root/src/platform-freebsd.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ceiling
  2. PostSetUp
  3. ReleaseStore
  4. CpuFeaturesImpliedByPlatform
  5. ActivationFrameAlignment
  6. LocalTimezone
  7. LocalTimeOffset
  8. UpdateAllocatedSpaceLimits
  9. IsOutsideAllocatedSpace
  10. AllocateAlignment
  11. Allocate
  12. Free
  13. Sleep
  14. Abort
  15. DebugBreak
  16. size_
  17. memory
  18. size
  19. open
  20. create
  21. StringToLong
  22. LogSharedLibraryAddresses
  23. SignalCodeMovingGC
  24. StackWalk
  25. size_
  26. size_
  27. IsReserved
  28. Reset
  29. Commit
  30. Uncommit
  31. Guard
  32. ReserveRegion
  33. CommitRegion
  34. UncommitRegion
  35. ReleaseRegion
  36. stack_size_
  37. ThreadEntry
  38. set_name
  39. Start
  40. Join
  41. CreateThreadLocalKey
  42. DeleteThreadLocalKey
  43. GetThreadLocal
  44. SetThreadLocal
  45. YieldCPU
  46. Lock
  47. Unlock
  48. TryLock
  49. CreateMutex
  50. Signal
  51. Wait
  52. Wait
  53. CreateSemaphore
  54. GetThreadID
  55. PlatformData
  56. vm_tid
  57. ProfilerSignalHandler
  58. interval_
  59. SetUp
  60. TearDown
  61. AddActiveSampler
  62. RemoveActiveSampler
  63. Run
  64. DoCpuProfile
  65. DoRuntimeProfile
  66. SendProfilingSignal
  67. Sleep
  68. SetUp
  69. TearDown
  70. samples_taken_
  71. Start
  72. Stop

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Platform specific code for FreeBSD goes here. For the POSIX comaptible parts
// the implementation is in platform-posix.cc.

#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <sys/ucontext.h>
#include <stdlib.h>

#include <sys/types.h>  // mmap & munmap
#include <sys/mman.h>   // mmap & munmap
#include <sys/stat.h>   // open
#include <sys/fcntl.h>  // open
#include <unistd.h>     // getpagesize
// If you don't have execinfo.h then you need devel/libexecinfo from ports.
#include <execinfo.h>   // backtrace, backtrace_symbols
#include <strings.h>    // index
#include <errno.h>
#include <stdarg.h>
#include <limits.h>

#undef MAP_TYPE

#include "v8.h"
#include "v8threads.h"

#include "platform-posix.h"
#include "platform.h"
#include "vm-state-inl.h"


namespace v8 {
namespace internal {

// 0 is never a valid thread id on FreeBSD since tids and pids share a
// name space and pid 0 is used to kill the group (see man 2 kill).
static const pthread_t kNoThread = (pthread_t) 0;


double ceiling(double x) {
    // Correct as on OS X
    if (-1.0 < x && x < 0.0) {
        return -0.0;
    } else {
        return ceil(x);
    }
}


static Mutex* limit_mutex = NULL;


void OS::PostSetUp() {
  POSIXPostSetUp();
}


void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
  __asm__ __volatile__("" : : : "memory");
  *ptr = value;
}


uint64_t OS::CpuFeaturesImpliedByPlatform() {
  return 0;  // FreeBSD runs on anything.
}


int OS::ActivationFrameAlignment() {
  // 16 byte alignment on FreeBSD
  return 16;
}


const char* OS::LocalTimezone(double time) {
  if (isnan(time)) return "";
  time_t tv = static_cast<time_t>(floor(time/msPerSecond));
  struct tm* t = localtime(&tv);
  if (NULL == t) return "";
  return t->tm_zone;
}


double OS::LocalTimeOffset() {
  time_t tv = time(NULL);
  struct tm* t = localtime(&tv);
  // tm_gmtoff includes any daylight savings offset, so subtract it.
  return static_cast<double>(t->tm_gmtoff * msPerSecond -
                             (t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
}


