root/src/x64/disasm-x64.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. Get
  2. Clear
  3. Init
  4. CopyTable
  5. SetTableRange
  6. AddJumpConditionalShort
  7. instruction_table_
  8. setRex
  9. rex
  10. rex_b
  11. base_reg
  12. rex_x
  13. rex_r
  14. rex_w
  15. operand_size
  16. operand_size_code
  17. NameOfCPURegister
  18. NameOfByteCPURegister
  19. NameOfXMMRegister
  20. NameOfAddress
  21. get_modrm
  22. get_sib
  23. UnimplementedInstruction
  24. AppendToBuffer
  25. PrintRightOperandHelper
  26. PrintImmediate
  27. PrintRightOperand
  28. PrintRightByteOperand
  29. PrintRightXMMOperand
  30. PrintOperands
  31. PrintImmediateOp
  32. F6F7Instruction
  33. ShiftInstruction
  34. JumpShort
  35. JumpConditional
  36. JumpConditionalShort
  37. SetCC
  38. FPUInstruction
  39. MemoryFPUInstruction
  40. RegisterFPUInstruction
  41. TwoByteOpcodeInstruction
  42. TwoByteMnemonic
  43. InstructionDecode
  44. NameOfAddress
  45. NameOfConstant
  46. NameOfCPURegister
  47. NameOfByteCPURegister
  48. NameOfXMMRegister
  49. NameInCode
  50. InstructionDecode
  51. ConstantPoolSizeAt

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <assert.h>
#include <stdio.h>
#include <stdarg.h>

#include "v8.h"

#if defined(V8_TARGET_ARCH_X64)

#include "disasm.h"
#include "lazy-instance.h"

namespace disasm {

enum OperandType {
  UNSET_OP_ORDER = 0,
  // Operand size decides between 16, 32 and 64 bit operands.
  REG_OPER_OP_ORDER = 1,  // Register destination, operand source.
  OPER_REG_OP_ORDER = 2,  // Operand destination, register source.
  // Fixed 8-bit operands.
  BYTE_SIZE_OPERAND_FLAG = 4,
  BYTE_REG_OPER_OP_ORDER = REG_OPER_OP_ORDER | BYTE_SIZE_OPERAND_FLAG,
  BYTE_OPER_REG_OP_ORDER = OPER_REG_OP_ORDER | BYTE_SIZE_OPERAND_FLAG
};

//------------------------------------------------------------------
// Tables
//------------------------------------------------------------------
struct ByteMnemonic {
  int b;  // -1 terminates, otherwise must be in range (0..255)
  OperandType op_order_;
  const char* mnem;
};


static const ByteMnemonic two_operands_instr[] = {
  { 0x00, BYTE_OPER_REG_OP_ORDER, "add" },
  { 0x01, OPER_REG_OP_ORDER,      "add" },
  { 0x02, BYTE_REG_OPER_OP_ORDER, "add" },
  { 0x03, REG_OPER_OP_ORDER,      "add" },
  { 0x08, BYTE_OPER_REG_OP_ORDER, "or" },
  { 0x09, OPER_REG_OP_ORDER,      "or" },
  { 0x0A, BYTE_REG_OPER_OP_ORDER, "or" },
  { 0x0B, REG_OPER_OP_ORDER,      "or" },
  { 0x10, BYTE_OPER_REG_OP_ORDER, "adc" },
  { 0x11, OPER_REG_OP_ORDER,      "adc" },
  { 0x12, BYTE_REG_OPER_OP_ORDER, "adc" },
  { 0x13, REG_OPER_OP_ORDER,      "adc" },
  { 0x18, BYTE_OPER_REG_OP_ORDER, "sbb" },
  { 0x19, OPER_REG_OP_ORDER,      "sbb" },
  { 0x1A, BYTE_REG_OPER_OP_ORDER, "sbb" },
  { 0x1B, REG_OPER_OP_ORDER,      "sbb" },
  { 0x20, BYTE_OPER_REG_OP_ORDER, "and" },
  { 0x21, OPER_REG_OP_ORDER,      "and" },
  { 0x22, BYTE_REG_OPER_OP_ORDER, "and" },
  { 0x23, REG_OPER_OP_ORDER,      "and" },
  { 0x28, BYTE_OPER_REG_OP_ORDER, "sub" },
  { 0x29, OPER_REG_OP_ORDER,      "sub" },
  { 0x2A, BYTE_REG_OPER_OP_ORDER, "sub" },
  { 0x2B, REG_OPER_OP_ORDER,      "sub" },
  { 0x30, BYTE_OPER_REG_OP_ORDER, "xor" },
  { 0x31, OPER_REG_OP_ORDER,      "xor" },
  { 0x32, BYTE_REG_OPER_OP_ORDER, "xor" },
  { 0x33, REG_OPER_OP_ORDER,      "xor" },
  { 0x38, BYTE_OPER_REG_OP_ORDER, "cmp" },
  { 0x39, OPER_REG_OP_ORDER,      "cmp" },
  { 0x3A, BYTE_REG_OPER_OP_ORDER, "cmp" },
  { 0x3B, REG_OPER_OP_ORDER,      "cmp" },
  { 0x63, REG_OPER_OP_ORDER,      "movsxlq" },
  { 0x84, BYTE_REG_OPER_OP_ORDER, "test" },
  { 0x85, REG_OPER_OP_ORDER,      "test" },
  { 0x86, BYTE_REG_OPER_OP_ORDER, "xchg" },
  { 0x87, REG_OPER_OP_ORDER,      "xchg" },
  { 0x88, BYTE_OPER_REG_OP_ORDER, "mov" },
  { 0x89, OPER_REG_OP_ORDER,      "mov" },
  { 0x8A, BYTE_REG_OPER_OP_ORDER, "mov" },
  { 0x8B, REG_OPER_OP_ORDER,      "mov" },
  { 0x8D, REG_OPER_OP_ORDER,      "lea" },
  { -1, UNSET_OP_ORDER, "" }
};


static const ByteMnemonic zero_operands_instr[] = {
  { 0xC3, UNSET_OP_ORDER, "ret" },
  { 0xC9, UNSET_OP_ORDER, "leave" },
  { 0xF4, UNSET_OP_ORDER, "hlt" },
  { 0xFC, UNSET_OP_ORDER, "cld" },
  { 0xCC, UNSET_OP_ORDER, "int3" },
  { 0x60, UNSET_OP_ORDER, "pushad" },
  { 0x61, UNSET_OP_ORDER, "popad" },
  { 0x9C, UNSET_OP_ORDER, "pushfd" },
  { 0x9D, UNSET_OP_ORDER, "popfd" },
  { 0x9E, UNSET_OP_ORDER, "sahf" },
  { 0x99, UNSET_OP_ORDER, "cdq" },
  { 0x9B, UNSET_OP_ORDER, "fwait" },
  { 0xA4, UNSET_OP_ORDER, "movs" },
  { 0xA5, UNSET_OP_ORDER, "movs" },
  { 0xA6, UNSET_OP_ORDER, "cmps" },
  { 0xA7, UNSET_OP_ORDER, "cmps" },
  { -1, UNSET_OP_ORDER, "" }
};


static const ByteMnemonic call_jump_instr[] = {
  { 0xE8, UNSET_OP_ORDER, "call" },
  { 0xE9, UNSET_OP_ORDER, "jmp" },
  { -1, UNSET_OP_ORDER, "" }
};


