbg(this);
      dbg.Debug();
      break;
    }
    // stop uses all codes greater than 1 << 23.
    default: {
      if (svc >= (1 << 23)) {
        uint32_t code = svc & kStopCodeMask;
        if (isWatchedStop(code)) {
          IncreaseStopCounter(code);
        }
        // Stop if it is enabled, otherwise go on jumping over the stop
        // and the message address.
        if (isEnabledStop(code)) {
          ArmDebugger dbg(this);
          dbg.Stop(instr);
        } else {
          set_pc(get_pc() + 2 * Instruction::kInstrSize);
        }
      } else {
        // This is not a valid svc code.
        UNREACHABLE();
        break;
      }
    }
  }
}


// Stop helper functions.
bool Simulator::isStopInstruction(Instruction* instr) {
  return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
}


bool Simulator::isWatchedStop(uint32_t code) {
  ASSERT(code <= kMaxStopCode);
  return code < kNumOfWatchedStops;
}


bool Simulator::isEnabledStop(uint32_t code) {
  ASSERT(code <= kMaxStopCode);
  // Unwatched stops are always enabled.
  return !isWatchedStop(code) ||
    !(watched_stops[code].count & kStopDisabledBit);
}


void Simulator::EnableStop(uint32_t code) {
  ASSERT(isWatchedStop(code));
  if (!isEnabledStop(code)) {
    watched_stops[code].count &= ~kStopDisabledBit;
  }
}


void Simulator::DisableStop(uint32_t code) {
  ASSERT(isWatchedStop(code));
  if (isEnabledStop(code)) {
    watched_stops[code].count |= kStopDisabledBit;
  }
}


void Simulator::IncreaseStopCounter(uint32_t code) {
  ASSERT(code <= kMaxStopCode);
  ASSERT(isWatchedStop(code));
  if ((watched_stops[code].count & ~(1 << 31)) == 0x7fffffff) {
    PrintF("Stop counter for code %i has overflowed.\n"
           "Enabling this code and reseting the counter to 0.\n", code);
    watched_stops[code].count = 0;
    EnableStop(code);
  } else {
    watched_stops[code].count++;
  }
}


// Print a stop status.
void Simulator::PrintStopInfo(uint32_t code) {
  ASSERT(code <= kMaxStopCode);
  if (!isWatchedStop(code)) {
    PrintF("Stop not watched.");
  } else {
    const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
    int32_t count = watched_stops[code].count & ~kStopDisabledBit;
    // Don't print the state of unused breakpoints.
    if (count != 0) {
      if (watched_stops[code].desc) {
        PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n",
               code, code, state, count, watched_stops[code].desc);
      } else {
        PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n",
               code, code, state, count);
      }
    }
  }
}


// Handle execution based on instruction types.