// We keep the lowest and highest addresses mapped as a quick way of
// determining that pointers are outside the heap (used mostly in assertions
// and verification).  The estimate is conservative, i.e., not all addresses in
// 'allocated' space are actually allocated to our heap.  The range is
// [lowest, highest), inclusive on the low and and exclusive on the high end.
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
static void* highest_ever_allocated = reinterpret_cast<void*>(0);


static void UpdateAllocatedSpaceLimits(void* address, int size) {
  ASSERT(limit_mutex != NULL);
  ScopedLock lock(limit_mutex);

  lowest_ever_allocated = Min(lowest_ever_allocated, address);
  highest_ever_allocated =
      Max(highest_ever_allocated,
          reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
}


bool OS::IsOutsideAllocatedSpace(void* address) {
  return address < lowest_ever_allocated || address >= highest_ever_allocated;
}


size_t OS::AllocateAlignment() {
  return getpagesize();
}


void* OS::Allocate(const size_t requested,
                   size_t* allocated,
                   bool executable) {
  const size_t msize = RoundUp(requested, getpagesize());
  int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0);
  void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);

  if (mbase == MAP_FAILED) {
    LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed"));
    return NULL;
  }
  *allocated = msize;
  UpdateAllocatedSpaceLimits(mbase, msize);
  return mbase;
}


void OS::Free(void* buf, const size_t length) {
  // TODO(1240712): munmap has a return value which is ignored here.
  int result = munmap(buf, length);
  USE(result);
  ASSERT(result == 0);
}


void OS::Sleep(int milliseconds) {
  unsigned int ms = static_cast<unsigned int>(milliseconds);
  usleep(1000 * ms);
}


void OS::Abort() {
  // Redirect to std abort to signal abnormal program termination.
  abort();
}


void OS::DebugBreak() {
#if (defined(__arm__) || defined(__thumb__))
# if defined(CAN_USE_ARMV5_INSTRUCTIONS)
  asm("bkpt 0");
# endif
#else
  asm("int $3");
#endif
}


class PosixMemoryMappedFile : public OS::MemoryMappedFile {
 public:
  PosixMemoryMappedFile(FILE* file, void* memory, int size)
    : file_(file), memory_(memory), size_(size) { }
  virtual ~PosixMemoryMappedFile();
  virtual void* memory() { return memory_; }
  virtual int size() { return size_; }
 private:
  FILE* file_;
  void* memory_;
  int size_;
};


OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
  FILE* file = fopen(name, "r+");
  if (file == NULL) return NULL;

  fseek(file, 0, SEEK_END);
  int size = ftell(file);

  void* memory =
      mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
  return new PosixMemoryMappedFile(file, memory, size);
}


OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
    void* initial) {
  FILE* file = fopen(name, "w+");
  if (file == NULL) return NULL;
  int result = fwrite(initial, size, 1, file);
  if (result < 1) {
    fclose(file);
    return NULL;
  }
  void* memory =
      mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
  return new PosixMemoryMappedFile(file, memory, size);
}


PosixMemoryMappedFile::~PosixMemoryMappedFile() {
  if (memory_) munmap(memory_, size_);
  fclose(file_);
}


static unsigned StringToLong(char* buffer) {
  return static_cast<unsigned>(strtol(buffer, NULL, 16));  // NOLINT
}


void OS::LogSharedLibraryAddresses() {
  static const int MAP_LENGTH = 1024;
  int fd = open("/proc/self/maps", O_RDONLY);
  if (fd < 0) return;
  while (true) {
    char addr_buffer[11];
    addr_buffer[0] = '0';
    addr_buffer[1] = 'x';
    addr_buffer[10] = 0;
    int result = read(fd, addr_buffer + 2, 8);
    if (result < 8) break;
    unsigned start = StringToLong(addr_buffer);
    result = read(fd, addr_buffer + 2, 1);
    if (result < 1) break;
    if (addr_buffer[2] != '-') break;
    result = read(fd, addr_buffer + 2, 8);
    if (result < 8) break;
    unsigned end = StringToLong(addr_buffer);
    char buffer[MAP_LENGTH];
    int bytes_read = -1;
    do {
      bytes_read++;
      if (bytes_read >= MAP_LENGTH - 1)
        break;
      result = read(fd, buffer + bytes_read, 1);
      if (result < 1) break;
    } while (buffer[bytes_read] != '\n');
    buffer[bytes_read] = 0;
    // Ignore mappings that are not executable.
    if (buffer[3] != 'x') continue;
    char* start_of_path = index(buffer, '/');
    // There may be no filename in this line.  Skip to next.
    if (start_of_path == NULL) continue;
    buffer[bytes_read] = 0;
    LOG(i::Isolate::Current(), SharedLibraryEvent(start_of_path, start, end));
  }
  close(fd);
}