static const ByteMnemonic short_immediate_instr[] = {
  { 0x05, UNSET_OP_ORDER, "add" },
  { 0x0D, UNSET_OP_ORDER, "or" },
  { 0x15, UNSET_OP_ORDER, "adc" },
  { 0x1D, UNSET_OP_ORDER, "sbb" },
  { 0x25, UNSET_OP_ORDER, "and" },
  { 0x2D, UNSET_OP_ORDER, "sub" },
  { 0x35, UNSET_OP_ORDER, "xor" },
  { 0x3D, UNSET_OP_ORDER, "cmp" },
  { -1, UNSET_OP_ORDER, "" }
};


static const char* const conditional_code_suffix[] = {
  "o", "no", "c", "nc", "z", "nz", "na", "a",
  "s", "ns", "pe", "po", "l", "ge", "le", "g"
};


enum InstructionType {
  NO_INSTR,
  ZERO_OPERANDS_INSTR,
  TWO_OPERANDS_INSTR,
  JUMP_CONDITIONAL_SHORT_INSTR,
  REGISTER_INSTR,
  PUSHPOP_INSTR,  // Has implicit 64-bit operand size.
  MOVE_REG_INSTR,
  CALL_JUMP_INSTR,
  SHORT_IMMEDIATE_INSTR
};


enum Prefixes {
  ESCAPE_PREFIX = 0x0F,
  OPERAND_SIZE_OVERRIDE_PREFIX = 0x66,
  ADDRESS_SIZE_OVERRIDE_PREFIX = 0x67,
  REPNE_PREFIX = 0xF2,
  REP_PREFIX = 0xF3,
  REPEQ_PREFIX = REP_PREFIX
};


struct InstructionDesc {
  const char* mnem;
  InstructionType type;
  OperandType op_order_;
  bool byte_size_operation;  // Fixed 8-bit operation.
};


class InstructionTable {
 public:
  InstructionTable();
  const InstructionDesc& Get(byte x) const {
    return instructions_[x];
  }

 private:
  InstructionDesc instructions_[256];
  void Clear();
  void Init();
  void CopyTable(const ByteMnemonic bm[], InstructionType type);
  void SetTableRange(InstructionType type, byte start, byte end, bool byte_size,
                     const char* mnem);
  void AddJumpConditionalShort();
};


InstructionTable::InstructionTable() {
  Clear();
  Init();
}


void InstructionTable::Clear() {
  for (int i = 0; i < 256; i++) {
    instructions_[i].mnem = "(bad)";
    instructions_[i].type = NO_INSTR;
    instructions_[i].op_order_ = UNSET_OP_ORDER;
    instructions_[i].byte_size_operation = false;
  }
}


void InstructionTable::Init() {
  CopyTable(two_operands_instr, TWO_OPERANDS_INSTR);
  CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR);
  CopyTable(call_jump_instr, CALL_JUMP_INSTR);
  CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR);
  AddJumpConditionalShort();
  SetTableRange(PUSHPOP_INSTR, 0x50, 0x57, false, "push");
  SetTableRange(PUSHPOP_INSTR, 0x58, 0x5F, false, "pop");
  SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, false, "mov");
}


void InstructionTable::CopyTable(const ByteMnemonic bm[],
                                 InstructionType type) {
  for (int i = 0; bm[i].b >= 0; i++) {
    InstructionDesc* id = &instructions_[bm[i].b];
    id->mnem = bm[i].mnem;
    OperandType op_order = bm[i].op_order_;
    id->op_order_ =
        static_cast<OperandType>(op_order & ~BYTE_SIZE_OPERAND_FLAG);
    ASSERT_EQ(NO_INSTR, id->type);  // Information not already entered
    id->type = type;
    id->byte_size_operation = ((op_order & BYTE_SIZE_OPERAND_FLAG) != 0);
  }
}


void InstructionTable::SetTableRange(InstructionType type,
                                     byte start,
                                     byte end,
                                     bool byte_size,
                                     const char* mnem) {
  for (byte b = start; b <= end; b++) {
    InstructionDesc* id = &instructions_[b];
    ASSERT_EQ(NO_INSTR, id->type);  // Information not already entered
    id->mnem = mnem;
    id->type = type;
    id->byte_size_operation = byte_size;
  }
}


void InstructionTable::AddJumpConditionalShort() {
  for (byte b = 0x70; b <= 0x7F; b++) {
    InstructionDesc* id = &instructions_[b];
    ASSERT_EQ(NO_INSTR, id->type);  // Information not already entered
    id->mnem = NULL;  // Computed depending on condition code.
    id->type = JUMP_CONDITIONAL_SHORT_INSTR;
  }
}


static v8::internal::LazyInstance<InstructionTable>::type instruction_table =
    LAZY_INSTANCE_INITIALIZER;


static InstructionDesc cmov_instructions[16] = {
  {"cmovo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovno", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovnc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovnz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovna", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmova", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovs", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovns", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovpe", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovpo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovl", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovge", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovle", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
  {"cmovg", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}
};

//------------------------------------------------------------------------------
// DisassemblerX64 implementation.

enum UnimplementedOpcodeAction {
  CONTINUE_ON_UNIMPLEMENTED_OPCODE,
  ABORT_ON_UNIMPLEMENTED_OPCODE
};

// A new DisassemblerX64 object is created to disassemble each instruction.
// The object can only disassemble a single instruction.
class DisassemblerX64 {
 public:
  DisassemblerX64(const NameConverter& converter,
                  UnimplementedOpcodeAction unimplemented_action =
                      ABORT_ON_UNIMPLEMENTED_OPCODE)
      : converter_(converter),
        tmp_buffer_pos_(0),
        abort_on_unimplemented_(
            unimplemented_action == ABORT_ON_UNIMPLEMENTED_OPCODE),
        rex_(0),
        operand_size_(0),
        group_1_prefix_(0),
        byte_size_operand_(false),
        instruction_table_(instruction_table.Pointer()) {
    tmp_buffer_[0] = '\0';
  }

  virtual ~DisassemblerX64() {
  }

  // Writes one disassembled instruction into 'buffer' (0-terminated).
  // Returns the length of the disassembled machine instruction in bytes.
  int InstructionDecode(v8::internal::Vector<char> buffer, byte* instruction);

 private:
  enum OperandSize {
    BYTE_SIZE = 0,
    WORD_SIZE = 1,
    DOUBLEWORD_SIZE = 2,
    QUADWORD_SIZE = 3
  };

  const NameConverter& converter_;
  v8::internal::EmbeddedVector<char, 128> tmp_buffer_;
  unsigned int tmp_buffer_pos_;
  bool abort_on_unimplemented_;
  // Prefixes parsed
  byte rex_;
  byte operand_size_;  // 0x66 or (if no group 3 prefix is present) 0x0.
  byte group_1_prefix_;  // 0xF2, 0xF3, or (if no group 1 prefix is present) 0.
  // Byte size operand override.
  bool byte_size_operand_;
  const InstructionTable* const instruction_table_;

  void setRex(byte rex) {
    ASSERT_EQ(0x40, rex & 0xF0);
    rex_ = rex;
  }

  bool rex() { return rex_ != 0; }

  bool rex_b() { return (rex_ & 0x01) != 0; }

  // Actual number of base register given the low bits and the rex.b state.
  int base_reg(int low_bits) { return low_bits | ((rex_ & 0x01) << 3); }

  bool rex_x() { return (rex_ & 0x02) != 0; }

  bool rex_r() { return (rex_ & 0x04) != 0; }

  bool rex_w() { return (rex_ & 0x08) != 0; }

  OperandSize operand_size() {
    if (byte_size_operand_) return BYTE_SIZE;
    if (rex_w()) return QUADWORD_SIZE;
    if (operand_size_ != 0) return WORD_SIZE;
    return DOUBLEWORD_SIZE;
  }

  char operand_size_code() {
    return "bwlq"[operand_size()];
  }

  const char* NameOfCPURegister(int reg) const {
    return converter_.NameOfCPURegister(reg);
  }

  const char* NameOfByteCPURegister(int reg) const {
    return converter_.NameOfByteCPURegister(reg);
  }

  const char* NameOfXMMRegister(int reg) const {
    return converter_.NameOfXMMRegister(reg);
  }

  const char* NameOfAddress(byte* addr) const {
    return converter_.NameOfAddress(addr);
  }