// Instruction types 0 and 1 are both rolled into one function because they
// only differ in the handling of the shifter_operand.
void Simulator::DecodeType01(Instruction* instr) {
  int type = instr->TypeValue();
  if ((type == 0) && instr->IsSpecialType0()) {
    // multiply instruction or extra loads and stores
    if (instr->Bits(7, 4) == 9) {
      if (instr->Bit(24) == 0) {
        // Raw field decoding here. Multiply instructions have their Rd in
        // funny places.
        int rn = instr->RnValue();
        int rm = instr->RmValue();
        int rs = instr->RsValue();
        int32_t rs_val = get_register(rs);
        int32_t rm_val = get_register(rm);
        if (instr->Bit(23) == 0) {
          if (instr->Bit(21) == 0) {
            // The MUL instruction description (A 4.1.33) refers to Rd as being
            // the destination for the operation, but it confusingly uses the
            // Rn field to encode it.
            // Format(instr, "mul'cond's 'rn, 'rm, 'rs");
            int rd = rn;  // Remap the rn field to the Rd register.
            int32_t alu_out = rm_val * rs_val;
            set_register(rd, alu_out);
            if (instr->HasS()) {
              SetNZFlags(alu_out);
            }
          } else {
            // The MLA instruction description (A 4.1.28) refers to the order
            // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
            // Rn field to encode the Rd register and the Rd field to encode
            // the Rn register.
            Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
          }
        } else {
          // The signed/long multiply instructions use the terms RdHi and RdLo
          // when referring to the target registers. They are mapped to the Rn
          // and Rd fields as follows:
          // RdLo == Rd
          // RdHi == Rn (This is confusingly stored in variable rd here
          //             because the mul instruction from above uses the
          //             Rn field to encode the Rd register. Good luck figuring
          //             this out without reading the ARM instruction manual
          //             at a very detailed level.)
          // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm");
          int rd_hi = rn;  // Remap the rn field to the RdHi register.
          int rd_lo = instr->RdValue();
          int32_t hi_res = 0;
          int32_t lo_res = 0;
          if (instr->Bit(22) == 1) {
            int64_t left_op  = static_cast<int32_t>(rm_val);
            int64_t right_op = static_cast<int32_t>(rs_val);
            uint64_t result = left_op * right_op;
            hi_res = static_cast<int32_t>(result >> 32);
            lo_res = static_cast<int32_t>(result & 0xffffffff);
          } else {
            // unsigned multiply
            uint64_t left_op  = static_cast<uint32_t>(rm_val);
            uint64_t right_op = static_cast<uint32_t>(rs_val);
            uint64_t result = left_op * right_op;
            hi_res = static_cast<int32_t>(result >> 32);
            lo_res = static_cast<int32_t>(result & 0xffffffff);
          }
          set_register(rd_lo, lo_res);
          set_register(rd_hi, hi_res);
          if (instr->HasS()) {
            UNIMPLEMENTED();
          }
        }
      } else {
        UNIMPLEMENTED();  // Not used by V8.
      }
    } else {
      // extra load/store instructions
      int rd = instr->RdValue();
      int rn = instr->RnValue();
      int32_t rn_val = get_register(rn);
      int32_t addr = 0;
      if (instr->Bit(22) == 0) {
        int rm = instr->RmValue();
        int32_t rm_val = get_register(rm);
        switch (instr->PUField()) {
          case da_x: {
            // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
            ASSERT(!instr->HasW());
            addr = rn_val;
            rn_val -= rm_val;
            set_register(rn, rn_val);
            break;
          }
          case ia_x: {
            // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
            ASSERT(!instr->HasW());
            addr = rn_val;
            rn_val += rm_val;
            set_register(rn, rn_val);
            break;
          }
          case db_x: {
            // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
            rn_val -= rm_val;
            addr = rn_val;
            if (instr->HasW()) {
              set_register(rn, rn_val);
            }
            break;
          }
          case ib_x: {
            // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
            rn_val += rm_val;
            addr = rn_val;
            if (instr->HasW()) {
              set_register(rn, rn_val);
            }
            break;
          }
          default: {
            // The PU field is a 2-bit field.
            UNREACHABLE();
            break;
          }
        }
      } else {
        int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
        switch (instr->PUField()) {
          case da_x: {
            // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
            ASSERT(!instr->HasW());
            addr = rn_val;
            rn_val -= imm_val;
            set_register(rn, rn_val);
            break;
          }
          case ia_x: {
            // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
            ASSERT(!instr->HasW());
            addr = rn_val;
            rn_val += imm_val;
            set_register(rn, rn_val);
            break;
          }
          case db_x: {
            // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
            rn_val -= imm_val;
            addr = rn_val;
            if (instr->HasW()) {
              set_register(rn, rn_val);
            }
            break;
          }
          case ib_x: {
            // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
            rn_val += imm_val;
            addr = rn_val;
            if (instr->HasW()) {
              set_register(rn, rn_val);
            }
            break;
          }
          default: {
            // The PU field is a 2-bit field.
            UNREACHABLE();
            break;
          }
        }
      }
      if (((instr->Bits(7, 4) & 0xd) == 0xd) && (instr->Bit(20) == 0)) {
        ASSERT((rd % 2) == 0);
        if (instr->HasH()) {
          // The strd instruction.
          int32_t value1 = get_register(rd);
          int32_t value2 = get_register(rd+1);
          WriteDW(addr, value1, value2);
        } else {
          // The ldrd instruction.
          int* rn_data = ReadDW(addr);
          set_dw_register(rd, rn_data);
        }
      } else if (instr->HasH()) {
        if (instr->HasSign()) {
          if (instr->HasL()) {
            int16_t val = ReadH(addr, instr);
            set_register(rd, val);
          } else {
            int16_t val = get_register(rd);
            WriteH(addr, val, instr);
          }
        } else {
          if (instr->HasL()) {
            uint16_t val = ReadHU(addr, instr);
            set_register(rd, val);
          } else {
            uint16_t val = get_register(rd);
            WriteH(addr, val, instr);
          }
        }
      } else {
        // signed byte loads
        ASSERT(instr->HasSign());
        ASSERT(instr->HasL());
        int8_t val = ReadB(addr);
        set_register(rd, val);
      }
      return;
    }
  } else if ((type == 0) && instr->IsMiscType0()) {
    if (instr->Bits(22, 21) == 1) {
      int rm = instr->RmValue();
      switch (instr->BitField(7, 4)) {
        case BX:
          set_pc(get_register(rm));
          break;
        case BLX: {
          uint32_t old_pc = get_pc();
          set_pc(get_register(rm));
          set_register(lr, old_pc + Instruction::kInstrSize);
          break;
        }
        case BKPT: {
          ArmDebugger dbg(this);
          PrintF("Simulator hit BKPT.\n");
          dbg.Debug();
          break;
        }
        default:
          UNIMPLEMENTED();
      }
    } else if (instr->Bits(22, 21) == 3) {
      int rm = instr->RmValue();
      int rd = instr->RdValue();
      switch (instr->BitField(7, 4)) {
        case CLZ: {
          uint32_t bits = get_register(rm);
          int leading_zeros = 0;
          if (bits == 0) {
            leading_zeros = 32;
          } else {
            while ((bits & 0x80000000u) == 0) {
              bits <<= 1;
              leading_zeros++;
            }
          }
          set_register(rd, leading_zeros);
          break;
        }
        default:
          UNIMPLEMENTED();
      }
    } else {
      PrintF("%08x\n", instr->InstructionBits());
      UNIMPLEMENTED();
    }
  } else {
    int rd = instr->RdValue();
    int rn = instr->RnValue();
    int32_t rn_val = get_register(rn);
    int32_t shifter_operand = 0;
    bool shifter_carry_out = 0;
    if (type == 0) {
      shifter_operand = GetShiftRm(instr, &shifter_carry_out);
    } else {
      ASSERT(instr->TypeValue() == 1);
      shifter_operand = GetImm(instr, &shifter_carry_out);
    }
    int32_t alu_out;

    switch (instr->OpcodeField()) {
      case AND: {
        // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm");
        // Format(instr, "and'cond's 'rd, 'rn, 'imm");
        alu_out = rn_val & shifter_operand;
        set_register(rd, alu_out);
        if (instr->HasS()) {
          SetNZFlags(alu_out);
          SetCFlag(shifter_carry_out);
        }
        break;
      }

      case EOR: {
        // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm");
        // Format(instr, "eor'cond's 'rd, 'rn, 'imm");
        alu_out = rn_val ^ shifter_operand;
        set_register(rd, alu_out);
        if (instr->HasS()) {
          SetNZFlags(alu_out);
          SetCFlag(shifter_carry_out);
        }
        break;
      }

      case SUB: {
        // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm");
        // Format(instr, "sub'cond's 'rd, 'rn, 'imm");
        alu_out = rn_val - shifter_operand;
        set_register(rd, alu_out);
        if (instr->HasS()) {
          SetNZFlags(alu_out);
          SetCFlag(!BorrowFrom(rn_val, shifter_operand));
          SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
        }
        break;
      }

