root/src/full-codegen.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. VisitVariableDeclaration
  2. VisitFunctionDeclaration
  3. VisitModuleDeclaration
  4. VisitImportDeclaration
  5. VisitExportDeclaration
  6. VisitModuleLiteral
  7. VisitModuleVariable
  8. VisitModulePath
  9. VisitModuleUrl
  10. VisitBlock
  11. VisitExpressionStatement
  12. VisitEmptyStatement
  13. VisitIfStatement
  14. VisitContinueStatement
  15. VisitBreakStatement
  16. VisitReturnStatement
  17. VisitWithStatement
  18. VisitSwitchStatement
  19. VisitDoWhileStatement
  20. VisitWhileStatement
  21. VisitForStatement
  22. VisitForInStatement
  23. VisitTryCatchStatement
  24. VisitTryFinallyStatement
  25. VisitDebuggerStatement
  26. VisitFunctionLiteral
  27. VisitSharedFunctionInfoLiteral
  28. VisitConditional
  29. VisitVariableProxy
  30. VisitLiteral
  31. VisitRegExpLiteral
  32. VisitObjectLiteral
  33. VisitArrayLiteral
  34. VisitAssignment
  35. VisitThrow
  36. VisitProperty
  37. VisitCall
  38. VisitCallNew
  39. VisitCallRuntime
  40. VisitUnaryOperation
  41. VisitCountOperation
  42. VisitBinaryOperation
  43. VisitCompareOperation
  44. VisitThisFunction
  45. MakeCode
  46. EmitStackCheckTable
  47. PopulateDeoptimizationData
  48. PopulateTypeFeedbackInfo
  49. PopulateTypeFeedbackCells
  50. PrepareForBailout
  51. RecordJSReturnSite
  52. PrepareForBailoutForId
  53. RecordTypeFeedbackCell
  54. RecordStackCheck
  55. ShouldInlineSmiCase
  56. Plug
  57. Plug
  58. Plug
  59. Plug
  60. PlugTOS
  61. PlugTOS
  62. PlugTOS
  63. PlugTOS
  64. PrepareTest
  65. PrepareTest
  66. PrepareTest
  67. PrepareTest
  68. DoTest
  69. VisitDeclarations
  70. VisitModuleLiteral
  71. VisitModuleVariable
  72. VisitModulePath
  73. VisitModuleUrl
  74. DeclareGlobalsFlags
  75. SetFunctionPosition
  76. SetReturnPosition
  77. SetStatementPosition
  78. SetExpressionPosition
  79. SetStatementPosition
  80. SetSourcePosition
  81. FindInlineFunctionGenerator
  82. EmitInlineRuntimeCall
  83. VisitBinaryOperation
  84. VisitInDuplicateContext
  85. VisitComma
  86. VisitLogicalExpression
  87. VisitArithmeticExpression
  88. VisitBlock
  89. VisitExpressionStatement
  90. VisitEmptyStatement
  91. VisitIfStatement
  92. VisitContinueStatement
  93. VisitBreakStatement
  94. VisitReturnStatement
  95. VisitWithStatement
  96. VisitDoWhileStatement
  97. VisitWhileStatement
  98. VisitForStatement
  99. VisitTryCatchStatement
  100. VisitTryFinallyStatement
  101. VisitDebuggerStatement
  102. VisitConditional
  103. VisitLiteral
  104. VisitFunctionLiteral
  105. VisitSharedFunctionInfoLiteral
  106. VisitThrow
  107. Exit
  108. TryLiteralCompare

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "codegen.h"
#include "compiler.h"
#include "debug.h"
#include "full-codegen.h"
#include "liveedit.h"
#include "macro-assembler.h"
#include "prettyprinter.h"
#include "scopes.h"
#include "scopeinfo.h"
#include "stub-cache.h"

namespace v8 {
namespace internal {

void BreakableStatementChecker::Check(Statement* stmt) {
  Visit(stmt);
}


void BreakableStatementChecker::Check(Expression* expr) {
  Visit(expr);
}


void BreakableStatementChecker::VisitVariableDeclaration(
    VariableDeclaration* decl) {
}

void BreakableStatementChecker::VisitFunctionDeclaration(
    FunctionDeclaration* decl) {
}

void BreakableStatementChecker::VisitModuleDeclaration(
    ModuleDeclaration* decl) {
}

void BreakableStatementChecker::VisitImportDeclaration(
    ImportDeclaration* decl) {
}

void BreakableStatementChecker::VisitExportDeclaration(
    ExportDeclaration* decl) {
}


void BreakableStatementChecker::VisitModuleLiteral(ModuleLiteral* module) {
}

void BreakableStatementChecker::VisitModuleVariable(ModuleVariable* module) {
}

void BreakableStatementChecker::VisitModulePath(ModulePath* module) {
}

void BreakableStatementChecker::VisitModuleUrl(ModuleUrl* module) {
}


void BreakableStatementChecker::VisitBlock(Block* stmt) {
}


void BreakableStatementChecker::VisitExpressionStatement(
    ExpressionStatement* stmt) {
  // Check if expression is breakable.
  Visit(stmt->expression());
}


void BreakableStatementChecker::VisitEmptyStatement(EmptyStatement* stmt) {
}


void BreakableStatementChecker::VisitIfStatement(IfStatement* stmt) {
  // If the condition is breakable the if statement is breakable.
  Visit(stmt->condition());
}


void BreakableStatementChecker::VisitContinueStatement(
    ContinueStatement* stmt) {
}


void BreakableStatementChecker::VisitBreakStatement(BreakStatement* stmt) {
}


void BreakableStatementChecker::VisitReturnStatement(ReturnStatement* stmt) {
  // Return is breakable if the expression is.
  Visit(stmt->expression());
}


void BreakableStatementChecker::VisitWithStatement(WithStatement* stmt) {
  Visit(stmt->expression());
}