  // Disassembler helper functions.
  void get_modrm(byte data,
                 int* mod,
                 int* regop,
                 int* rm) {
    *mod = (data >> 6) & 3;
    *regop = ((data & 0x38) >> 3) | (rex_r() ? 8 : 0);
    *rm = (data & 7) | (rex_b() ? 8 : 0);
  }

  void get_sib(byte data,
               int* scale,
               int* index,
               int* base) {
    *scale = (data >> 6) & 3;
    *index = ((data >> 3) & 7) | (rex_x() ? 8 : 0);
    *base = (data & 7) | (rex_b() ? 8 : 0);
  }

  typedef const char* (DisassemblerX64::*RegisterNameMapping)(int reg) const;

  int PrintRightOperandHelper(byte* modrmp,
                              RegisterNameMapping register_name);
  int PrintRightOperand(byte* modrmp);
  int PrintRightByteOperand(byte* modrmp);
  int PrintRightXMMOperand(byte* modrmp);
  int PrintOperands(const char* mnem,
                    OperandType op_order,
                    byte* data);
  int PrintImmediate(byte* data, OperandSize size);
  int PrintImmediateOp(byte* data);
  const char* TwoByteMnemonic(byte opcode);
  int TwoByteOpcodeInstruction(byte* data);
  int F6F7Instruction(byte* data);
  int ShiftInstruction(byte* data);
  int JumpShort(byte* data);
  int JumpConditional(byte* data);
  int JumpConditionalShort(byte* data);
  int SetCC(byte* data);
  int FPUInstruction(byte* data);
  int MemoryFPUInstruction(int escape_opcode, int regop, byte* modrm_start);
  int RegisterFPUInstruction(int escape_opcode, byte modrm_byte);
  void AppendToBuffer(const char* format, ...);

  void UnimplementedInstruction() {
    if (abort_on_unimplemented_) {
      CHECK(false);
    } else {
      AppendToBuffer("'Unimplemented Instruction'");
    }
  }
};


void DisassemblerX64::AppendToBuffer(const char* format, ...) {
  v8::internal::Vector<char> buf = tmp_buffer_ + tmp_buffer_pos_;
  va_list args;
  va_start(args, format);
  int result = v8::internal::OS::VSNPrintF(buf, format, args);
  va_end(args);
  tmp_buffer_pos_ += result;
}


int DisassemblerX64::PrintRightOperandHelper(
    byte* modrmp,
    RegisterNameMapping direct_register_name) {
  int mod, regop, rm;
  get_modrm(*modrmp, &mod, &regop, &rm);
  RegisterNameMapping register_name = (mod == 3) ? direct_register_name :
      &DisassemblerX64::NameOfCPURegister;
  switch (mod) {
    case 0:
      if ((rm & 7) == 5) {
        int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 1);
        AppendToBuffer("[0x%x]", disp);
        return 5;
      } else if ((rm & 7) == 4) {
        // Codes for SIB byte.
        byte sib = *(modrmp + 1);
        int scale, index, base;
        get_sib(sib, &scale, &index, &base);
        if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
          // index == rsp means no index. Only use sib byte with no index for
          // rsp and r12 base.
          AppendToBuffer("[%s]", NameOfCPURegister(base));
          return 2;
        } else if (base == 5) {
          // base == rbp means no base register (when mod == 0).
          int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 2);
          AppendToBuffer("[%s*%d+0x%x]",
                         NameOfCPURegister(index),
                         1 << scale, disp);
          return 6;
        } else if (index != 4 && base != 5) {
          // [base+index*scale]
          AppendToBuffer("[%s+%s*%d]",
                         NameOfCPURegister(base),
                         NameOfCPURegister(index),
                         1 << scale);
          return 2;
        } else {
          UnimplementedInstruction();
          return 1;
        }
      } else {
        AppendToBuffer("[%s]", NameOfCPURegister(rm));
        return 1;
      }
      break;
    case 1:  // fall through
    case 2:
      if ((rm & 7) == 4) {
        byte sib = *(modrmp + 1);
        int scale, index, base;
        get_sib(sib, &scale, &index, &base);
        int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 2)
                              : *reinterpret_cast<char*>(modrmp + 2);
        if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
          if (-disp > 0) {
            AppendToBuffer("[%s-0x%x]", NameOfCPURegister(base), -disp);
          } else {
            AppendToBuffer("[%s+0x%x]", NameOfCPURegister(base), disp);
          }
        } else {
          if (-disp > 0) {
            AppendToBuffer("[%s+%s*%d-0x%x]",
                           NameOfCPURegister(base),
                           NameOfCPURegister(index),
                           1 << scale,
                           -disp);
          } else {
            AppendToBuffer("[%s+%s*%d+0x%x]",
                           NameOfCPURegister(base),
                           NameOfCPURegister(index),
                           1 << scale,
                           disp);
          }
        }
        return mod == 2 ? 6 : 3;
      } else {
        // No sib.
        int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 1)
                              : *reinterpret_cast<char*>(modrmp + 1);
        if (-disp > 0) {
        AppendToBuffer("[%s-0x%x]", NameOfCPURegister(rm), -disp);
        } else {
        AppendToBuffer("[%s+0x%x]", NameOfCPURegister(rm), disp);
        }
        return (mod == 2) ? 5 : 2;
      }
      break;
    case 3:
      AppendToBuffer("%s", (this->*register_name)(rm));
      return 1;
    default:
      UnimplementedInstruction();
      return 1;
  }
  UNREACHABLE();
}


int DisassemblerX64::PrintImmediate(byte* data, OperandSize size) {
  int64_t value;
  int count;
  switch (size) {
    case BYTE_SIZE:
      value = *data;
      count = 1;
      break;
    case WORD_SIZE:
      value = *reinterpret_cast<int16_t*>(data);
      count = 2;
      break;
    case DOUBLEWORD_SIZE:
      value = *reinterpret_cast<uint32_t*>(data);
      count = 4;
      break;
    case QUADWORD_SIZE:
      value = *reinterpret_cast<int32_t*>(data);
      count = 4;
      break;
    default:
      UNREACHABLE();
      value = 0;  // Initialize variables on all paths to satisfy the compiler.
      count = 0;
  }
  AppendToBuffer("%" V8_PTR_PREFIX "x", value);
  return count;
}


int DisassemblerX64::PrintRightOperand(byte* modrmp) {
  return PrintRightOperandHelper(modrmp,
                                 &DisassemblerX64::NameOfCPURegister);
}


int DisassemblerX64::PrintRightByteOperand(byte* modrmp) {
  return PrintRightOperandHelper(modrmp,
                                 &DisassemblerX64::NameOfByteCPURegister);
}


int DisassemblerX64::PrintRightXMMOperand(byte* modrmp) {
  return PrintRightOperandHelper(modrmp,
                                 &DisassemblerX64::NameOfXMMRegister);
}