void OS::SignalCodeMovingGC() {
}


int OS::StackWalk(Vector<OS::StackFrame> frames) {
  int frames_size = frames.length();
  ScopedVector<void*> addresses(frames_size);

  int frames_count = backtrace(addresses.start(), frames_size);

  char** symbols = backtrace_symbols(addresses.start(), frames_count);
  if (symbols == NULL) {
    return kStackWalkError;
  }

  for (int i = 0; i < frames_count; i++) {
    frames[i].address = addresses[i];
    // Format a text representation of the frame based on the information
    // available.
    SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
             "%s",
             symbols[i]);
    // Make sure line termination is in place.
    frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
  }

  free(symbols);

  return frames_count;
}


// Constants used for mmap.
static const int kMmapFd = -1;
static const int kMmapFdOffset = 0;

VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }

VirtualMemory::VirtualMemory(size_t size) {
  address_ = ReserveRegion(size);
  size_ = size;
}


VirtualMemory::VirtualMemory(size_t size, size_t alignment)
    : address_(NULL), size_(0) {
  ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
  size_t request_size = RoundUp(size + alignment,
                                static_cast<intptr_t>(OS::AllocateAlignment()));
  void* reservation = mmap(OS::GetRandomMmapAddr(),
                           request_size,
                           PROT_NONE,
                           MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
                           kMmapFd,
                           kMmapFdOffset);
  if (reservation == MAP_FAILED) return;

  Address base = static_cast<Address>(reservation);
  Address aligned_base = RoundUp(base, alignment);
  ASSERT_LE(base, aligned_base);

  // Unmap extra memory reserved before and after the desired block.
  if (aligned_base != base) {
    size_t prefix_size = static_cast<size_t>(aligned_base - base);
    OS::Free(base, prefix_size);
    request_size -= prefix_size;
  }

  size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
  ASSERT_LE(aligned_size, request_size);

  if (aligned_size != request_size) {
    size_t suffix_size = request_size - aligned_size;
    OS::Free(aligned_base + aligned_size, suffix_size);
    request_size -= suffix_size;
  }

  ASSERT(aligned_size == request_size);

  address_ = static_cast<void*>(aligned_base);
  size_ = aligned_size;
}


VirtualMemory::~VirtualMemory() {
  if (IsReserved()) {
    bool result = ReleaseRegion(address(), size());
    ASSERT(result);
    USE(result);
  }
}


bool VirtualMemory::IsReserved() {
  return address_ != NULL;
}


void VirtualMemory::Reset() {
  address_ = NULL;
  size_ = 0;
}


bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
  return CommitRegion(address, size, is_executable);
}


bool VirtualMemory::Uncommit(void* address, size_t size) {
  return UncommitRegion(address, size);
}


bool VirtualMemory::Guard(void* address) {
  OS::Guard(address, OS::CommitPageSize());
  return true;
}


void* VirtualMemory::ReserveRegion(size_t size) {
  void* result = mmap(OS::GetRandomMmapAddr(),
                      size,
                      PROT_NONE,
                      MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
                      kMmapFd,
                      kMmapFdOffset);

  if (result == MAP_FAILED) return NULL;

  return result;
}


bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
  int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
  if (MAP_FAILED == mmap(base,
                         size,
                         prot,
                         MAP_PRIVATE | MAP_ANON | MAP_FIXED,
                         kMmapFd,
                         kMmapFdOffset)) {
    return false;
  }