void BreakableStatementChecker::VisitSwitchStatement(SwitchStatement* stmt) {
  // Switch statements breakable if the tag expression is.
  Visit(stmt->tag());
}


void BreakableStatementChecker::VisitDoWhileStatement(DoWhileStatement* stmt) {
  // Mark do while as breakable to avoid adding a break slot in front of it.
  is_breakable_ = true;
}


void BreakableStatementChecker::VisitWhileStatement(WhileStatement* stmt) {
  // Mark while statements breakable if the condition expression is.
  Visit(stmt->cond());
}


void BreakableStatementChecker::VisitForStatement(ForStatement* stmt) {
  // Mark for statements breakable if the condition expression is.
  if (stmt->cond() != NULL) {
    Visit(stmt->cond());
  }
}


void BreakableStatementChecker::VisitForInStatement(ForInStatement* stmt) {
  // Mark for in statements breakable if the enumerable expression is.
  Visit(stmt->enumerable());
}


void BreakableStatementChecker::VisitTryCatchStatement(
    TryCatchStatement* stmt) {
  // Mark try catch as breakable to avoid adding a break slot in front of it.
  is_breakable_ = true;
}


void BreakableStatementChecker::VisitTryFinallyStatement(
    TryFinallyStatement* stmt) {
  // Mark try finally as breakable to avoid adding a break slot in front of it.
  is_breakable_ = true;
}


void BreakableStatementChecker::VisitDebuggerStatement(
    DebuggerStatement* stmt) {
  // The debugger statement is breakable.
  is_breakable_ = true;
}


void BreakableStatementChecker::VisitFunctionLiteral(FunctionLiteral* expr) {
}


void BreakableStatementChecker::VisitSharedFunctionInfoLiteral(
    SharedFunctionInfoLiteral* expr) {
}


void BreakableStatementChecker::VisitConditional(Conditional* expr) {
}


void BreakableStatementChecker::VisitVariableProxy(VariableProxy* expr) {
}


void BreakableStatementChecker::VisitLiteral(Literal* expr) {
}


void BreakableStatementChecker::VisitRegExpLiteral(RegExpLiteral* expr) {
}


void BreakableStatementChecker::VisitObjectLiteral(ObjectLiteral* expr) {
}


void BreakableStatementChecker::VisitArrayLiteral(ArrayLiteral* expr) {
}


void BreakableStatementChecker::VisitAssignment(Assignment* expr) {
  // If assigning to a property (including a global property) the assignment is
  // breakable.
  VariableProxy* proxy = expr->target()->AsVariableProxy();
  Property* prop = expr->target()->AsProperty();
  if (prop != NULL || (proxy != NULL && proxy->var()->IsUnallocated())) {
    is_breakable_ = true;
    return;
  }

  // Otherwise the assignment is breakable if the assigned value is.
  Visit(expr->value());
}


void BreakableStatementChecker::VisitThrow(Throw* expr) {
  // Throw is breakable if the expression is.
  Visit(expr->exception());
}


void BreakableStatementChecker::VisitProperty(Property* expr) {
  // Property load is breakable.
  is_breakable_ = true;
}


void BreakableStatementChecker::VisitCall(Call* expr) {
  // Function calls both through IC and call stub are breakable.
  is_breakable_ = true;
}


void BreakableStatementChecker::VisitCallNew(CallNew* expr) {
  // Function calls through new are breakable.
  is_breakable_ = true;
}


void BreakableStatementChecker::VisitCallRuntime(CallRuntime* expr) {
}


void BreakableStatementChecker::VisitUnaryOperation(UnaryOperation* expr) {
  Visit(expr->expression());
}


void BreakableStatementChecker::VisitCountOperation(CountOperation* expr) {
  Visit(expr->expression());
}


void BreakableStatementChecker::VisitBinaryOperation(BinaryOperation* expr) {
  Visit(expr->left());
  if (expr->op() != Token::AND &&
      expr->op() != Token::OR) {
    Visit(expr->right());
  }
}


void BreakableStatementChecker::VisitCompareOperation(CompareOperation* expr) {
  Visit(expr->left());
  Visit(expr->right());
}


void BreakableStatementChecker::VisitThisFunction(ThisFunction* expr) {
}


#define __ ACCESS_MASM(masm())

bool FullCodeGenerator::MakeCode(CompilationInfo* info) {
  Isolate* isolate = info->isolate();
  Handle<Script> script = info->script();
  if (!script->IsUndefined() && !script->source()->IsUndefined()) {
    int len = String::cast(script->source())->length();
    isolate->counters()->total_full_codegen_source_size()->Increment(len);
  }
  if (FLAG_trace_codegen) {
    PrintF("Full Compiler - ");
  }
  CodeGenerator::MakeCodePrologue(info);
  const int kInitialBufferSize = 4 * KB;
  MacroAssembler masm(info->isolate(), NULL, kInitialBufferSize);
#ifdef ENABLE_GDB_JIT_INTERFACE
  masm.positions_recorder()->StartGDBJITLineInfoRecording();
#endif

  FullCodeGenerator cgen(&masm, info);
  cgen.Generate();
  if (cgen.HasStackOverflow()) {
    ASSERT(!isolate->has_pending_exception());
    return false;
  }
  unsigned table_offset = cgen.EmitStackCheckTable();