// Returns number of bytes used including the current *data.
// Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'.
int DisassemblerX64::PrintOperands(const char* mnem,
                                   OperandType op_order,
                                   byte* data) {
  byte modrm = *data;
  int mod, regop, rm;
  get_modrm(modrm, &mod, &regop, &rm);
  int advance = 0;
  const char* register_name =
      byte_size_operand_ ? NameOfByteCPURegister(regop)
                         : NameOfCPURegister(regop);
  switch (op_order) {
    case REG_OPER_OP_ORDER: {
      AppendToBuffer("%s%c %s,",
                     mnem,
                     operand_size_code(),
                     register_name);
      advance = byte_size_operand_ ? PrintRightByteOperand(data)
                                   : PrintRightOperand(data);
      break;
    }
    case OPER_REG_OP_ORDER: {
      AppendToBuffer("%s%c ", mnem, operand_size_code());
      advance = byte_size_operand_ ? PrintRightByteOperand(data)
                                   : PrintRightOperand(data);
      AppendToBuffer(",%s", register_name);
      break;
    }
    default:
      UNREACHABLE();
      break;
  }
  return advance;
}


// Returns number of bytes used by machine instruction, including *data byte.
// Writes immediate instructions to 'tmp_buffer_'.
int DisassemblerX64::PrintImmediateOp(byte* data) {
  bool byte_size_immediate = (*data & 0x02) != 0;
  byte modrm = *(data + 1);
  int mod, regop, rm;
  get_modrm(modrm, &mod, &regop, &rm);
  const char* mnem = "Imm???";
  switch (regop) {
    case 0:
      mnem = "add";
      break;
    case 1:
      mnem = "or";
      break;
    case 2:
      mnem = "adc";
      break;
    case 3:
      mnem = "sbb";
      break;
    case 4:
      mnem = "and";
      break;
    case 5:
      mnem = "sub";
      break;
    case 6:
      mnem = "xor";
      break;
    case 7:
      mnem = "cmp";
      break;
    default:
      UnimplementedInstruction();
  }
  AppendToBuffer("%s%c ", mnem, operand_size_code());
  int count = PrintRightOperand(data + 1);
  AppendToBuffer(",0x");
  OperandSize immediate_size = byte_size_immediate ? BYTE_SIZE : operand_size();
  count += PrintImmediate(data + 1 + count, immediate_size);
  return 1 + count;
}


// Returns number of bytes used, including *data.
int DisassemblerX64::F6F7Instruction(byte* data) {
  ASSERT(*data == 0xF7 || *data == 0xF6);
  byte modrm = *(data + 1);
  int mod, regop, rm;
  get_modrm(modrm, &mod, &regop, &rm);
  if (mod == 3 && regop != 0) {
    const char* mnem = NULL;
    switch (regop) {
      case 2:
        mnem = "not";
        break;
      case 3:
        mnem = "neg";
        break;
      case 4:
        mnem = "mul";
        break;
      case 5:
        mnem = "imul";
        break;
      case 7:
        mnem = "idiv";
        break;
      default:
        UnimplementedInstruction();
    }
    AppendToBuffer("%s%c %s",
                   mnem,
                   operand_size_code(),
                   NameOfCPURegister(rm));
    return 2;
  } else if (regop == 0) {
    AppendToBuffer("test%c ", operand_size_code());
    int count = PrintRightOperand(data + 1);  // Use name of 64-bit register.
    AppendToBuffer(",0x");
    count += PrintImmediate(data + 1 + count, operand_size());
    return 1 + count;
  } else {
    UnimplementedInstruction();
    return 2;
  }
}


int DisassemblerX64::ShiftInstruction(byte* data) {
  byte op = *data & (~1);
  if (op != 0xD0 && op != 0xD2 && op != 0xC0) {
    UnimplementedInstruction();
    return 1;
  }
  byte modrm = *(data + 1);
  int mod, regop, rm;
  get_modrm(modrm, &mod, &regop, &rm);
  regop &= 0x7;  // The REX.R bit does not affect the operation.
  int imm8 = -1;
  int num_bytes = 2;
  if (mod != 3) {
    UnimplementedInstruction();
    return num_bytes;
  }
  const char* mnem = NULL;
  switch (regop) {
    case 0:
      mnem = "rol";
      break;
    case 1:
      mnem = "ror";
      break;
    case 2:
      mnem = "rcl";
      break;
    case 3:
      mnem = "rcr";
      break;
    case 4:
      mnem = "shl";
      break;
    case 5:
      mnem = "shr";
      break;
    case 7:
      mnem = "sar";
      break;
    default:
      UnimplementedInstruction();
      return num_bytes;
  }
  ASSERT_NE(NULL, mnem);
  if (op == 0xD0) {
    imm8 = 1;
  } else if (op == 0xC0) {
    imm8 = *(data + 2);
    num_bytes = 3;
  }
  AppendToBuffer("%s%c %s,",
                 mnem,
                 operand_size_code(),
                 byte_size_operand_ ? NameOfByteCPURegister(rm)
                                    : NameOfCPURegister(rm));
  if (op == 0xD2) {
    AppendToBuffer("cl");
  } else {
    AppendToBuffer("%d", imm8);
  }
  return num_bytes;
}


// Returns number of bytes used, including *data.
int DisassemblerX64::JumpShort(byte* data) {
  ASSERT_EQ(0xEB, *data);
  byte b = *(data + 1);
  byte* dest = data + static_cast<int8_t>(b) + 2;
  AppendToBuffer("jmp %s", NameOfAddress(dest));
  return 2;
}


// Returns number of bytes used, including *data.
int DisassemblerX64::JumpConditional(byte* data) {
  ASSERT_EQ(0x0F, *data);
  byte cond = *(data + 1) & 0x0F;
  byte* dest = data + *reinterpret_cast<int32_t*>(data + 2) + 6;
  const char* mnem = conditional_code_suffix[cond];
  AppendToBuffer("j%s %s", mnem, NameOfAddress(dest));
  return 6;  // includes 0x0F
}


// Returns number of bytes used, including *data.
int DisassemblerX64::JumpConditionalShort(byte* data) {
  byte cond = *data & 0x0F;
  byte b = *(data + 1);
  byte* dest = data + static_cast<int8_t>(b) + 2;
  const char* mnem = conditional_code_suffix[cond];
  AppendToBuffer("j%s %s", mnem, NameOfAddress(dest));
  return 2;
}


// Returns number of bytes used, including *data.
int DisassemblerX64::SetCC(byte* data) {
  ASSERT_EQ(0x0F, *data);
  byte cond = *(data + 1) & 0x0F;
  const char* mnem = conditional_code_suffix[cond];
  AppendToBuffer("set%s%c ", mnem, operand_size_code());
  PrintRightByteOperand(data + 2);
  return 3;  // includes 0x0F
}