  UpdateAllocatedSpaceLimits(base, size);
  return true;
}


bool VirtualMemory::UncommitRegion(void* base, size_t size) {
  return mmap(base,
              size,
              PROT_NONE,
              MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
              kMmapFd,
              kMmapFdOffset) != MAP_FAILED;
}


bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
  return munmap(base, size) == 0;
}


class Thread::PlatformData : public Malloced {
 public:
  pthread_t thread_;  // Thread handle for pthread.
};


Thread::Thread(const Options& options)
    : data_(new PlatformData),
      stack_size_(options.stack_size()) {
  set_name(options.name());
}


Thread::~Thread() {
  delete data_;
}


static void* ThreadEntry(void* arg) {
  Thread* thread = reinterpret_cast<Thread*>(arg);
  // This is also initialized by the first argument to pthread_create() but we
  // don't know which thread will run first (the original thread or the new
  // one) so we initialize it here too.
  thread->data()->thread_ = pthread_self();
  ASSERT(thread->data()->thread_ != kNoThread);
  thread->Run();
  return NULL;
}


void Thread::set_name(const char* name) {
  strncpy(name_, name, sizeof(name_));
  name_[sizeof(name_) - 1] = '\0';
}


void Thread::Start() {
  pthread_attr_t* attr_ptr = NULL;
  pthread_attr_t attr;
  if (stack_size_ > 0) {
    pthread_attr_init(&attr);
    pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
    attr_ptr = &attr;
  }
  pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this);
  ASSERT(data_->thread_ != kNoThread);
}


void Thread::Join() {
  pthread_join(data_->thread_, NULL);
}


Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
  pthread_key_t key;
  int result = pthread_key_create(&key, NULL);
  USE(result);
  ASSERT(result == 0);
  return static_cast<LocalStorageKey>(key);
}


void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
  int result = pthread_key_delete(pthread_key);
  USE(result);
  ASSERT(result == 0);
}


void* Thread::GetThreadLocal(LocalStorageKey key) {
  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
  return pthread_getspecific(pthread_key);
}


void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
  pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
  pthread_setspecific(pthread_key, value);
}


void Thread::YieldCPU() {
  sched_yield();
}


class FreeBSDMutex : public Mutex {
 public:
  FreeBSDMutex() {
    pthread_mutexattr_t attrs;
    int result = pthread_mutexattr_init(&attrs);
    ASSERT(result == 0);
    result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
    ASSERT(result == 0);
    result = pthread_mutex_init(&mutex_, &attrs);
    ASSERT(result == 0);
    USE(result);
  }

  virtual ~FreeBSDMutex() { pthread_mutex_destroy(&mutex_); }

  virtual int Lock() {
    int result = pthread_mutex_lock(&mutex_);
    return result;
  }

  virtual int Unlock() {
    int result = pthread_mutex_unlock(&mutex_);
    return result;
  }

  virtual bool TryLock() {
    int result = pthread_mutex_trylock(&mutex_);
    // Return false if the lock is busy and locking failed.
    if (result == EBUSY) {
      return false;
    }
    ASSERT(result == 0);  // Verify no other errors.
    return true;
  }

 private:
  pthread_mutex_t mutex_;   // Pthread mutex for POSIX platforms.
};


Mutex* OS::CreateMutex() {
  return new FreeBSDMutex();
}


class FreeBSDSemaphore : public Semaphore {
 public:
  explicit FreeBSDSemaphore(int count) {  sem_init(&sem_, 0, count); }
  virtual ~FreeBSDSemaphore() { sem_destroy(&sem_); }

  virtual void Wait();
  virtual bool Wait(int timeout);
  virtual void Signal() { sem_post(&sem_); }
 private:
  sem_t sem_;
};


void FreeBSDSemaphore::Wait() {
  while (true) {
    int result = sem_wait(&sem_);
    if (result == 0) return;  // Successfully got semaphore.
    CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
  }
}


bool FreeBSDSemaphore::Wait(int timeout) {
  const long kOneSecondMicros = 1000000;  // NOLINT

  // Split timeout into second and nanosecond parts.
  struct timeval delta;
  delta.tv_usec = timeout % kOneSecondMicros;
  delta.tv_sec = timeout / kOneSecondMicros;

  struct timeval current_time;
  // Get the current time.
  if (gettimeofday(&current_time, NULL) == -1) {
    return false;
  }