  Code::Flags flags = Code::ComputeFlags(Code::FUNCTION);
  Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, flags, info);
  code->set_optimizable(info->IsOptimizable() &&
                        !info->function()->flags()->Contains(kDontOptimize) &&
                        info->function()->scope()->AllowsLazyCompilation());
  cgen.PopulateDeoptimizationData(code);
  cgen.PopulateTypeFeedbackInfo(code);
  cgen.PopulateTypeFeedbackCells(code);
  code->set_has_deoptimization_support(info->HasDeoptimizationSupport());
  code->set_handler_table(*cgen.handler_table());
#ifdef ENABLE_DEBUGGER_SUPPORT
  code->set_has_debug_break_slots(
      info->isolate()->debugger()->IsDebuggerActive());
  code->set_compiled_optimizable(info->IsOptimizable());
#endif  // ENABLE_DEBUGGER_SUPPORT
  code->set_allow_osr_at_loop_nesting_level(0);
  code->set_profiler_ticks(0);
  code->set_stack_check_table_offset(table_offset);
  CodeGenerator::PrintCode(code, info);
  info->SetCode(code);  // May be an empty handle.
#ifdef ENABLE_GDB_JIT_INTERFACE
  if (FLAG_gdbjit && !code.is_null()) {
    GDBJITLineInfo* lineinfo =
        masm.positions_recorder()->DetachGDBJITLineInfo();

    GDBJIT(RegisterDetailedLineInfo(*code, lineinfo));
  }
#endif
  return !code.is_null();
}


unsigned FullCodeGenerator::EmitStackCheckTable() {
  // The stack check table consists of a length (in number of entries)
  // field, and then a sequence of entries.  Each entry is a pair of AST id
  // and code-relative pc offset.
  masm()->Align(kIntSize);
  unsigned offset = masm()->pc_offset();
  unsigned length = stack_checks_.length();
  __ dd(length);
  for (unsigned i = 0; i < length; ++i) {
    __ dd(stack_checks_[i].id);
    __ dd(stack_checks_[i].pc_and_state);
  }
  return offset;
}


void FullCodeGenerator::PopulateDeoptimizationData(Handle<Code> code) {
  // Fill in the deoptimization information.
  ASSERT(info_->HasDeoptimizationSupport() || bailout_entries_.is_empty());
  if (!info_->HasDeoptimizationSupport()) return;
  int length = bailout_entries_.length();
  Handle<DeoptimizationOutputData> data = isolate()->factory()->
      NewDeoptimizationOutputData(length, TENURED);
  for (int i = 0; i < length; i++) {
    data->SetAstId(i, Smi::FromInt(bailout_entries_[i].id));
    data->SetPcAndState(i, Smi::FromInt(bailout_entries_[i].pc_and_state));
  }
  code->set_deoptimization_data(*data);
}


void FullCodeGenerator::PopulateTypeFeedbackInfo(Handle<Code> code) {
  Handle<TypeFeedbackInfo> info = isolate()->factory()->NewTypeFeedbackInfo();
  info->set_ic_total_count(ic_total_count_);
  ASSERT(!isolate()->heap()->InNewSpace(*info));
  code->set_type_feedback_info(*info);
}


void FullCodeGenerator::PopulateTypeFeedbackCells(Handle<Code> code) {
  if (type_feedback_cells_.is_empty()) return;
  int length = type_feedback_cells_.length();
  int array_size = TypeFeedbackCells::LengthOfFixedArray(length);
  Handle<TypeFeedbackCells> cache = Handle<TypeFeedbackCells>::cast(
      isolate()->factory()->NewFixedArray(array_size, TENURED));
  for (int i = 0; i < length; i++) {
    cache->SetAstId(i, Smi::FromInt(type_feedback_cells_[i].ast_id));
    cache->SetCell(i, *type_feedback_cells_[i].cell);
  }
  TypeFeedbackInfo::cast(code->type_feedback_info())->set_type_feedback_cells(
      *cache);
}



void FullCodeGenerator::PrepareForBailout(Expression* node, State state) {
  PrepareForBailoutForId(node->id(), state);
}


void FullCodeGenerator::RecordJSReturnSite(Call* call) {
  // We record the offset of the function return so we can rebuild the frame
  // if the function was inlined, i.e., this is the return address in the
  // inlined function's frame.
  //
  // The state is ignored.  We defensively set it to TOS_REG, which is the
  // real state of the unoptimized code at the return site.
  PrepareForBailoutForId(call->ReturnId(), TOS_REG);
#ifdef DEBUG
  // In debug builds, mark the return so we can verify that this function
  // was called.
  ASSERT(!call->return_is_recorded_);
  call->return_is_recorded_ = true;
#endif
}


void FullCodeGenerator::PrepareForBailoutForId(unsigned id, State state) {
  // There's no need to prepare this code for bailouts from already optimized
  // code or code that can't be optimized.
  if (!info_->HasDeoptimizationSupport()) return;
  unsigned pc_and_state =
      StateField::encode(state) | PcField::encode(masm_->pc_offset());
  ASSERT(Smi::IsValid(pc_and_state));
  BailoutEntry entry = { id, pc_and_state };
#ifdef DEBUG
  if (FLAG_enable_slow_asserts) {
    // Assert that we don't have multiple bailout entries for the same node.
    for (int i = 0; i < bailout_entries_.length(); i++) {
      if (bailout_entries_.at(i).id == entry.id) {
        AstPrinter printer;
        PrintF("%s", printer.PrintProgram(info_->function()));
        UNREACHABLE();
      }
    }
  }
#endif  // DEBUG
  bailout_entries_.Add(entry, zone());
}


void FullCodeGenerator::RecordTypeFeedbackCell(
    unsigned id, Handle<JSGlobalPropertyCell> cell) {
  TypeFeedbackCellEntry entry = { id, cell };
  type_feedback_cells_.Add(entry, zone());
}


void FullCodeGenerator::RecordStackCheck(unsigned ast_id) {
  // The pc offset does not need to be encoded and packed together with a
  // state.
  ASSERT(masm_->pc_offset() > 0);
  BailoutEntry entry = { ast_id, static_cast<unsigned>(masm_->pc_offset()) };
  stack_checks_.Add(entry, zone());
}