// Returns number of bytes used, including *data.
int DisassemblerX64::FPUInstruction(byte* data) {
  byte escape_opcode = *data;
  ASSERT_EQ(0xD8, escape_opcode & 0xF8);
  byte modrm_byte = *(data+1);

  if (modrm_byte >= 0xC0) {
    return RegisterFPUInstruction(escape_opcode, modrm_byte);
  } else {
    return MemoryFPUInstruction(escape_opcode, modrm_byte, data+1);
  }
}

int DisassemblerX64::MemoryFPUInstruction(int escape_opcode,
                                           int modrm_byte,
                                           byte* modrm_start) {
  const char* mnem = "?";
  int regop = (modrm_byte >> 3) & 0x7;  // reg/op field of modrm byte.
  switch (escape_opcode) {
    case 0xD9: switch (regop) {
        case 0: mnem = "fld_s"; break;
        case 3: mnem = "fstp_s"; break;
        case 7: mnem = "fstcw"; break;
        default: UnimplementedInstruction();
      }
      break;

    case 0xDB: switch (regop) {
        case 0: mnem = "fild_s"; break;
        case 1: mnem = "fisttp_s"; break;
        case 2: mnem = "fist_s"; break;
        case 3: mnem = "fistp_s"; break;
        default: UnimplementedInstruction();
      }
      break;

    case 0xDD: switch (regop) {
        case 0: mnem = "fld_d"; break;
        case 3: mnem = "fstp_d"; break;
        default: UnimplementedInstruction();
      }
      break;

    case 0xDF: switch (regop) {
        case 5: mnem = "fild_d"; break;
        case 7: mnem = "fistp_d"; break;
        default: UnimplementedInstruction();
      }
      break;

    default: UnimplementedInstruction();
  }
  AppendToBuffer("%s ", mnem);
  int count = PrintRightOperand(modrm_start);
  return count + 1;
}

int DisassemblerX64::RegisterFPUInstruction(int escape_opcode,
                                             byte modrm_byte) {
  bool has_register = false;  // Is the FPU register encoded in modrm_byte?
  const char* mnem = "?";

  switch (escape_opcode) {
    case 0xD8:
      UnimplementedInstruction();
      break;

    case 0xD9:
      switch (modrm_byte & 0xF8) {
        case 0xC0:
          mnem = "fld";
          has_register = true;
          break;
        case 0xC8:
          mnem = "fxch";
          has_register = true;
          break;
        default:
          switch (modrm_byte) {
            case 0xE0: mnem = "fchs"; break;
            case 0xE1: mnem = "fabs"; break;
            case 0xE3: mnem = "fninit"; break;
            case 0xE4: mnem = "ftst"; break;
            case 0xE8: mnem = "fld1"; break;
            case 0xEB: mnem = "fldpi"; break;
            case 0xED: mnem = "fldln2"; break;
            case 0xEE: mnem = "fldz"; break;
            case 0xF0: mnem = "f2xm1"; break;
            case 0xF1: mnem = "fyl2x"; break;
            case 0xF2: mnem = "fptan"; break;
            case 0xF5: mnem = "fprem1"; break;
            case 0xF7: mnem = "fincstp"; break;
            case 0xF8: mnem = "fprem"; break;
            case 0xFD: mnem = "fscale"; break;
            case 0xFE: mnem = "fsin"; break;
            case 0xFF: mnem = "fcos"; break;
            default: UnimplementedInstruction();
          }
      }
      break;

    case 0xDA:
      if (modrm_byte == 0xE9) {
        mnem = "fucompp";
      } else {
        UnimplementedInstruction();
      }
      break;

    case 0xDB:
      if ((modrm_byte & 0xF8) == 0xE8) {
        mnem = "fucomi";
        has_register = true;
      } else if (modrm_byte  == 0xE2) {
        mnem = "fclex";
      } else {
        UnimplementedInstruction();
      }
      break;

    case 0xDC:
      has_register = true;
      switch (modrm_byte & 0xF8) {
        case 0xC0: mnem = "fadd"; break;
        case 0xE8: mnem = "fsub"; break;
        case 0xC8: mnem = "fmul"; break;
        case 0xF8: mnem = "fdiv"; break;
        default: UnimplementedInstruction();
      }
      break;

    case 0xDD:
      has_register = true;
      switch (modrm_byte & 0xF8) {
        case 0xC0: mnem = "ffree"; break;
        case 0xD8: mnem = "fstp"; break;
        default: UnimplementedInstruction();
      }
      break;

    case 0xDE:
      if (modrm_byte  == 0xD9) {
        mnem = "fcompp";
      } else {
        has_register = true;
        switch (modrm_byte & 0xF8) {
          case 0xC0: mnem = "faddp"; break;
          case 0xE8: mnem = "fsubp"; break;
          case 0xC8: mnem = "fmulp"; break;
          case 0xF8: mnem = "fdivp"; break;
          default: UnimplementedInstruction();
        }
      }
      break;

    case 0xDF:
      if (modrm_byte == 0xE0) {
        mnem = "fnstsw_ax";
      } else if ((modrm_byte & 0xF8) == 0xE8) {
        mnem = "fucomip";
        has_register = true;
      }
      break;

    default: UnimplementedInstruction();
  }

  if (has_register) {
    AppendToBuffer("%s st%d", mnem, modrm_byte & 0x7);
  } else {
    AppendToBuffer("%s", mnem);
  }
  return 2;
}



// Handle all two-byte opcodes, which start with 0x0F.
// These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix.
// We do not use any three-byte opcodes, which start with 0x0F38 or 0x0F3A.
int DisassemblerX64::TwoByteOpcodeInstruction(byte* data) {
  byte opcode = *(data + 1);
  byte* current = data + 2;
  // At return, "current" points to the start of the next instruction.
  const char* mnemonic = TwoByteMnemonic(opcode);
  if (operand_size_ == 0x66) {
    // 0x66 0x0F prefix.
    int mod, regop, rm;
    if (opcode == 0x3A) {
      byte third_byte = *current;
      current = data + 3;
      if (third_byte == 0x17) {
        get_modrm(*current, &mod, &regop, &rm);
        AppendToBuffer("extractps ");  // reg/m32, xmm, imm8
        current += PrintRightOperand(current);
        AppendToBuffer(", %s, %d", NameOfCPURegister(regop), (*current) & 3);
        current += 1;
      } else if (third_byte == 0x0b) {
        get_modrm(*current, &mod, &regop, &rm);
         // roundsd xmm, xmm/m64, imm8
        AppendToBuffer("roundsd %s, ", NameOfCPURegister(regop));
        current += PrintRightOperand(current);
        AppendToBuffer(", %d", (*current) & 3);
        current += 1;
      } else {
        UnimplementedInstruction();
      }
    } else {
      get_modrm(*current, &mod, &regop, &rm);
      if (opcode == 0x1f) {
        current++;
        if (rm == 4) {  // SIB byte present.
          current++;
        }
        if (mod == 1) {  // Byte displacement.
          current += 1;
        } else if (mod == 2) {  // 32-bit displacement.
          current += 4;
        }  // else no immediate displacement.
        AppendToBuffer("nop");
      } else if (opcode == 0x28) {
        AppendToBuffer("movapd %s, ", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
      } else if (opcode == 0x29) {
        AppendToBuffer("movapd ");
        current += PrintRightXMMOperand(current);
        AppendToBuffer(", %s", NameOfXMMRegister(regop));
      } else if (opcode == 0x6E) {
        AppendToBuffer("mov%c %s,",
                       rex_w() ? 'q' : 'd',
                       NameOfXMMRegister(regop));
        current += PrintRightOperand(current);
      } else if (opcode == 0x6F) {
        AppendToBuffer("movdqa %s,",
                       NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
      } else if (opcode == 0x7E) {
        AppendToBuffer("mov%c ",
                       rex_w() ? 'q' : 'd');
        current += PrintRightOperand(current);
        AppendToBuffer(", %s", NameOfXMMRegister(regop));
      } else if (opcode == 0x7F) {
        AppendToBuffer("movdqa ");
        current += PrintRightXMMOperand(current);
        AppendToBuffer(", %s", NameOfXMMRegister(regop));
      } else if (opcode == 0xD6) {
        AppendToBuffer("movq ");
        current += PrintRightXMMOperand(current);
        AppendToBuffer(", %s", NameOfXMMRegister(regop));
      } else if (opcode == 0x50) {
        AppendToBuffer("movmskpd %s,", NameOfCPURegister(regop));
        current += PrintRightXMMOperand(current);
      } else {
        const char* mnemonic = "?";
        if (opcode == 0x54) {
          mnemonic = "andpd";
        } else  if (opcode == 0x56) {
          mnemonic = "orpd";
        } else  if (opcode == 0x57) {
          mnemonic = "xorpd";
        } else if (opcode == 0x2E) {
          mnemonic = "ucomisd";
        } else if (opcode == 0x2F) {
          mnemonic = "comisd";
        } else {
          UnimplementedInstruction();
        }
        AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
      }
    }
  } else if (group_1_prefix_ == 0xF2) {
    // Beginning of instructions with prefix 0xF2.