      case RSB: {
        // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm");
        // Format(instr, "rsb'cond's 'rd, 'rn, 'imm");
        alu_out = shifter_operand - rn_val;
        set_register(rd, alu_out);
        if (instr->HasS()) {
          SetNZFlags(alu_out);
          SetCFlag(!BorrowFrom(shifter_operand, rn_val));
          SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false));
        }
        break;
      }

      case ADD: {
        // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm");
        // Format(instr, "add'cond's 'rd, 'rn, 'imm");
        alu_out = rn_val + shifter_operand;
        set_register(rd, alu_out);
        if (instr->HasS()) {
          SetNZFlags(alu_out);
          SetCFlag(CarryFrom(rn_val, shifter_operand));
          SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
        }
        break;
      }

      case ADC: {
        // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm");
        // Format(instr, "adc'cond's 'rd, 'rn, 'imm");
        alu_out = rn_val + shifter_operand + GetCarry();
        set_register(rd, alu_out);
        if (instr->HasS()) {
          SetNZFlags(alu_out);
          SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry()));
          SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
        }
        break;
      }

      case SBC: {
        Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm");
        Format(instr, "sbc'cond's 'rd, 'rn, 'imm");
        break;
      }

      case RSC: {
        Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm");
        Format(instr, "rsc'cond's 'rd, 'rn, 'imm");
        break;
      }

      case TST: {
        if (instr->HasS()) {
          // Format(instr, "tst'cond 'rn, 'shift_rm");
          // Format(instr, "tst'cond 'rn, 'imm");
          alu_out = rn_val & shifter_operand;
          SetNZFlags(alu_out);
          SetCFlag(shifter_carry_out);
        } else {
          // Format(instr, "movw'cond 'rd, 'imm").
          alu_out = instr->ImmedMovwMovtValue();
          set_register(rd, alu_out);
        }
        break;
      }

      case TEQ: {
        if (instr->HasS()) {
          // Format(instr, "teq'cond 'rn, 'shift_rm");
          // Format(instr, "teq'cond 'rn, 'imm");
          alu_out = rn_val ^ shifter_operand;
          SetNZFlags(alu_out);
          SetCFlag(shifter_carry_out);
        } else {
          // Other instructions matching this pattern are handled in the
          // miscellaneous instructions part above.
          UNREACHABLE();
        }
        break;
      }

      case CMP: {
        if (instr->HasS()) {
          // Format(instr, "cmp'cond 'rn, 'shift_rm");
          // Format(instr, "cmp'cond 'rn, 'imm");
          alu_out = rn_val - shifter_operand;
          SetNZFlags(alu_out);
          SetCFlag(!BorrowFrom(rn_val, shifter_operand));
          SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
        } else {
          // Format(instr, "movt'cond 'rd, 'imm").
          alu_out = (get_register(rd) & 0xffff) |
              (instr->ImmedMovwMovtValue() << 16);
          set_register(rd, alu_out);
        }
        break;
      }

      case CMN: {
        if (instr->HasS()) {
          // Format(instr, "cmn'cond 'rn, 'shift_rm");
          // Format(instr, "cmn'cond 'rn, 'imm");
          alu_out = rn_val + shifter_operand;
          SetNZFlags(alu_out);
          SetCFlag(!CarryFrom(rn_val, shifter_operand));
          SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
        } else {
          // Other instructions matching this pattern are handled in the
          // miscellaneous instructions part above.
          UNREACHABLE();
        }
        break;
      }

      case ORR: {
        // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm");
        // Format(instr, "orr'cond's 'rd, 'rn, 'imm");
        alu_out = rn_val | shifter_operand;
        set_register(rd, alu_out);
        if (instr->HasS()) {
          SetNZFlags(alu_out);
          SetCFlag(shifter_carry_out);
        }
        break;
      }

      case MOV: {
        // Format(instr, "mov'cond's 'rd, 'shift_rm");
        // Format(instr, "mov'cond's 'rd, 'imm");
        alu_out = shifter_operand;
        set_register(rd, alu_out);
        if (instr->HasS()) {
          SetNZFlags(alu_out);
          SetCFlag(shifter_carry_out);
        }
        break;
      }

      case BIC: {
        // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm");
        // Format(instr, "bic'cond's 'rd, 'rn, 'imm");
        alu_out = rn_val & ~shifter_operand;
        set_register(rd, alu_out);
        if (instr->HasS()) {
          SetNZFlags(alu_out);
          SetCFlag(shifter_carry_out);
        }
        break;
      }

      case MVN: {
        // Format(instr, "mvn'cond's 'rd, 'shift_rm");
        // Format(instr, "mvn'cond's 'rd, 'imm");
        alu_out = ~shifter_operand;
        set_register(rd, alu_out);
        if (instr->HasS()) {
          SetNZFlags(alu_out);
          SetCFlag(shifter_carry_out);
        }
        break;
      }

      default: {
        UNREACHABLE();
        break;
      }
    }
  }
}


void Simulator::DecodeType2(Instruction* instr) {
  int rd = instr->RdValue();
  int rn = instr->RnValue();
  int32_t rn_val = get_register(rn);
  int32_t im_val = instr->Offset12Value();
  int32_t addr = 0;
  switch (instr->PUField()) {
    case da_x: {
      // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
      ASSERT(!instr->HasW());
      addr = rn_val;
      rn_val -= im_val;
      set_register(rn, rn_val);
      break;
    }
    case ia_x: {
      // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
      ASSERT(!instr->HasW());
      addr = rn_val;
      rn_val += im_val;
      set_register(rn, rn_val);
      break;
    }
    case db_x: {
      // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
      rn_val -= im_val;
      addr = rn_val;
      if (instr->HasW()) {
        set_register(rn, rn_val);
      }
      break;
    }
    case ib_x: {
      // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
      rn_val += im_val;
      addr = rn_val;
      if (instr->HasW()) {
        set_register(rn, rn_val);
      }
      break;
    }
    default: {
      UNREACHABLE();
      break;
    }
  }
  if (instr->HasB()) {
    if (instr->HasL()) {
      byte val = ReadBU(addr);
      set_register(rd, val);
    } else {
      byte val = get_register(rd);
      WriteB(addr, val);
    }
  } else {
    if (instr->HasL()) {
      set_register(rd, ReadW(addr, instr));
    } else {
      WriteW(addr, get_register(rd), instr);
    }
  }
}