bool FullCodeGenerator::ShouldInlineSmiCase(Token::Value op) {
  // Inline smi case inside loops, but not division and modulo which
  // are too complicated and take up too much space.
  if (op == Token::DIV ||op == Token::MOD) return false;
  if (FLAG_always_inline_smi_code) return true;
  return loop_depth_ > 0;
}


void FullCodeGenerator::EffectContext::Plug(Register reg) const {
}


void FullCodeGenerator::AccumulatorValueContext::Plug(Register reg) const {
  __ Move(result_register(), reg);
}


void FullCodeGenerator::StackValueContext::Plug(Register reg) const {
  __ push(reg);
}


void FullCodeGenerator::TestContext::Plug(Register reg) const {
  // For simplicity we always test the accumulator register.
  __ Move(result_register(), reg);
  codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
  codegen()->DoTest(this);
}


void FullCodeGenerator::EffectContext::PlugTOS() const {
  __ Drop(1);
}


void FullCodeGenerator::AccumulatorValueContext::PlugTOS() const {
  __ pop(result_register());
}


void FullCodeGenerator::StackValueContext::PlugTOS() const {
}


void FullCodeGenerator::TestContext::PlugTOS() const {
  // For simplicity we always test the accumulator register.
  __ pop(result_register());
  codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
  codegen()->DoTest(this);
}


void FullCodeGenerator::EffectContext::PrepareTest(
    Label* materialize_true,
    Label* materialize_false,
    Label** if_true,
    Label** if_false,
    Label** fall_through) const {
  // In an effect context, the true and the false case branch to the
  // same label.
  *if_true = *if_false = *fall_through = materialize_true;
}


void FullCodeGenerator::AccumulatorValueContext::PrepareTest(
    Label* materialize_true,
    Label* materialize_false,
    Label** if_true,
    Label** if_false,
    Label** fall_through) const {
  *if_true = *fall_through = materialize_true;
  *if_false = materialize_false;
}


void FullCodeGenerator::StackValueContext::PrepareTest(
    Label* materialize_true,
    Label* materialize_false,
    Label** if_true,
    Label** if_false,
    Label** fall_through) const {
  *if_true = *fall_through = materialize_true;
  *if_false = materialize_false;
}


void FullCodeGenerator::TestContext::PrepareTest(
    Label* materialize_true,
    Label* materialize_false,
    Label** if_true,
    Label** if_false,
    Label** fall_through) const {
  *if_true = true_label_;
  *if_false = false_label_;
  *fall_through = fall_through_;
}


void FullCodeGenerator::DoTest(const TestContext* context) {
  DoTest(context->condition(),
         context->true_label(),
         context->false_label(),
         context->fall_through());
}


void FullCodeGenerator::VisitDeclarations(
    ZoneList<Declaration*>* declarations) {
  ZoneList<Handle<Object> >* saved_globals = globals_;
  ZoneList<Handle<Object> > inner_globals(10, zone());
  globals_ = &inner_globals;

  AstVisitor::VisitDeclarations(declarations);
  if (!globals_->is_empty()) {
    // Invoke the platform-dependent code generator to do the actual
    // declaration the global functions and variables.
    Handle<FixedArray> array =
       isolate()->factory()->NewFixedArray(globals_->length(), TENURED);
    for (int i = 0; i < globals_->length(); ++i)
      array->set(i, *globals_->at(i));
    DeclareGlobals(array);
  }

  globals_ = saved_globals;
}


void FullCodeGenerator::VisitModuleLiteral(ModuleLiteral* module) {
  // Allocate a module context statically.
  Block* block = module->body();
  Scope* saved_scope = scope();
  scope_ = block->scope();
  Interface* interface = module->interface();
  Handle<JSModule> instance = interface->Instance();

  Comment cmnt(masm_, "[ ModuleLiteral");
  SetStatementPosition(block);

  // Set up module context.
  __ Push(instance);
  __ CallRuntime(Runtime::kPushModuleContext, 1);
  StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());

  {
    Comment cmnt(masm_, "[ Declarations");
    VisitDeclarations(scope_->declarations());
  }

  scope_ = saved_scope;
  // Pop module context.
  LoadContextField(context_register(), Context::PREVIOUS_INDEX);
  // Update local stack frame context field.
  StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
}


void FullCodeGenerator::VisitModuleVariable(ModuleVariable* module) {
  // Nothing to do.
  // The instance object is resolved statically through the module's interface.
}


void FullCodeGenerator::VisitModulePath(ModulePath* module) {
  // Nothing to do.
  // The instance object is resolved statically through the module's interface.
}


void FullCodeGenerator::VisitModuleUrl(ModuleUrl* decl) {
  // TODO(rossberg)
}


int FullCodeGenerator::DeclareGlobalsFlags() {
  ASSERT(DeclareGlobalsLanguageMode::is_valid(language_mode()));
  return DeclareGlobalsEvalFlag::encode(is_eval()) |
      DeclareGlobalsNativeFlag::encode(is_native()) |
      DeclareGlobalsLanguageMode::encode(language_mode());
}


void FullCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) {
  CodeGenerator::RecordPositions(masm_, fun->start_position());
}


void FullCodeGenerator::SetReturnPosition(FunctionLiteral* fun) {
  CodeGenerator::RecordPositions(masm_, fun->end_position() - 1);
}


void FullCodeGenerator::SetStatementPosition(Statement* stmt) {
#ifdef ENABLE_DEBUGGER_SUPPORT
  if (!isolate()->debugger()->IsDebuggerActive()) {
    CodeGenerator::RecordPositions(masm_, stmt->statement_pos());
  } else {
    // Check if the statement will be breakable without adding a debug break
    // slot.
    BreakableStatementChecker checker;
    checker.Check(stmt);
    // Record the statement position right here if the statement is not
    // breakable. For breakable statements the actual recording of the
    // position will be postponed to the breakable code (typically an IC).
    bool position_recorded = CodeGenerator::RecordPositions(
        masm_, stmt->statement_pos(), !checker.is_breakable());
    // If the position recording did record a new position generate a debug
    // break slot to make the statement breakable.
    if (position_recorded) {
      Debug::GenerateSlot(masm_);
    }
  }
#else
  CodeGenerator::RecordPositions(masm_, stmt->statement_pos());
#endif
}