    if (opcode == 0x11 || opcode == 0x10) {
      // MOVSD: Move scalar double-precision fp to/from/between XMM registers.
      AppendToBuffer("movsd ");
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      if (opcode == 0x11) {
        current += PrintRightXMMOperand(current);
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
      } else {
        AppendToBuffer("%s,", NameOfXMMRegister(regop));
        current += PrintRightXMMOperand(current);
      }
    } else if (opcode == 0x2A) {
      // CVTSI2SD: integer to XMM double conversion.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("%sd %s,", mnemonic, NameOfXMMRegister(regop));
      current += PrintRightOperand(current);
    } else if (opcode == 0x2C) {
      // CVTTSD2SI:
      // Convert with truncation scalar double-precision FP to integer.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("cvttsd2si%c %s,",
          operand_size_code(), NameOfCPURegister(regop));
      current += PrintRightXMMOperand(current);
    } else if (opcode == 0x2D) {
      // CVTSD2SI: Convert scalar double-precision FP to integer.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("cvtsd2si%c %s,",
          operand_size_code(), NameOfCPURegister(regop));
      current += PrintRightXMMOperand(current);
    } else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) {
      // XMM arithmetic. Mnemonic was retrieved at the start of this function.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
      current += PrintRightXMMOperand(current);
    } else {
      UnimplementedInstruction();
    }
  } else if (group_1_prefix_ == 0xF3) {
    // Instructions with prefix 0xF3.
    if (opcode == 0x11 || opcode == 0x10) {
      // MOVSS: Move scalar double-precision fp to/from/between XMM registers.
      AppendToBuffer("movss ");
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      if (opcode == 0x11) {
        current += PrintRightOperand(current);
        AppendToBuffer(",%s", NameOfXMMRegister(regop));
      } else {
        AppendToBuffer("%s,", NameOfXMMRegister(regop));
        current += PrintRightOperand(current);
      }
    } else if (opcode == 0x2A) {
      // CVTSI2SS: integer to XMM single conversion.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("%ss %s,", mnemonic, NameOfXMMRegister(regop));
      current += PrintRightOperand(current);
    } else if (opcode == 0x2C) {
      // CVTTSS2SI:
      // Convert with truncation scalar single-precision FP to dword integer.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("cvttss2si%c %s,",
          operand_size_code(), NameOfCPURegister(regop));
      current += PrintRightXMMOperand(current);
    } else if (opcode == 0x5A) {
      // CVTSS2SD:
      // Convert scalar single-precision FP to scalar double-precision FP.
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("cvtss2sd %s,", NameOfXMMRegister(regop));
      current += PrintRightXMMOperand(current);
    } else if (opcode == 0x7E) {
      int mod, regop, rm;
      get_modrm(*current, &mod, &regop, &rm);
      AppendToBuffer("movq %s, ", NameOfXMMRegister(regop));
      current += PrintRightXMMOperand(current);
    } else {
      UnimplementedInstruction();
    }
  } else if (opcode == 0x1F) {
    // NOP
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
    current++;
    if (rm == 4) {  // SIB byte present.
      current++;
    }
    if (mod == 1) {  // Byte displacement.
      current += 1;
    } else if (mod == 2) {  // 32-bit displacement.
      current += 4;
    }  // else no immediate displacement.
    AppendToBuffer("nop");

  } else if (opcode == 0x28) {
    // movaps xmm, xmm/m128
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
    AppendToBuffer("movaps %s, ", NameOfXMMRegister(regop));
    current += PrintRightXMMOperand(current);

  } else if (opcode == 0x29) {
    // movaps xmm/m128, xmm
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
    AppendToBuffer("movaps ");
    current += PrintRightXMMOperand(current);
    AppendToBuffer(", %s", NameOfXMMRegister(regop));

  } else if (opcode == 0xA2 || opcode == 0x31) {
    // RDTSC or CPUID
    AppendToBuffer("%s", mnemonic);

  } else if ((opcode & 0xF0) == 0x40) {
    // CMOVcc: conditional move.
    int condition = opcode & 0x0F;
    const InstructionDesc& idesc = cmov_instructions[condition];
    byte_size_operand_ = idesc.byte_size_operation;
    current += PrintOperands(idesc.mnem, idesc.op_order_, current);

  } else if (opcode == 0x57) {
    // xorps xmm, xmm/m128
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
    AppendToBuffer("xorps %s, ", NameOfXMMRegister(regop));
    current += PrintRightXMMOperand(current);

  } else if ((opcode & 0xF0) == 0x80) {
    // Jcc: Conditional jump (branch).
    current = data + JumpConditional(data);

  } else if (opcode == 0xBE || opcode == 0xBF || opcode == 0xB6 ||
             opcode == 0xB7 || opcode == 0xAF) {
    // Size-extending moves, IMUL.
    current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current);

  } else if ((opcode & 0xF0) == 0x90) {
    // SETcc: Set byte on condition. Needs pointer to beginning of instruction.
    current = data + SetCC(data);

  } else if (opcode == 0xAB || opcode == 0xA5 || opcode == 0xAD) {
    // SHLD, SHRD (double-precision shift), BTS (bit set).
    AppendToBuffer("%s ", mnemonic);
    int mod, regop, rm;
    get_modrm(*current, &mod, &regop, &rm);
    current += PrintRightOperand(current);
    if (opcode == 0xAB) {
      AppendToBuffer(",%s", NameOfCPURegister(regop));
    } else {
      AppendToBuffer(",%s,cl", NameOfCPURegister(regop));
    }
  } else {
    UnimplementedInstruction();
  }
  return static_cast<int>(current - data);
}


// Mnemonics for two-byte opcode instructions starting with 0x0F.
// The argument is the second byte of the two-byte opcode.
// Returns NULL if the instruction is not handled here.
const char* DisassemblerX64::TwoByteMnemonic(byte opcode) {
  switch (opcode) {
    case 0x1F:
      return "nop";
    case 0x2A:  // F2/F3 prefix.
      return "cvtsi2s";
    case 0x31:
      return "rdtsc";
    case 0x51:  // F2 prefix.
      return "sqrtsd";
    case 0x58:  // F2 prefix.
      return "addsd";
    case 0x59:  // F2 prefix.
      return "mulsd";
    case 0x5C:  // F2 prefix.
      return "subsd";
    case 0x5E:  // F2 prefix.
      return "divsd";
    case 0xA2:
      return "cpuid";
    case 0xA5:
      return "shld";
    case 0xAB:
      return "bts";
    case 0xAD:
      return "shrd";
    case 0xAF:
      return "imul";
    case 0xB6:
      return "movzxb";
    case 0xB7:
      return "movzxw";
    case 0xBE:
      return "movsxb";
    case 0xBF:
      return "movsxw";
    default:
      return NULL;
  }
}


// Disassembles the instruction at instr, and writes it into out_buffer.
int DisassemblerX64::InstructionDecode(v8::internal::Vector<char> out_buffer,
                                       byte* instr) {
  tmp_buffer_pos_ = 0;  // starting to write as position 0
  byte* data = instr;
  bool processed = true;  // Will be set to false if the current instruction
                          // is not in 'instructions' table.
  byte current;