void Simulator::DecodeType3(Instruction* instr) {
  int rd = instr->RdValue();
  int rn = instr->RnValue();
  int32_t rn_val = get_register(rn);
  bool shifter_carry_out = 0;
  int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out);
  int32_t addr = 0;
  switch (instr->PUField()) {
    case da_x: {
      ASSERT(!instr->HasW());
      Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
      UNIMPLEMENTED();
      break;
    }
    case ia_x: {
      if (instr->HasW()) {
        ASSERT(instr->Bits(5, 4) == 0x1);

        if (instr->Bit(22) == 0x1) {  // USAT.
          int32_t sat_pos = instr->Bits(20, 16);
          int32_t sat_val = (1 << sat_pos) - 1;
          int32_t shift = instr->Bits(11, 7);
          int32_t shift_type = instr->Bit(6);
          int32_t rm_val = get_register(instr->RmValue());
          if (shift_type == 0) {  // LSL
            rm_val <<= shift;
          } else {  // ASR
            rm_val >>= shift;
          }
          // If saturation occurs, the Q flag should be set in the CPSR.
          // There is no Q flag yet, and no instruction (MRS) to read the
          // CPSR directly.
          if (rm_val > sat_val) {
            rm_val = sat_val;
          } else if (rm_val < 0) {
            rm_val = 0;
          }
          set_register(rd, rm_val);
        } else {  // SSAT.
          UNIMPLEMENTED();
        }
        return;
      } else {
        Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
        UNIMPLEMENTED();
      }
      break;
    }
    case db_x: {
      // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
      addr = rn_val - shifter_operand;
      if (instr->HasW()) {
        set_register(rn, addr);
      }
      break;
    }
    case ib_x: {
      if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
        uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
        uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
        uint32_t msbit = widthminus1 + lsbit;
        if (msbit <= 31) {
          if (instr->Bit(22)) {
            // ubfx - unsigned bitfield extract.
            uint32_t rm_val =
                static_cast<uint32_t>(get_register(instr->RmValue()));
            uint32_t extr_val = rm_val << (31 - msbit);
            extr_val = extr_val >> (31 - widthminus1);
            set_register(instr->RdValue(), extr_val);
          } else {
            // sbfx - signed bitfield extract.
            int32_t rm_val = get_register(instr->RmValue());
            int32_t extr_val = rm_val << (31 - msbit);
            extr_val = extr_val >> (31 - widthminus1);
            set_register(instr->RdValue(), extr_val);
          }
        } else {
          UNREACHABLE();
        }
        return;
      } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
        uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
        uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
        if (msbit >= lsbit) {
          // bfc or bfi - bitfield clear/insert.
          uint32_t rd_val =
              static_cast<uint32_t>(get_register(instr->RdValue()));
          uint32_t bitcount = msbit - lsbit + 1;
          uint32_t mask = (1 << bitcount) - 1;
          rd_val &= ~(mask << lsbit);
          if (instr->RmValue() != 15) {
            // bfi - bitfield insert.
            uint32_t rm_val =
                static_cast<uint32_t>(get_register(instr->RmValue()));
            rm_val &= mask;
            rd_val |= rm_val << lsbit;
          }
          set_register(instr->RdValue(), rd_val);
        } else {
          UNREACHABLE();
        }
        return;
      } else {
        // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
        addr = rn_val + shifter_operand;
        if (instr->HasW()) {
          set_register(rn, addr);
        }
      }
      break;
    }
    default: {
      UNREACHABLE();
      break;
    }
  }
  if (instr->HasB()) {
    if (instr->HasL()) {
      uint8_t byte = ReadB(addr);
      set_register(rd, byte);
    } else {
      uint8_t byte = get_register(rd);
      WriteB(addr, byte);
    }
  } else {
    if (instr->HasL()) {
      set_register(rd, ReadW(addr, instr));
    } else {
      WriteW(addr, get_register(rd), instr);
    }
  }
}


void Simulator::DecodeType4(Instruction* instr) {
  ASSERT(instr->Bit(22) == 0);  // only allowed to be set in privileged mode
  if (instr->HasL()) {
    // Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
    HandleRList(instr, true);
  } else {
    // Format(instr, "stm'cond'pu 'rn'w, 'rlist");
    HandleRList(instr, false);
  }
}


void Simulator::DecodeType5(Instruction* instr) {
  // Format(instr, "b'l'cond 'target");
  int off = (instr->SImmed24Value() << 2);
  intptr_t pc_address = get_pc();
  if (instr->HasLink()) {
    set_register(lr, pc_address + Instruction::kInstrSize);
  }
  int pc_reg = get_register(pc);
  set_pc(pc_reg + off);
}


void Simulator::DecodeType6(Instruction* instr) {
  DecodeType6CoprocessorIns(instr);
}


void Simulator::DecodeType7(Instruction* instr) {
  if (instr->Bit(24) == 1) {
    SoftwareInterrupt(instr);
  } else {
    DecodeTypeVFP(instr);
  }
}