void FullCodeGenerator::SetExpressionPosition(Expression* expr, int pos) {
#ifdef ENABLE_DEBUGGER_SUPPORT
  if (!isolate()->debugger()->IsDebuggerActive()) {
    CodeGenerator::RecordPositions(masm_, pos);
  } else {
    // Check if the expression will be breakable without adding a debug break
    // slot.
    BreakableStatementChecker checker;
    checker.Check(expr);
    // Record a statement position right here if the expression is not
    // breakable. For breakable expressions the actual recording of the
    // position will be postponed to the breakable code (typically an IC).
    // NOTE this will record a statement position for something which might
    // not be a statement. As stepping in the debugger will only stop at
    // statement positions this is used for e.g. the condition expression of
    // a do while loop.
    bool position_recorded = CodeGenerator::RecordPositions(
        masm_, pos, !checker.is_breakable());
    // If the position recording did record a new position generate a debug
    // break slot to make the statement breakable.
    if (position_recorded) {
      Debug::GenerateSlot(masm_);
    }
  }
#else
  CodeGenerator::RecordPositions(masm_, pos);
#endif
}


void FullCodeGenerator::SetStatementPosition(int pos) {
  CodeGenerator::RecordPositions(masm_, pos);
}


void FullCodeGenerator::SetSourcePosition(int pos) {
  if (pos != RelocInfo::kNoPosition) {
    masm_->positions_recorder()->RecordPosition(pos);
  }
}


// Lookup table for code generators for  special runtime calls which are
// generated inline.
#define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize)          \
    &FullCodeGenerator::Emit##Name,

const FullCodeGenerator::InlineFunctionGenerator
  FullCodeGenerator::kInlineFunctionGenerators[] = {
    INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
    INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
  };
#undef INLINE_FUNCTION_GENERATOR_ADDRESS


FullCodeGenerator::InlineFunctionGenerator
  FullCodeGenerator::FindInlineFunctionGenerator(Runtime::FunctionId id) {
    int lookup_index =
        static_cast<int>(id) - static_cast<int>(Runtime::kFirstInlineFunction);
    ASSERT(lookup_index >= 0);
    ASSERT(static_cast<size_t>(lookup_index) <
           ARRAY_SIZE(kInlineFunctionGenerators));
    return kInlineFunctionGenerators[lookup_index];
}


void FullCodeGenerator::EmitInlineRuntimeCall(CallRuntime* expr) {
  const Runtime::Function* function = expr->function();
  ASSERT(function != NULL);
  ASSERT(function->intrinsic_type == Runtime::INLINE);
  InlineFunctionGenerator generator =
      FindInlineFunctionGenerator(function->function_id);
  ((*this).*(generator))(expr);
}


void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
  switch (expr->op()) {
    case Token::COMMA:
      return VisitComma(expr);
    case Token::OR:
    case Token::AND:
      return VisitLogicalExpression(expr);
    default:
      return VisitArithmeticExpression(expr);
  }
}


void FullCodeGenerator::VisitInDuplicateContext(Expression* expr) {
  if (context()->IsEffect()) {
    VisitForEffect(expr);
  } else if (context()->IsAccumulatorValue()) {
    VisitForAccumulatorValue(expr);
  } else if (context()->IsStackValue()) {
    VisitForStackValue(expr);
  } else if (context()->IsTest()) {
    const TestContext* test = TestContext::cast(context());
    VisitForControl(expr, test->true_label(), test->false_label(),
                    test->fall_through());
  }
}


void FullCodeGenerator::VisitComma(BinaryOperation* expr) {
  Comment cmnt(masm_, "[ Comma");
  VisitForEffect(expr->left());
  VisitInDuplicateContext(expr->right());
}


void FullCodeGenerator::VisitLogicalExpression(BinaryOperation* expr) {
  bool is_logical_and = expr->op() == Token::AND;
  Comment cmnt(masm_, is_logical_and ? "[ Logical AND" :  "[ Logical OR");
  Expression* left = expr->left();
  Expression* right = expr->right();
  int right_id = expr->RightId();
  Label done;

  if (context()->IsTest()) {
    Label eval_right;
    const TestContext* test = TestContext::cast(context());
    if (is_logical_and) {
      VisitForControl(left, &eval_right, test->false_label(), &eval_right);
    } else {
      VisitForControl(left, test->true_label(), &eval_right, &eval_right);
    }
    PrepareForBailoutForId(right_id, NO_REGISTERS);
    __ bind(&eval_right);

  } else if (context()->IsAccumulatorValue()) {
    VisitForAccumulatorValue(left);
    // We want the value in the accumulator for the test, and on the stack in
    // case we need it.
    __ push(result_register());
    Label discard, restore;
    if (is_logical_and) {
      DoTest(left, &discard, &restore, &restore);
    } else {
      DoTest(left, &restore, &discard, &restore);
    }
    __ bind(&restore);
    __ pop(result_register());
    __ jmp(&done);
    __ bind(&discard);
    __ Drop(1);
    PrepareForBailoutForId(right_id, NO_REGISTERS);

  } else if (context()->IsStackValue()) {
    VisitForAccumulatorValue(left);
    // We want the value in the accumulator for the test, and on the stack in
    // case we need it.
    __ push(result_register());
    Label discard;
    if (is_logical_and) {
      DoTest(left, &discard, &done, &discard);
    } else {
      DoTest(left, &done, &discard, &discard);
    }
    __ bind(&discard);
    __ Drop(1);
    PrepareForBailoutForId(right_id, NO_REGISTERS);