  // Scan for prefixes.
  while (true) {
    current = *data;
    if (current == OPERAND_SIZE_OVERRIDE_PREFIX) {  // Group 3 prefix.
      operand_size_ = current;
    } else if ((current & 0xF0) == 0x40) {  // REX prefix.
      setRex(current);
      if (rex_w()) AppendToBuffer("REX.W ");
    } else if ((current & 0xFE) == 0xF2) {  // Group 1 prefix (0xF2 or 0xF3).
      group_1_prefix_ = current;
    } else {  // Not a prefix - an opcode.
      break;
    }
    data++;
  }

  const InstructionDesc& idesc = instruction_table_->Get(current);
  byte_size_operand_ = idesc.byte_size_operation;
  switch (idesc.type) {
    case ZERO_OPERANDS_INSTR:
      if (current >= 0xA4 && current <= 0xA7) {
        // String move or compare operations.
        if (group_1_prefix_ == REP_PREFIX) {
          // REP.
          AppendToBuffer("rep ");
        }
        if (rex_w()) AppendToBuffer("REX.W ");
        AppendToBuffer("%s%c", idesc.mnem, operand_size_code());
      } else {
        AppendToBuffer("%s", idesc.mnem, operand_size_code());
      }
      data++;
      break;

    case TWO_OPERANDS_INSTR:
      data++;
      data += PrintOperands(idesc.mnem, idesc.op_order_, data);
      break;

    case JUMP_CONDITIONAL_SHORT_INSTR:
      data += JumpConditionalShort(data);
      break;

    case REGISTER_INSTR:
      AppendToBuffer("%s%c %s",
                     idesc.mnem,
                     operand_size_code(),
                     NameOfCPURegister(base_reg(current & 0x07)));
      data++;
      break;
    case PUSHPOP_INSTR:
      AppendToBuffer("%s %s",
                     idesc.mnem,
                     NameOfCPURegister(base_reg(current & 0x07)));
      data++;
      break;
    case MOVE_REG_INSTR: {
      byte* addr = NULL;
      switch (operand_size()) {
        case WORD_SIZE:
          addr = reinterpret_cast<byte*>(*reinterpret_cast<int16_t*>(data + 1));
          data += 3;
          break;
        case DOUBLEWORD_SIZE:
          addr = reinterpret_cast<byte*>(*reinterpret_cast<int32_t*>(data + 1));
          data += 5;
          break;
        case QUADWORD_SIZE:
          addr = reinterpret_cast<byte*>(*reinterpret_cast<int64_t*>(data + 1));
          data += 9;
          break;
        default:
          UNREACHABLE();
      }
      AppendToBuffer("mov%c %s,%s",
                     operand_size_code(),
                     NameOfCPURegister(base_reg(current & 0x07)),
                     NameOfAddress(addr));
      break;
    }

    case CALL_JUMP_INSTR: {
      byte* addr = data + *reinterpret_cast<int32_t*>(data + 1) + 5;
      AppendToBuffer("%s %s", idesc.mnem, NameOfAddress(addr));
      data += 5;
      break;
    }

    case SHORT_IMMEDIATE_INSTR: {
      byte* addr =
          reinterpret_cast<byte*>(*reinterpret_cast<int32_t*>(data + 1));
      AppendToBuffer("%s rax, %s", idesc.mnem, NameOfAddress(addr));
      data += 5;
      break;
    }

    case NO_INSTR:
      processed = false;
      break;

    default:
      UNIMPLEMENTED();  // This type is not implemented.
  }

  // The first byte didn't match any of the simple opcodes, so we
  // need to do special processing on it.
  if (!processed) {
    switch (*data) {
      case 0xC2:
        AppendToBuffer("ret 0x%x", *reinterpret_cast<uint16_t*>(data + 1));
        data += 3;
        break;

      case 0x69:  // fall through
      case 0x6B: {
        int mod, regop, rm;
        get_modrm(*(data + 1), &mod, &regop, &rm);
        int32_t imm = *data == 0x6B ? *(data + 2)
            : *reinterpret_cast<int32_t*>(data + 2);
        AppendToBuffer("imul%c %s,%s,0x%x",
                       operand_size_code(),
                       NameOfCPURegister(regop),
                       NameOfCPURegister(rm), imm);
        data += 2 + (*data == 0x6B ? 1 : 4);
        break;
      }

      case 0x81:  // fall through
      case 0x83:  // 0x81 with sign extension bit set
        data += PrintImmediateOp(data);
        break;

      case 0x0F:
        data += TwoByteOpcodeInstruction(data);
        break;

      case 0x8F: {
        data++;
        int mod, regop, rm;
        get_modrm(*data, &mod, &regop, &rm);
        if (regop == 0) {
          AppendToBuffer("pop ");
          data += PrintRightOperand(data);
        }
      }
        break;

      case 0xFF: {
        data++;
        int mod, regop, rm;
        get_modrm(*data, &mod, &regop, &rm);
        const char* mnem = NULL;
        switch (regop) {
          case 0:
            mnem = "inc";
            break;
          case 1:
            mnem = "dec";
            break;
          case 2:
            mnem = "call";
            break;
          case 4:
            mnem = "jmp";
            break;
          case 6:
            mnem = "push";
            break;
          default:
            mnem = "???";
        }
        AppendToBuffer(((regop <= 1) ? "%s%c " : "%s "),
                       mnem,
                       operand_size_code());
        data += PrintRightOperand(data);
      }
        break;

      case 0xC7:  // imm32, fall through
      case 0xC6:  // imm8
      {
        bool is_byte = *data == 0xC6;
        data++;
        if (is_byte) {
          AppendToBuffer("movb ");
          data += PrintRightByteOperand(data);
          int32_t imm = *data;
          AppendToBuffer(",0x%x", imm);
          data++;
        } else {
          AppendToBuffer("mov%c ", operand_size_code());
          data += PrintRightOperand(data);
          int32_t imm = *reinterpret_cast<int32_t*>(data);
          AppendToBuffer(",0x%x", imm);
          data += 4;
        }
      }
        break;

      case 0x80: {
        data++;
        AppendToBuffer("cmpb ");
        data += PrintRightByteOperand(data);
        int32_t imm = *data;
        AppendToBuffer(",0x%x", imm);
        data++;
      }
        break;

      case 0x88:  // 8bit, fall through
      case 0x89:  // 32bit
      {
        bool is_byte = *data == 0x88;
        int mod, regop, rm;
        data++;
        get_modrm(*data, &mod, &regop, &rm);
        if (is_byte) {
          AppendToBuffer("movb ");
          data += PrintRightByteOperand(data);
          AppendToBuffer(",%s", NameOfByteCPURegister(regop));
        } else {
          AppendToBuffer("mov%c ", operand_size_code());
          data += PrintRightOperand(data);
          AppendToBuffer(",%s", NameOfCPURegister(regop));
        }
      }
        break;