// void Simulator::DecodeTypeVFP(Instruction* instr)
// The Following ARMv7 VFPv instructions are currently supported.
// vmov :Sn = Rt
// vmov :Rt = Sn
// vcvt: Dd = Sm
// vcvt: Sd = Dm
// Dd = vabs(Dm)
// Dd = vneg(Dm)
// Dd = vadd(Dn, Dm)
// Dd = vsub(Dn, Dm)
// Dd = vmul(Dn, Dm)
// Dd = vdiv(Dn, Dm)
// vcmp(Dd, Dm)
// vmrs
// Dd = vsqrt(Dm)
void Simulator::DecodeTypeVFP(Instruction* instr) {
  ASSERT((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) );
  ASSERT(instr->Bits(11, 9) == 0x5);

  // Obtain double precision register codes.
  int vm = instr->VFPMRegValue(kDoublePrecision);
  int vd = instr->VFPDRegValue(kDoublePrecision);
  int vn = instr->VFPNRegValue(kDoublePrecision);

  if (instr->Bit(4) == 0) {
    if (instr->Opc1Value() == 0x7) {
      // Other data processing instructions
      if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
        // vmov register to register.
        if (instr->SzValue() == 0x1) {
          int m = instr->VFPMRegValue(kDoublePrecision);
          int d = instr->VFPDRegValue(kDoublePrecision);
          set_d_register_from_double(d, get_double_from_d_register(m));
        } else {
          int m = instr->VFPMRegValue(kSinglePrecision);
          int d = instr->VFPDRegValue(kSinglePrecision);
          set_s_register_from_float(d, get_float_from_s_register(m));
        }
      } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
        // vabs
        double dm_value = get_double_from_d_register(vm);
        double dd_value = fabs(dm_value);
        set_d_register_from_double(vd, dd_value);
      } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
        // vneg
        double dm_value = get_double_from_d_register(vm);
        double dd_value = -dm_value;
        set_d_register_from_double(vd, dd_value);
      } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
        DecodeVCVTBetweenDoubleAndSingle(instr);
      } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
        DecodeVCVTBetweenFloatingPointAndInteger(instr);
      } else if (((instr->Opc2Value() >> 1) == 0x6) &&
                 (instr->Opc3Value() & 0x1)) {
        DecodeVCVTBetweenFloatingPointAndInteger(instr);
      } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
                 (instr->Opc3Value() & 0x1)) {
        DecodeVCMP(instr);
      } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
        // vsqrt
        double dm_value = get_double_from_d_register(vm);
        double dd_value = sqrt(dm_value);
        set_d_register_from_double(vd, dd_value);
      } else if (instr->Opc3Value() == 0x0) {
        // vmov immediate.
        if (instr->SzValue() == 0x1) {
          set_d_register_from_double(vd, instr->DoubleImmedVmov());
        } else {
          UNREACHABLE();  // Not used by v8.
        }
      } else {
        UNREACHABLE();  // Not used by V8.
      }
    } else if (instr->Opc1Value() == 0x3) {
      if (instr->SzValue() != 0x1) {
        UNREACHABLE();  // Not used by V8.
      }

      if (instr->Opc3Value() & 0x1) {
        // vsub
        double dn_value = get_double_from_d_register(vn);
        double dm_value = get_double_from_d_register(vm);
        double dd_value = dn_value - dm_value;
        set_d_register_from_double(vd, dd_value);
      } else {
        // vadd
        double dn_value = get_double_from_d_register(vn);
        double dm_value = get_double_from_d_register(vm);
        double dd_value = dn_value + dm_value;
        set_d_register_from_double(vd, dd_value);
      }
    } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
      // vmul
      if (instr->SzValue() != 0x1) {
        UNREACHABLE();  // Not used by V8.
      }

      double dn_value = get_double_from_d_register(vn);
      double dm_value = get_double_from_d_register(vm);
      double dd_value = dn_value * dm_value;
      set_d_register_from_double(vd, dd_value);
    } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
      // vdiv
      if (instr->SzValue() != 0x1) {
        UNREACHABLE();  // Not used by V8.
      }

      double dn_value = get_double_from_d_register(vn);
      double dm_value = get_double_from_d_register(vm);
      double dd_value = dn_value / dm_value;
      div_zero_vfp_flag_ = (dm_value == 0);
      set_d_register_from_double(vd, dd_value);
    } else {
      UNIMPLEMENTED();  // Not used by V8.
    }
  } else {
    if ((instr->VCValue() == 0x0) &&
        (instr->VAValue() == 0x0)) {
      DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
    } else if ((instr->VLValue() == 0x1) &&
               (instr->VCValue() == 0x0) &&
               (instr->VAValue() == 0x7) &&
               (instr->Bits(19, 16) == 0x1)) {
      // vmrs
      uint32_t rt = instr->RtValue();
      if (rt == 0xF) {
        Copy_FPSCR_to_APSR();
      } else {
        // Emulate FPSCR from the Simulator flags.
        uint32_t fpscr = (n_flag_FPSCR_ << 31) |
                         (z_flag_FPSCR_ << 30) |
                         (c_flag_FPSCR_ << 29) |
                         (v_flag_FPSCR_ << 28) |
                         (inexact_vfp_flag_ << 4) |
                         (underflow_vfp_flag_ << 3) |
                         (overflow_vfp_flag_ << 2) |
                         (div_zero_vfp_flag_ << 1) |
                         (inv_op_vfp_flag_ << 0) |
                         (FPSCR_rounding_mode_);
        set_register(rt, fpscr);
      }
    } else if ((instr->VLValue() == 0x0) &&
               (instr->VCValue() == 0x0) &&
               (instr->VAValue() == 0x7) &&
               (instr->Bits(19, 16) == 0x1)) {
      // vmsr
      uint32_t rt = instr->RtValue();
      if (rt == pc) {
        UNREACHABLE();
      } else {
        uint32_t rt_value = get_register(rt);
        n_flag_FPSCR_ = (rt_value >> 31) & 1;
        z_flag_FPSCR_ = (rt_value >> 30) & 1;
        c_flag_FPSCR_ = (rt_value >> 29) & 1;
        v_flag_FPSCR_ = (rt_value >> 28) & 1;
        inexact_vfp_flag_ = (rt_value >> 4) & 1;
        underflow_vfp_flag_ = (rt_value >> 3) & 1;
        overflow_vfp_flag_ = (rt_value >> 2) & 1;
        div_zero_vfp_flag_ = (rt_value >> 1) & 1;
        inv_op_vfp_flag_ = (rt_value >> 0) & 1;
        FPSCR_rounding_mode_ =
            static_cast<VFPRoundingMode>((rt_value) & kVFPRoundingModeMask);
      }
    } else {
      UNIMPLEMENTED();  // Not used by V8.
    }
  }
}