  } else {
    ASSERT(context()->IsEffect());
    Label eval_right;
    if (is_logical_and) {
      VisitForControl(left, &eval_right, &done, &eval_right);
    } else {
      VisitForControl(left, &done, &eval_right, &eval_right);
    }
    PrepareForBailoutForId(right_id, NO_REGISTERS);
    __ bind(&eval_right);
  }

  VisitInDuplicateContext(right);
  __ bind(&done);
}


void FullCodeGenerator::VisitArithmeticExpression(BinaryOperation* expr) {
  Token::Value op = expr->op();
  Comment cmnt(masm_, "[ ArithmeticExpression");
  Expression* left = expr->left();
  Expression* right = expr->right();
  OverwriteMode mode =
      left->ResultOverwriteAllowed()
      ? OVERWRITE_LEFT
      : (right->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE);

  VisitForStackValue(left);
  VisitForAccumulatorValue(right);

  SetSourcePosition(expr->position());
  if (ShouldInlineSmiCase(op)) {
    EmitInlineSmiBinaryOp(expr, op, mode, left, right);
  } else {
    EmitBinaryOp(expr, op, mode);
  }
}


void FullCodeGenerator::VisitBlock(Block* stmt) {
  Comment cmnt(masm_, "[ Block");
  NestedBlock nested_block(this, stmt);
  SetStatementPosition(stmt);

  Scope* saved_scope = scope();
  // Push a block context when entering a block with block scoped variables.
  if (stmt->scope() != NULL) {
    scope_ = stmt->scope();
    if (scope_->is_module_scope()) {
      // If this block is a module body, then we have already allocated and
      // initialized the declarations earlier. Just push the context.
      ASSERT(!scope_->interface()->Instance().is_null());
      __ Push(scope_->interface()->Instance());
      __ CallRuntime(Runtime::kPushModuleContext, 1);
      StoreToFrameField(
          StandardFrameConstants::kContextOffset, context_register());
    } else {
      { Comment cmnt(masm_, "[ Extend block context");
        Handle<ScopeInfo> scope_info = scope_->GetScopeInfo();
        int heap_slots =
            scope_info->ContextLength() - Context::MIN_CONTEXT_SLOTS;
        __ Push(scope_info);
        PushFunctionArgumentForContextAllocation();
        if (heap_slots <= FastNewBlockContextStub::kMaximumSlots) {
          FastNewBlockContextStub stub(heap_slots);
          __ CallStub(&stub);
        } else {
          __ CallRuntime(Runtime::kPushBlockContext, 2);
        }

        // Replace the context stored in the frame.
        StoreToFrameField(StandardFrameConstants::kContextOffset,
                          context_register());
      }
      { Comment cmnt(masm_, "[ Declarations");
        VisitDeclarations(scope_->declarations());
      }
    }
  }
  PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
  VisitStatements(stmt->statements());
  scope_ = saved_scope;
  __ bind(nested_block.break_label());
  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);

  // Pop block context if necessary.
  if (stmt->scope() != NULL) {
    LoadContextField(context_register(), Context::PREVIOUS_INDEX);
    // Update local stack frame context field.
    StoreToFrameField(StandardFrameConstants::kContextOffset,
                      context_register());
  }
}


void FullCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) {
  Comment cmnt(masm_, "[ ExpressionStatement");
  SetStatementPosition(stmt);
  VisitForEffect(stmt->expression());
}


void FullCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) {
  Comment cmnt(masm_, "[ EmptyStatement");
  SetStatementPosition(stmt);
}


void FullCodeGenerator::VisitIfStatement(IfStatement* stmt) {
  Comment cmnt(masm_, "[ IfStatement");
  SetStatementPosition(stmt);
  Label then_part, else_part, done;

  if (stmt->HasElseStatement()) {
    VisitForControl(stmt->condition(), &then_part, &else_part, &then_part);
    PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
    __ bind(&then_part);
    Visit(stmt->then_statement());
    __ jmp(&done);

    PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
    __ bind(&else_part);
    Visit(stmt->else_statement());
  } else {
    VisitForControl(stmt->condition(), &then_part, &done, &then_part);
    PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
    __ bind(&then_part);
    Visit(stmt->then_statement());

    PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
  }
  __ bind(&done);
  PrepareForBailoutForId(stmt->IfId(), NO_REGISTERS);
}


void FullCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) {
  Comment cmnt(masm_,  "[ ContinueStatement");
  SetStatementPosition(stmt);
  NestedStatement* current = nesting_stack_;
  int stack_depth = 0;
  int context_length = 0;
  // When continuing, we clobber the unpredictable value in the accumulator
  // with one that's safe for GC.  If we hit an exit from the try block of
  // try...finally on our way out, we will unconditionally preserve the
  // accumulator on the stack.
  ClearAccumulator();
  while (!current->IsContinueTarget(stmt->target())) {
    current = current->Exit(&stack_depth, &context_length);
  }
  __ Drop(stack_depth);
  if (context_length > 0) {
    while (context_length > 0) {
      LoadContextField(context_register(), Context::PREVIOUS_INDEX);
      --context_length;
    }
    StoreToFrameField(StandardFrameConstants::kContextOffset,
                      context_register());
  }

  __ jmp(current->AsIteration()->continue_label());
}


void FullCodeGenerator::VisitBreakStatement(BreakStatement* stmt) {
  Comment cmnt(masm_,  "[ BreakStatement");
  SetStatementPosition(stmt);
  NestedStatement* current = nesting_stack_;
  int stack_depth = 0;
  int context_length = 0;
  // When breaking, we clobber the unpredictable value in the accumulator
  // with one that's safe for GC.  If we hit an exit from the try block of
  // try...finally on our way out, we will unconditionally preserve the
  // accumulator on the stack.
  ClearAccumulator();
  while (!current->IsBreakTarget(stmt->target())) {
    current = current->Exit(&stack_depth, &context_length);
  }
  __ Drop(stack_depth);
  if (context_length > 0) {
    while (context_length > 0) {
      LoadContextField(context_register(), Context::PREVIOUS_INDEX);
      --context_length;
    }
    StoreToFrameField(StandardFrameConstants::kContextOffset,
                      context_register());
  }