      case 0x90:
      case 0x91:
      case 0x92:
      case 0x93:
      case 0x94:
      case 0x95:
      case 0x96:
      case 0x97: {
        int reg = (*data & 0x7) | (rex_b() ? 8 : 0);
        if (reg == 0) {
          AppendToBuffer("nop");  // Common name for xchg rax,rax.
        } else {
          AppendToBuffer("xchg%c rax, %s",
                         operand_size_code(),
                         NameOfCPURegister(reg));
        }
        data++;
      }
        break;
      case 0xB0:
      case 0xB1:
      case 0xB2:
      case 0xB3:
      case 0xB4:
      case 0xB5:
      case 0xB6:
      case 0xB7:
      case 0xB8:
      case 0xB9:
      case 0xBA:
      case 0xBB:
      case 0xBC:
      case 0xBD:
      case 0xBE:
      case 0xBF: {
        // mov reg8,imm8 or mov reg32,imm32
        byte opcode = *data;
        data++;
        bool is_32bit = (opcode >= 0xB8);
        int reg = (opcode & 0x7) | (rex_b() ? 8 : 0);
        if (is_32bit) {
          AppendToBuffer("mov%c %s, ",
                         operand_size_code(),
                         NameOfCPURegister(reg));
          data += PrintImmediate(data, DOUBLEWORD_SIZE);
        } else {
          AppendToBuffer("movb %s, ",
                         NameOfByteCPURegister(reg));
          data += PrintImmediate(data, BYTE_SIZE);
        }
        break;
      }
      case 0xFE: {
        data++;
        int mod, regop, rm;
        get_modrm(*data, &mod, &regop, &rm);
        if (regop == 1) {
          AppendToBuffer("decb ");
          data += PrintRightByteOperand(data);
        } else {
          UnimplementedInstruction();
        }
        break;
      }
      case 0x68:
        AppendToBuffer("push 0x%x", *reinterpret_cast<int32_t*>(data + 1));
        data += 5;
        break;

      case 0x6A:
        AppendToBuffer("push 0x%x", *reinterpret_cast<int8_t*>(data + 1));
        data += 2;
        break;

      case 0xA1:  // Fall through.
      case 0xA3:
        switch (operand_size()) {
          case DOUBLEWORD_SIZE: {
            const char* memory_location = NameOfAddress(
                reinterpret_cast<byte*>(
                    *reinterpret_cast<int32_t*>(data + 1)));
            if (*data == 0xA1) {  // Opcode 0xA1
              AppendToBuffer("movzxlq rax,(%s)", memory_location);
            } else {  // Opcode 0xA3
              AppendToBuffer("movzxlq (%s),rax", memory_location);
            }
            data += 5;
            break;
          }
          case QUADWORD_SIZE: {
            // New x64 instruction mov rax,(imm_64).
            const char* memory_location = NameOfAddress(
                *reinterpret_cast<byte**>(data + 1));
            if (*data == 0xA1) {  // Opcode 0xA1
              AppendToBuffer("movq rax,(%s)", memory_location);
            } else {  // Opcode 0xA3
              AppendToBuffer("movq (%s),rax", memory_location);
            }
            data += 9;
            break;
          }
          default:
            UnimplementedInstruction();
            data += 2;
        }
        break;

      case 0xA8:
        AppendToBuffer("test al,0x%x", *reinterpret_cast<uint8_t*>(data + 1));
        data += 2;
        break;

      case 0xA9: {
        int64_t value = 0;
        switch (operand_size()) {
          case WORD_SIZE:
            value = *reinterpret_cast<uint16_t*>(data + 1);
            data += 3;
            break;
          case DOUBLEWORD_SIZE:
            value = *reinterpret_cast<uint32_t*>(data + 1);
            data += 5;
            break;
          case QUADWORD_SIZE:
            value = *reinterpret_cast<int32_t*>(data + 1);
            data += 5;
            break;
          default:
            UNREACHABLE();
        }
        AppendToBuffer("test%c rax,0x%" V8_PTR_PREFIX "x",
                       operand_size_code(),
                       value);
        break;
      }
      case 0xD1:  // fall through
      case 0xD3:  // fall through
      case 0xC1:
        data += ShiftInstruction(data);
        break;
      case 0xD0:  // fall through
      case 0xD2:  // fall through
      case 0xC0:
        byte_size_operand_ = true;
        data += ShiftInstruction(data);
        break;

      case 0xD9:  // fall through
      case 0xDA:  // fall through
      case 0xDB:  // fall through
      case 0xDC:  // fall through
      case 0xDD:  // fall through
      case 0xDE:  // fall through
      case 0xDF:
        data += FPUInstruction(data);
        break;

      case 0xEB:
        data += JumpShort(data);
        break;

      case 0xF6:
        byte_size_operand_ = true;  // fall through
      case 0xF7:
        data += F6F7Instruction(data);
        break;

      default:
        UnimplementedInstruction();
        data += 1;
    }
  }  // !processed

  if (tmp_buffer_pos_ < sizeof tmp_buffer_) {
    tmp_buffer_[tmp_buffer_pos_] = '\0';
  }

  int instr_len = static_cast<int>(data - instr);
  ASSERT(instr_len > 0);  // Ensure progress.

  int outp = 0;
  // Instruction bytes.
  for (byte* bp = instr; bp < data; bp++) {
    outp += v8::internal::OS::SNPrintF(out_buffer + outp, "%02x", *bp);
  }
  for (int i = 6 - instr_len; i >= 0; i--) {
    outp += v8::internal::OS::SNPrintF(out_buffer + outp, "  ");
  }

  outp += v8::internal::OS::SNPrintF(out_buffer + outp, " %s",
                                     tmp_buffer_.start());
  return instr_len;
}

//------------------------------------------------------------------------------


static const char* cpu_regs[16] = {
  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
};


static const char* byte_cpu_regs[16] = {
  "al", "cl", "dl", "bl", "spl", "bpl", "sil", "dil",
  "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
};


static const char* xmm_regs[16] = {
  "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
  "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"
};


const char* NameConverter::NameOfAddress(byte* addr) const {
  v8::internal::OS::SNPrintF(tmp_buffer_, "%p", addr);
  return tmp_buffer_.start();
}


const char* NameConverter::NameOfConstant(byte* addr) const {
  return NameOfAddress(addr);
}


const char* NameConverter::NameOfCPURegister(int reg) const {
  if (0 <= reg && reg < 16)
    return cpu_regs[reg];
  return "noreg";
}


const char* NameConverter::NameOfByteCPURegister(int reg) const {
  if (0 <= reg && reg < 16)
    return byte_cpu_regs[reg];
  return "noreg";
}


const char* NameConverter::NameOfXMMRegister(int reg) const {
  if (0 <= reg && reg < 16)
    return xmm_regs[reg];
  return "noxmmreg";
}


const char* NameConverter::NameInCode(byte* addr) const {
  // X64 does not embed debug strings at the moment.
  UNREACHABLE();
  return "";
}

//------------------------------------------------------------------------------

Disassembler::Disassembler(const NameConverter& converter)
    : converter_(converter) { }

Disassembler::~Disassembler() { }


int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
                                    byte* instruction) {
  DisassemblerX64 d(converter_, CONTINUE_ON_UNIMPLEMENTED_OPCODE);
  return d.InstructionDecode(buffer, instruction);
}


// The X64 assembler does not use constant pools.
int Disassembler::ConstantPoolSizeAt(byte* instruction) {
  return -1;
}


void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
  NameConverter converter;
  Disassembler d(converter);
  for (byte* pc = begin; pc < end;) {
    v8::internal::EmbeddedVector<char, 128> buffer;
    buffer[0] = '\0';
    byte* prev_pc = pc;
    pc += d.InstructionDecode(buffer, pc);
    fprintf(f, "%p", prev_pc);
    fprintf(f, "    ");

    for (byte* bp = prev_pc; bp < pc; bp++) {
      fprintf(f, "%02x", *bp);
    }
    for (int i = 6 - static_cast<int>(pc - prev_pc); i >= 0; i--) {
      fprintf(f, "  ");
    }
    fprintf(f, "  %s\n", buffer.start());
  }
}

}  // namespace disasm

#endif  // V8_TARGET_ARCH_X64

/* [<][>][^][v][top][bottom][index][help] */