void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
    Instruction* instr) {
  ASSERT((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
         (instr->VAValue() == 0x0));

  int t = instr->RtValue();
  int n = instr->VFPNRegValue(kSinglePrecision);
  bool to_arm_register = (instr->VLValue() == 0x1);

  if (to_arm_register) {
    int32_t int_value = get_sinteger_from_s_register(n);
    set_register(t, int_value);
  } else {
    int32_t rs_val = get_register(t);
    set_s_register_from_sinteger(n, rs_val);
  }
}


void Simulator::DecodeVCMP(Instruction* instr) {
  ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
  ASSERT(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
         (instr->Opc3Value() & 0x1));
  // Comparison.

  VFPRegPrecision precision = kSinglePrecision;
  if (instr->SzValue() == 1) {
    precision = kDoublePrecision;
  }

  int d = instr->VFPDRegValue(precision);
  int m = 0;
  if (instr->Opc2Value() == 0x4) {
    m = instr->VFPMRegValue(precision);
  }

  if (precision == kDoublePrecision) {
    double dd_value = get_double_from_d_register(d);
    double dm_value = 0.0;
    if (instr->Opc2Value() == 0x4) {
      dm_value = get_double_from_d_register(m);
    }

    // Raise exceptions for quiet NaNs if necessary.
    if (instr->Bit(7) == 1) {
      if (isnan(dd_value)) {
        inv_op_vfp_flag_ = true;
      }
    }

    Compute_FPSCR_Flags(dd_value, dm_value);
  } else {
    UNIMPLEMENTED();  // Not used by V8.
  }
}


void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
  ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
  ASSERT((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));

  VFPRegPrecision dst_precision = kDoublePrecision;
  VFPRegPrecision src_precision = kSinglePrecision;
  if (instr->SzValue() == 1) {
    dst_precision = kSinglePrecision;
    src_precision = kDoublePrecision;
  }

  int dst = instr->VFPDRegValue(dst_precision);
  int src = instr->VFPMRegValue(src_precision);

  if (dst_precision == kSinglePrecision) {
    double val = get_double_from_d_register(src);
    set_s_register_from_float(dst, static_cast<float>(val));
  } else {
    float val = get_float_from_s_register(src);
    set_d_register_from_double(dst, static_cast<double>(val));
  }
}

bool get_inv_op_vfp_flag(VFPRoundingMode mode,
                         double val,
                         bool unsigned_) {
  ASSERT((mode == RN) || (mode == RM) || (mode == RZ));
  double max_uint = static_cast<double>(0xffffffffu);
  double max_int = static_cast<double>(kMaxInt);
  double min_int = static_cast<double>(kMinInt);

  // Check for NaN.
  if (val != val) {
    return true;
  }

  // Check for overflow. This code works because 32bit integers can be
  // exactly represented by ieee-754 64bit floating-point values.
  switch (mode) {
    case RN:
      return  unsigned_ ? (val >= (max_uint + 0.5)) ||
                          (val < -0.5)
                        : (val >= (max_int + 0.5)) ||
                          (val < (min_int - 0.5));

    case RM:
      return  unsigned_ ? (val >= (max_uint + 1.0)) ||
                          (val < 0)
                        : (val >= (max_int + 1.0)) ||
                          (val < min_int);

    case RZ:
      return  unsigned_ ? (val >= (max_uint + 1.0)) ||
                          (val <= -1)
                        : (val >= (max_int + 1.0)) ||
                          (val <= (min_int - 1.0));
    default:
      UNREACHABLE();
      return true;
  }
}


// We call this function only if we had a vfp invalid exception.
// It returns the correct saturated value.
int VFPConversionSaturate(double val, bool unsigned_res) {
  if (val != val) {
    return 0;
  } else {
    if (unsigned_res) {
      return (val < 0) ? 0 : 0xffffffffu;
    } else {
      return (val < 0) ? kMinInt : kMaxInt;
    }
  }
}


void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
  ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) &&
         (instr->Bits(27, 23) == 0x1D));
  ASSERT(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
         (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));

  // Conversion between floating-point and integer.
  bool to_integer = (instr->Bit(18) == 1);

  VFPRegPrecision src_precision = (instr->SzValue() == 1) ? kDoublePrecision
                                                          : kSinglePrecision;

  if (to_integer) {
    // We are playing with code close to the C++ standard's limits below,
    // hence the very simple code and heavy checks.
    //
    // Note:
    // C++ defines default type casting from floating point to integer as
    // (close to) rounding toward zero ("fractional part discarded").

    int dst = instr->VFPDRegValue(kSinglePrecision);
    int src = instr->VFPMRegValue(src_precision);

    // Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding
    // mode or the default Round to Zero mode.
    VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_
                                                : RZ;
    ASSERT((mode == RM) || (mode == RZ) || (mode == RN));

    bool unsigned_integer = (instr->Bit(16) == 0);
    bool double_precision = (src_precision == kDoublePrecision);

    double val = double_precision ? get_double_from_d_register(src)
                                  : get_float_from_s_register(src);

    int temp = unsigned_integer ? static_cast<uint32_t>(val)
                                : static_cast<int32_t>(val);

    inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer);

    double abs_diff =
      unsigned_integer ? fabs(val - static_cast<uint32_t>(temp))
                       : fabs(val - temp);

    inexact_vfp_flag_ = (abs_diff != 0);

    if (inv_op_vfp_flag_) {
      temp = VFPConversionSaturate(val, unsigned_integer);
    } else {
      switch (mode) {
        case RN: {
          int val_sign = (val > 0) ? 1 : -1;
          if (abs_diff > 0.5) {
            temp += val_sign;
          } else if (abs_diff == 0.5) {
            // Round to even if exactly halfway.
            temp = ((temp % 2) == 0) ? temp : temp + val_sign;
          }
          break;
        }

        case RM:
          temp = temp > val ? temp - 1 : temp;
          break;

        case RZ:
          // Nothing to do.
          break;

        default:
          UNREACHABLE();
      }
    }

    // Update the destination register.
    set_s_register_from_sinteger(dst, temp);

  } else {
    bool unsigned_integer = (instr->Bit(7) == 0);

    int dst = instr->VFPDRegValue(src_precision);
    int src = instr->VFPMRegValue(kSinglePrecision);

    int val = get_sinteger_from_s_register(src);

    if (src_precision == kDoublePrecision) {
      if (unsigned_integer) {
        set_d_register_from_double(dst,
                                   static_cast<double>((uint32_t)val));
      } else {
        set_d_register_from_double(dst, static_cast<double>(val));
      }
    } else {
      if (unsigned_integer) {
        set_s_register_from_float(dst,
                                  static_cast<float>((uint32_t)val));
      } else {
        set_s_register_from_float(dst, static_cast<float>(val));
      }
    }
  }
}


// void Simulator::DecodeType6CoprocessorIns(Instruction* instr)
// Decode Type 6 coprocessor instructions.
// Dm = vmov(Rt, Rt2)
// <Rt, Rt2> = vmov(Dm)
// Ddst = MEM(Rbase + 4*offset).
// MEM(Rbase + 4*offset) = Dsrc.
void Simulator::DecodeType6CoprocessorIns(Instruction* instr) {
  ASSERT((instr->TypeValue() == 6));

  if (instr->CoprocessorValue() == 0xA) {
    switch (instr->OpcodeValue()) {
      case 0x8:
      case 0xA:
      case 0xC:
      case 0xE: {  // Load and store single precision float to memory.
        int rn = instr->RnValue();
        int vd = instr->VFPDRegValue(kSinglePrecision);
        int offset = instr->Immed8Value();
        if (!instr->HasU()) {
          offset = -offset;
        }

        int32_t address = get_register(rn) + 4 * offset;
        if (instr->HasL()) {
          // Load double from memory: vldr.
          set_s_register_from_sinteger(vd, ReadW(address, instr));
        } else {
          // Store double to memory: vstr.
          WriteW(address, get_sinteger_from_s_register(vd), instr);
        }
        break;
      }
      case 0x4:
      case 0x5:
      case 0x6:
      case 0x7:
      case 0x9:
      case 0xB:
        // Load/store multiple single from memory: vldm/vstm.
        HandleVList(instr);
        break;
      default:
        UNIMPLEMENTED();  // Not used by V8.
    }
  } else if (instr->CoprocessorValue() == 0xB) {
    switch (instr->OpcodeValue()) {
      case 0x2:
        // Load and store double to two GP registers
        if (instr->Bits(7, 4) != 0x1) {
          UNIMPLEMENTED();  // Not used by V8.
        } else {
          int rt = instr->RtValue();
          int rn = instr->RnValue();
          int vm = instr->VmValue();
          if (instr->HasL()) {
            int32_t rt_int_value = get_sinteger_from_s_register(2*vm);
            int32_t rn_int_value = get_sinteger_from_s_register(2*vm+1);

            set_register(rt, rt_int_value);
            set_register(rn, rn_int_value);
          } else {
            int32_t rs_val = get_register(rt);
            int32_t rn_val = get_register(rn);

            set_s_register_from_sinteger(2*vm, rs_val);
            set_s_register_from_sinteger((2*vm+1), rn_val);
          }
        }
        break;
      case 0x8:
      case 0xC: {  // Load and store double to memory.
        int rn = instr->RnValue();
        int vd = instr->VdValue();
        int offset = instr->Immed8Value();
        if (!instr->HasU()) {
          offset = -offset;
        }
        int32_t address = get_register(rn) + 4 * offset;
        if (instr->HasL()) {
          // Load double from memory: vldr.
          set_s_register_from_sinteger(2*vd, ReadW(address, instr));
          set_s_register_from_sinteger(2*vd + 1, ReadW(address + 4, instr));
        } else {
          // Store double to memory: vstr.
          WriteW(address, get_sinteger_from_s_register(2*vd), instr);
          WriteW(address + 4, get_sinteger_from_s_register(2*vd + 1), instr);
        }
        break;
      }
      case 0x4:
      case 0x5:
      case 0x9:
        // Load/store multiple double from memory: vldm/vstm.
        HandleVList(instr);
        break;
      default:
        UNIMPLEMENTED();  // Not used by V8.
    }
  } else {
    UNIMPLEMENTED();  // Not used by V8.
  }
}