  __ jmp(current->AsBreakable()->break_label());
}


void FullCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
  Comment cmnt(masm_, "[ ReturnStatement");
  SetStatementPosition(stmt);
  Expression* expr = stmt->expression();
  VisitForAccumulatorValue(expr);

  // Exit all nested statements.
  NestedStatement* current = nesting_stack_;
  int stack_depth = 0;
  int context_length = 0;
  while (current != NULL) {
    current = current->Exit(&stack_depth, &context_length);
  }
  __ Drop(stack_depth);

  EmitReturnSequence();
}


void FullCodeGenerator::VisitWithStatement(WithStatement* stmt) {
  Comment cmnt(masm_, "[ WithStatement");
  SetStatementPosition(stmt);

  VisitForStackValue(stmt->expression());
  PushFunctionArgumentForContextAllocation();
  __ CallRuntime(Runtime::kPushWithContext, 2);
  StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());

  { WithOrCatch body(this);
    Visit(stmt->statement());
  }

  // Pop context.
  LoadContextField(context_register(), Context::PREVIOUS_INDEX);
  // Update local stack frame context field.
  StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
}


void FullCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) {
  Comment cmnt(masm_, "[ DoWhileStatement");
  SetStatementPosition(stmt);
  Label body, stack_check;

  Iteration loop_statement(this, stmt);
  increment_loop_depth();

  __ bind(&body);
  Visit(stmt->body());

  // Record the position of the do while condition and make sure it is
  // possible to break on the condition.
  __ bind(loop_statement.continue_label());
  PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
  SetExpressionPosition(stmt->cond(), stmt->condition_position());
  VisitForControl(stmt->cond(),
                  &stack_check,
                  loop_statement.break_label(),
                  &stack_check);

  // Check stack before looping.
  PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
  __ bind(&stack_check);
  EmitStackCheck(stmt, &body);
  __ jmp(&body);

  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
  __ bind(loop_statement.break_label());
  decrement_loop_depth();
}


void FullCodeGenerator::VisitWhileStatement(WhileStatement* stmt) {
  Comment cmnt(masm_, "[ WhileStatement");
  Label test, body;

  Iteration loop_statement(this, stmt);
  increment_loop_depth();

  // Emit the test at the bottom of the loop.
  __ jmp(&test);

  PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
  __ bind(&body);
  Visit(stmt->body());

  // Emit the statement position here as this is where the while
  // statement code starts.
  __ bind(loop_statement.continue_label());
  SetStatementPosition(stmt);

  // Check stack before looping.
  EmitStackCheck(stmt, &body);

  __ bind(&test);
  VisitForControl(stmt->cond(),
                  &body,
                  loop_statement.break_label(),
                  loop_statement.break_label());

  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
  __ bind(loop_statement.break_label());
  decrement_loop_depth();
}


void FullCodeGenerator::VisitForStatement(ForStatement* stmt) {
  Comment cmnt(masm_, "[ ForStatement");
  Label test, body;

  Iteration loop_statement(this, stmt);

  // Set statement position for a break slot before entering the for-body.
  SetStatementPosition(stmt);

  if (stmt->init() != NULL) {
    Visit(stmt->init());
  }

  increment_loop_depth();
  // Emit the test at the bottom of the loop (even if empty).
  __ jmp(&test);

  PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
  __ bind(&body);
  Visit(stmt->body());

  PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
  __ bind(loop_statement.continue_label());
  if (stmt->next() != NULL) {
    Visit(stmt->next());
  }

  // Emit the statement position here as this is where the for
  // statement code starts.
  SetStatementPosition(stmt);

  // Check stack before looping.
  EmitStackCheck(stmt, &body);

  __ bind(&test);
  if (stmt->cond() != NULL) {
    VisitForControl(stmt->cond(),
                    &body,
                    loop_statement.break_label(),
                    loop_statement.break_label());
  } else {
    __ jmp(&body);
  }

  PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
  __ bind(loop_statement.break_label());
  decrement_loop_depth();
}


void FullCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) {
  Comment cmnt(masm_, "[ TryCatchStatement");
  SetStatementPosition(stmt);
  // The try block adds a handler to the exception handler chain before
  // entering, and removes it again when exiting normally.  If an exception
  // is thrown during execution of the try block, the handler is consumed
  // and control is passed to the catch block with the exception in the
  // result register.

  Label try_entry, handler_entry, exit;
  __ jmp(&try_entry);
  __ bind(&handler_entry);
  handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
  // Exception handler code, the exception is in the result register.
  // Extend the context before executing the catch block.
  { Comment cmnt(masm_, "[ Extend catch context");
    __ Push(stmt->variable()->name());
    __ push(result_register());
    PushFunctionArgumentForContextAllocation();
    __ CallRuntime(Runtime::kPushCatchContext, 3);
    StoreToFrameField(StandardFrameConstants::kContextOffset,
                      context_register());
  }

  Scope* saved_scope = scope();
  scope_ = stmt->scope();
  ASSERT(scope_->declarations()->is_empty());
  { WithOrCatch catch_body(this);
    Visit(stmt->catch_block());
  }
  // Restore the context.
  LoadContextField(context_register(), Context::PREVIOUS_INDEX);
  StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
  scope_ = saved_scope;
  __ jmp(&exit);