  // Calculate time for end of timeout.
  struct timeval end_time;
  timeradd(&current_time, &delta, &end_time);

  struct timespec ts;
  TIMEVAL_TO_TIMESPEC(&end_time, &ts);
  while (true) {
    int result = sem_timedwait(&sem_, &ts);
    if (result == 0) return true;  // Successfully got semaphore.
    if (result == -1 && errno == ETIMEDOUT) return false;  // Timeout.
    CHECK(result == -1 && errno == EINTR);  // Signal caused spurious wakeup.
  }
}


Semaphore* OS::CreateSemaphore(int count) {
  return new FreeBSDSemaphore(count);
}


static pthread_t GetThreadID() {
  pthread_t thread_id = pthread_self();
  return thread_id;
}


class Sampler::PlatformData : public Malloced {
 public:
  PlatformData() : vm_tid_(GetThreadID()) {}

  pthread_t vm_tid() const { return vm_tid_; }

 private:
  pthread_t vm_tid_;
};


static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
  USE(info);
  if (signal != SIGPROF) return;
  Isolate* isolate = Isolate::UncheckedCurrent();
  if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) {
    // We require a fully initialized and entered isolate.
    return;
  }
  if (v8::Locker::IsActive() &&
      !isolate->thread_manager()->IsLockedByCurrentThread()) {
    return;
  }

  Sampler* sampler = isolate->logger()->sampler();
  if (sampler == NULL || !sampler->IsActive()) return;

  TickSample sample_obj;
  TickSample* sample = CpuProfiler::TickSampleEvent(isolate);
  if (sample == NULL) sample = &sample_obj;

  // Extracting the sample from the context is extremely machine dependent.
  ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
  mcontext_t& mcontext = ucontext->uc_mcontext;
  sample->state = isolate->current_vm_state();
#if V8_HOST_ARCH_IA32
  sample->pc = reinterpret_cast<Address>(mcontext.mc_eip);
  sample->sp = reinterpret_cast<Address>(mcontext.mc_esp);
  sample->fp = reinterpret_cast<Address>(mcontext.mc_ebp);
#elif V8_HOST_ARCH_X64
  sample->pc = reinterpret_cast<Address>(mcontext.mc_rip);
  sample->sp = reinterpret_cast<Address>(mcontext.mc_rsp);
  sample->fp = reinterpret_cast<Address>(mcontext.mc_rbp);
#elif V8_HOST_ARCH_ARM
  sample->pc = reinterpret_cast<Address>(mcontext.mc_r15);
  sample->sp = reinterpret_cast<Address>(mcontext.mc_r13);
  sample->fp = reinterpret_cast<Address>(mcontext.mc_r11);
#endif
  sampler->SampleStack(sample);
  sampler->Tick(sample);
}


class SignalSender : public Thread {
 public:
  enum SleepInterval {
    HALF_INTERVAL,
    FULL_INTERVAL
  };

  static const int kSignalSenderStackSize = 64 * KB;

  explicit SignalSender(int interval)
      : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)),
        interval_(interval) {}

  static void SetUp() { if (!mutex_) mutex_ = OS::CreateMutex(); }
  static void TearDown() { delete mutex_; }

  static void AddActiveSampler(Sampler* sampler) {
    ScopedLock lock(mutex_);
    SamplerRegistry::AddActiveSampler(sampler);
    if (instance_ == NULL) {
      // Install a signal handler.
      struct sigaction sa;
      sa.sa_sigaction = ProfilerSignalHandler;
      sigemptyset(&sa.sa_mask);
      sa.sa_flags = SA_RESTART | SA_SIGINFO;
      signal_handler_installed_ =
          (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);

      // Start a thread that sends SIGPROF signal to VM threads.
      instance_ = new SignalSender(sampler->interval());
      instance_->Start();
    } else {
      ASSERT(instance_->interval_ == sampler->interval());
    }
  }

  static void RemoveActiveSampler(Sampler* sampler) {
    ScopedLock lock(mutex_);
    SamplerRegistry::RemoveActiveSampler(sampler);
    if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
      RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
      delete instance_;
      instance_ = NULL;