// Executes the current instruction.
void Simulator::InstructionDecode(Instruction* instr) {
  if (v8::internal::FLAG_check_icache) {
    CheckICache(isolate_->simulator_i_cache(), instr);
  }
  pc_modified_ = false;
  if (::v8::internal::FLAG_trace_sim) {
    disasm::NameConverter converter;
    disasm::Disassembler dasm(converter);
    // use a reasonably large buffer
    v8::internal::EmbeddedVector<char, 256> buffer;
    dasm.InstructionDecode(buffer,
                           reinterpret_cast<byte*>(instr));
    PrintF("  0x%08x  %s\n", reinterpret_cast<intptr_t>(instr), buffer.start());
  }
  if (instr->ConditionField() == kSpecialCondition) {
    UNIMPLEMENTED();
  } else if (ConditionallyExecute(instr)) {
    switch (instr->TypeValue()) {
      case 0:
      case 1: {
        DecodeType01(instr);
        break;
      }
      case 2: {
        DecodeType2(instr);
        break;
      }
      case 3: {
        DecodeType3(instr);
        break;
      }
      case 4: {
        DecodeType4(instr);
        break;
      }
      case 5: {
        DecodeType5(instr);
        break;
      }
      case 6: {
        DecodeType6(instr);
        break;
      }
      case 7: {
        DecodeType7(instr);
        break;
      }
      default: {
        UNIMPLEMENTED();
        break;
      }
    }
  // If the instruction is a non taken conditional stop, we need to skip the
  // inlined message address.
  } else if (instr->IsStop()) {
    set_pc(get_pc() + 2 * Instruction::kInstrSize);
  }
  if (!pc_modified_) {
    set_register(pc, reinterpret_cast<int32_t>(instr)
                         + Instruction::kInstrSize);
  }
}


void Simulator::Execute() {
  // Get the PC to simulate. Cannot use the accessor here as we need the
  // raw PC value and not the one used as input to arithmetic instructions.
  int program_counter = get_pc();

  if (::v8::internal::FLAG_stop_sim_at == 0) {
    // Fast version of the dispatch loop without checking whether the simulator
    // should be stopping at a particular executed instruction.
    while (program_counter != end_sim_pc) {
      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
      icount_++;
      InstructionDecode(instr);
      program_counter = get_pc();
    }
  } else {
    // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
    // we reach the particular instuction count.
    while (program_counter != end_sim_pc) {
      Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
      icount_++;
      if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
        ArmDebugger dbg(this);
        dbg.Debug();
      } else {
        InstructionDecode(instr);
      }
      program_counter = get_pc();
    }
  }
}


int32_t Simulator::Call(byte* entry, int argument_count, ...) {
  va_list parameters;
  va_start(parameters, argument_count);
  // Set up arguments

  // First four arguments passed in registers.
  ASSERT(argument_count >= 4);
  set_register(r0, va_arg(parameters, int32_t));
  set_register(r1, va_arg(parameters, int32_t));
  set_register(r2, va_arg(parameters, int32_t));
  set_register(r3, va_arg(parameters, int32_t));

  // Remaining arguments passed on stack.
  int original_stack = get_register(sp);
  // Compute position of stack on entry to generated code.
  int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t));
  if (OS::ActivationFrameAlignment() != 0) {
    entry_stack &= -OS::ActivationFrameAlignment();
  }
  // Store remaining arguments on stack, from low to high memory.
  intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
  for (int i = 4; i < argument_count; i++) {
    stack_argument[i - 4] = va_arg(parameters, int32_t);
  }
  va_end(parameters);
  set_register(sp, entry_stack);

  // Prepare to execute the code at entry
  set_register(pc, reinterpret_cast<int32_t>(entry));
  // Put down marker for end of simulation. The simulator will stop simulation
  // when the PC reaches this value. By saving the "end simulation" value into
  // the LR the simulation stops when returning to this call point.
  set_register(lr, end_sim_pc);

  // Remember the values of callee-saved registers.
  // The code below assumes that r9 is not used as sb (static base) in
  // simulator code and therefore is regarded as a callee-saved register.
  int32_t r4_val = get_register(r4);
  int32_t r5_val = get_register(r5);
  int32_t r6_val = get_register(r6);
  int32_t r7_val = get_register(r7);
  int32_t r8_val = get_register(r8);
  int32_t r9_val = get_register(r9);
  int32_t r10_val = get_register(r10);
  int32_t r11_val = get_register(r11);

  // Set up the callee-saved registers with a known value. To be able to check
  // that they are preserved properly across JS execution.
  int32_t callee_saved_value = icount_;
  set_register(r4, callee_saved_value);
  set_register(r5, callee_saved_value);
  set_register(r6, callee_saved_value);
  set_register(r7, callee_saved_value);
  set_register(r8, callee_saved_value);
  set_register(r9, callee_saved_value);
  set_register(r10, callee_saved_value);
  set_register(r11, callee_saved_value);

  // Start the simulation
  Execute();

  // Check that the callee-saved registers have been preserved.
  CHECK_EQ(callee_saved_value, get_register(r4));
  CHECK_EQ(callee_saved_value, get_register(r5));
  CHECK_EQ(callee_saved_value, get_register(r6));
  CHECK_EQ(callee_saved_value, get_register(r7));
  CHECK_EQ(callee_saved_value, get_register(r8));
  CHECK_EQ(callee_saved_value, get_register(r9));
  CHECK_EQ(callee_saved_value, get_register(r10));
  CHECK_EQ(callee_saved_value, get_register(r11));

  // Restore callee-saved registers with the original value.
  set_register(r4, r4_val);
  set_register(r5, r5_val);
  set_register(r6, r6_val);
  set_register(r7, r7_val);
  set_register(r8, r8_val);
  set_register(r9, r9_val);
  set_register(r10, r10_val);
  set_register(r11, r11_val);

  // Pop stack passed arguments.
  CHECK_EQ(entry_stack, get_register(sp));
  set_register(sp, original_stack);

  int32_t result = get_register(r0);
  return result;
}


uintptr_t Simulator::PushAddress(uintptr_t address) {
  int new_sp = get_register(sp) - sizeof(uintptr_t);
  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
  *stack_slot = address;
  set_register(sp, new_sp);
  return new_sp;
}


uintptr_t Simulator::PopAddress() {
  int current_sp = get_register(sp);
  uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
  uintptr_t address = *stack_slot;
  set_register(sp, current_sp + sizeof(uintptr_t));
  return address;
}

} }  // namespace v8::internal

#endif  // USE_SIMULATOR

#endif  // V8_TARGET_ARCH_ARM

/* [<][>][^][v][top][bottom][index][help] */