  // Try block code. Sets up the exception handler chain.
  __ bind(&try_entry);
  __ PushTryHandler(StackHandler::CATCH, stmt->index());
  { TryCatch try_body(this);
    Visit(stmt->try_block());
  }
  __ PopTryHandler();
  __ bind(&exit);
}


void FullCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
  Comment cmnt(masm_, "[ TryFinallyStatement");
  SetStatementPosition(stmt);
  // Try finally is compiled by setting up a try-handler on the stack while
  // executing the try body, and removing it again afterwards.
  //
  // The try-finally construct can enter the finally block in three ways:
  // 1. By exiting the try-block normally. This removes the try-handler and
  //    calls the finally block code before continuing.
  // 2. By exiting the try-block with a function-local control flow transfer
  //    (break/continue/return). The site of the, e.g., break removes the
  //    try handler and calls the finally block code before continuing
  //    its outward control transfer.
  // 3. By exiting the try-block with a thrown exception.
  //    This can happen in nested function calls. It traverses the try-handler
  //    chain and consumes the try-handler entry before jumping to the
  //    handler code. The handler code then calls the finally-block before
  //    rethrowing the exception.
  //
  // The finally block must assume a return address on top of the stack
  // (or in the link register on ARM chips) and a value (return value or
  // exception) in the result register (rax/eax/r0), both of which must
  // be preserved. The return address isn't GC-safe, so it should be
  // cooked before GC.
  Label try_entry, handler_entry, finally_entry;

  // Jump to try-handler setup and try-block code.
  __ jmp(&try_entry);
  __ bind(&handler_entry);
  handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
  // Exception handler code.  This code is only executed when an exception
  // is thrown.  The exception is in the result register, and must be
  // preserved by the finally block.  Call the finally block and then
  // rethrow the exception if it returns.
  __ Call(&finally_entry);
  __ push(result_register());
  __ CallRuntime(Runtime::kReThrow, 1);

  // Finally block implementation.
  __ bind(&finally_entry);
  EnterFinallyBlock();
  { Finally finally_body(this);
    Visit(stmt->finally_block());
  }
  ExitFinallyBlock();  // Return to the calling code.

  // Set up try handler.
  __ bind(&try_entry);
  __ PushTryHandler(StackHandler::FINALLY, stmt->index());
  { TryFinally try_body(this, &finally_entry);
    Visit(stmt->try_block());
  }
  __ PopTryHandler();
  // Execute the finally block on the way out.  Clobber the unpredictable
  // value in the result register with one that's safe for GC because the
  // finally block will unconditionally preserve the result register on the
  // stack.
  ClearAccumulator();
  __ Call(&finally_entry);
}


void FullCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) {
#ifdef ENABLE_DEBUGGER_SUPPORT
  Comment cmnt(masm_, "[ DebuggerStatement");
  SetStatementPosition(stmt);

  __ DebugBreak();
  // Ignore the return value.
#endif
}


void FullCodeGenerator::VisitConditional(Conditional* expr) {
  Comment cmnt(masm_, "[ Conditional");
  Label true_case, false_case, done;
  VisitForControl(expr->condition(), &true_case, &false_case, &true_case);

  PrepareForBailoutForId(expr->ThenId(), NO_REGISTERS);
  __ bind(&true_case);
  SetExpressionPosition(expr->then_expression(),
                        expr->then_expression_position());
  if (context()->IsTest()) {
    const TestContext* for_test = TestContext::cast(context());
    VisitForControl(expr->then_expression(),
                    for_test->true_label(),
                    for_test->false_label(),
                    NULL);
  } else {
    VisitInDuplicateContext(expr->then_expression());
    __ jmp(&done);
  }

  PrepareForBailoutForId(expr->ElseId(), NO_REGISTERS);
  __ bind(&false_case);
  SetExpressionPosition(expr->else_expression(),
                        expr->else_expression_position());
  VisitInDuplicateContext(expr->else_expression());
  // If control flow falls through Visit, merge it with true case here.
  if (!context()->IsTest()) {
    __ bind(&done);
  }
}


void FullCodeGenerator::VisitLiteral(Literal* expr) {
  Comment cmnt(masm_, "[ Literal");
  context()->Plug(expr->handle());
}


void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
  Comment cmnt(masm_, "[ FunctionLiteral");

  // Build the function boilerplate and instantiate it.
  Handle<SharedFunctionInfo> function_info =
      Compiler::BuildFunctionInfo(expr, script());
  if (function_info.is_null()) {
    SetStackOverflow();
    return;
  }
  EmitNewClosure(function_info, expr->pretenure());
}


void FullCodeGenerator::VisitSharedFunctionInfoLiteral(
    SharedFunctionInfoLiteral* expr) {
  Comment cmnt(masm_, "[ SharedFunctionInfoLiteral");
  EmitNewClosure(expr->shared_function_info(), false);
}


void FullCodeGenerator::VisitThrow(Throw* expr) {
  Comment cmnt(masm_, "[ Throw");
  VisitForStackValue(expr->exception());
  __ CallRuntime(Runtime::kThrow, 1);
  // Never returns here.
}


FullCodeGenerator::NestedStatement* FullCodeGenerator::TryCatch::Exit(
    int* stack_depth,
    int* context_length) {
  // The macros used here must preserve the result register.
  __ Drop(*stack_depth);
  __ PopTryHandler();
  *stack_depth = 0;
  return previous_;
}


bool FullCodeGenerator::TryLiteralCompare(CompareOperation* expr) {
  Expression* sub_expr;
  Handle<String> check;
  if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
    EmitLiteralCompareTypeof(expr, sub_expr, check);
    return true;
  }

  if (expr->IsLiteralCompareUndefined(&sub_expr)) {
    EmitLiteralCompareNil(expr, sub_expr, kUndefinedValue);
    return true;
  }

  if (expr->IsLiteralCompareNull(&sub_expr)) {
    EmitLiteralCompareNil(expr, sub_expr, kNullValue);
    return true;
  }

  return false;
}


#undef __


} }  // namespace v8::internal

/* [<][>][^][v][top][bottom][index][help] */