      // Restore the old signal handler.
      if (signal_handler_installed_) {
        sigaction(SIGPROF, &old_signal_handler_, 0);
        signal_handler_installed_ = false;
      }
    }
  }

  // Implement Thread::Run().
  virtual void Run() {
    SamplerRegistry::State state;
    while ((state = SamplerRegistry::GetState()) !=
           SamplerRegistry::HAS_NO_SAMPLERS) {
      bool cpu_profiling_enabled =
          (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
      bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
      // When CPU profiling is enabled both JavaScript and C++ code is
      // profiled. We must not suspend.
      if (!cpu_profiling_enabled) {
        if (rate_limiter_.SuspendIfNecessary()) continue;
      }
      if (cpu_profiling_enabled && runtime_profiler_enabled) {
        if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
          return;
        }
        Sleep(HALF_INTERVAL);
        if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
          return;
        }
        Sleep(HALF_INTERVAL);
      } else {
        if (cpu_profiling_enabled) {
          if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile,
                                                      this)) {
            return;
          }
        }
        if (runtime_profiler_enabled) {
          if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile,
                                                      NULL)) {
            return;
          }
        }
        Sleep(FULL_INTERVAL);
      }
    }
  }

  static void DoCpuProfile(Sampler* sampler, void* raw_sender) {
    if (!sampler->IsProfiling()) return;
    SignalSender* sender = reinterpret_cast<SignalSender*>(raw_sender);
    sender->SendProfilingSignal(sampler->platform_data()->vm_tid());
  }

  static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
    if (!sampler->isolate()->IsInitialized()) return;
    sampler->isolate()->runtime_profiler()->NotifyTick();
  }

  void SendProfilingSignal(pthread_t tid) {
    if (!signal_handler_installed_) return;
    pthread_kill(tid, SIGPROF);
  }

  void Sleep(SleepInterval full_or_half) {
    // Convert ms to us and subtract 100 us to compensate delays
    // occuring during signal delivery.
    useconds_t interval = interval_ * 1000 - 100;
    if (full_or_half == HALF_INTERVAL) interval /= 2;
    int result = usleep(interval);
#ifdef DEBUG
    if (result != 0 && errno != EINTR) {
      fprintf(stderr,
              "SignalSender usleep error; interval = %u, errno = %d\n",
              interval,
              errno);
      ASSERT(result == 0 || errno == EINTR);
    }
#endif
    USE(result);
  }

  const int interval_;
  RuntimeProfilerRateLimiter rate_limiter_;

  // Protects the process wide state below.
  static Mutex* mutex_;
  static SignalSender* instance_;
  static bool signal_handler_installed_;
  static struct sigaction old_signal_handler_;

 private:
  DISALLOW_COPY_AND_ASSIGN(SignalSender);
};

Mutex* SignalSender::mutex_ = NULL;
SignalSender* SignalSender::instance_ = NULL;
struct sigaction SignalSender::old_signal_handler_;
bool SignalSender::signal_handler_installed_ = false;


void OS::SetUp() {
  // Seed the random number generator.
  // Convert the current time to a 64-bit integer first, before converting it
  // to an unsigned. Going directly can cause an overflow and the seed to be
  // set to all ones. The seed will be identical for different instances that
  // call this setup code within the same millisecond.
  uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
  srandom(static_cast<unsigned int>(seed));
  limit_mutex = CreateMutex();
  SignalSender::SetUp();
}


void OS::TearDown() {
  SignalSender::TearDown();
  delete limit_mutex;
}


Sampler::Sampler(Isolate* isolate, int interval)
    : isolate_(isolate),
      interval_(interval),
      profiling_(false),
      active_(false),
      samples_taken_(0) {
  data_ = new PlatformData;
}


Sampler::~Sampler() {
  ASSERT(!IsActive());
  delete data_;
}


void Sampler::Start() {
  ASSERT(!IsActive());
  SetActive(true);
  SignalSender::AddActiveSampler(this);
}


void Sampler::Stop() {
  ASSERT(IsActive());
  SignalSender::RemoveActiveSampler(this);
  SetActive(false);
}


} }  // namespace v8::internal

/* [<][>][^][v][top][bottom][index][help] */