root/src/store-buffer.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. hash_sets_are_empty_
  2. SetUp
  3. TearDown
  4. StoreBufferOverflow
  5. CompareAddresses
  6. CompareAddresses
  7. Uniq
  8. EnsureSpace
  9. ExemptPopularPages
  10. Filter
  11. SortUniq
  12. PrepareForIteration
  13. Clean
  14. CellIsInStoreBuffer
  15. ClearFilteringHashSets
  16. GCPrologue
  17. DummyScavengePointer
  18. VerifyPointers
  19. VerifyPointers
  20. Verify
  21. GCEpilogue
  22. FindPointersToNewSpaceInRegion
  23. MapStartAlign
  24. MapEndAlign
  25. FindPointersToNewSpaceInMaps
  26. FindPointersToNewSpaceInMapsRegion
  27. FindPointersToNewSpaceOnPage
  28. IteratePointersInStoreBuffer
  29. IteratePointersToNewSpace
  30. Compact
  31. CheckForFullBuffer

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#include "store-buffer.h"
#include "store-buffer-inl.h"
#include "v8-counters.h"

namespace v8 {
namespace internal {

StoreBuffer::StoreBuffer(Heap* heap)
    : heap_(heap),
      start_(NULL),
      limit_(NULL),
      old_start_(NULL),
      old_limit_(NULL),
      old_top_(NULL),
      old_reserved_limit_(NULL),
      old_buffer_is_sorted_(false),
      old_buffer_is_filtered_(false),
      during_gc_(false),
      store_buffer_rebuilding_enabled_(false),
      callback_(NULL),
      may_move_store_buffer_entries_(true),
      virtual_memory_(NULL),
      hash_set_1_(NULL),
      hash_set_2_(NULL),
      hash_sets_are_empty_(true) {
}


void StoreBuffer::SetUp() {
  virtual_memory_ = new VirtualMemory(kStoreBufferSize * 3);
  uintptr_t start_as_int =
      reinterpret_cast<uintptr_t>(virtual_memory_->address());
  start_ =
      reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
  limit_ = start_ + (kStoreBufferSize / kPointerSize);

  old_virtual_memory_ =
      new VirtualMemory(kOldStoreBufferLength * kPointerSize);
  old_top_ = old_start_ =
      reinterpret_cast<Address*>(old_virtual_memory_->address());
  // Don't know the alignment requirements of the OS, but it is certainly not
  // less than 0xfff.
  ASSERT((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
  int initial_length = static_cast<int>(OS::CommitPageSize() / kPointerSize);
  ASSERT(initial_length > 0);
  ASSERT(initial_length <= kOldStoreBufferLength);
  old_limit_ = old_start_ + initial_length;
  old_reserved_limit_ = old_start_ + kOldStoreBufferLength;

  CHECK(old_virtual_memory_->Commit(
            reinterpret_cast<void*>(old_start_),
            (old_limit_ - old_start_) * kPointerSize,
            false));

  ASSERT(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
  ASSERT(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
  Address* vm_limit = reinterpret_cast<Address*>(
      reinterpret_cast<char*>(virtual_memory_->address()) +
          virtual_memory_->size());
  ASSERT(start_ <= vm_limit);
  ASSERT(limit_ <= vm_limit);
  USE(vm_limit);
  ASSERT((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
  ASSERT((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
         0);

  CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_),
                                kStoreBufferSize,
                                false));  // Not executable.
  heap_->public_set_store_buffer_top(start_);

  hash_set_1_ = new uintptr_t[kHashSetLength];
  hash_set_2_ = new uintptr_t[kHashSetLength];
  hash_sets_are_empty_ = false;

  ClearFilteringHashSets();
}


void StoreBuffer::TearDown() {
  delete virtual_memory_;
  delete old_virtual_memory_;
  delete[] hash_set_1_;
  delete[] hash_set_2_;
  old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
  start_ = limit_ = NULL;
  heap_->public_set_store_buffer_top(start_);
}


void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
  isolate->heap()->store_buffer()->Compact();
}


#if V8_TARGET_ARCH_X64
static int CompareAddresses(const void* void_a, const void* void_b) {
  intptr_t a =
      reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_a));
  intptr_t b =
      reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_b));
  // Unfortunately if int is smaller than intptr_t there is no branch-free
  // way to return a number with the same sign as the difference between the
  // pointers.
  if (a == b) return 0;
  if (a < b) return -1;
  ASSERT(a > b);
  return 1;
}
#else
static int CompareAddresses(const void* void_a, const void* void_b) {
  intptr_t a =
      reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_a));
  intptr_t b =
      reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_b));
  ASSERT(sizeof(1) == sizeof(a));
  // Shift down to avoid wraparound.
  return (a >> kPointerSizeLog2) - (b >> kPointerSizeLog2);
}
#endif


void StoreBuffer::Uniq() {
  // Remove adjacent duplicates and cells that do not point at new space.
  Address previous = NULL;
  Address* write = old_start_;
  ASSERT(may_move_store_buffer_entries_);
  for (Address* read = old_start_; read < old_top_; read++) {
    Address current = *read;
    if (current != previous) {
      if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) {
        *write++ = current;
      }
    }
    previous = current;
  }
  old_top_ = write;
}


void StoreBuffer::EnsureSpace(intptr_t space_needed) {
  while (old_limit_ - old_top_ < space_needed &&
         old_limit_ < old_reserved_limit_) {
    size_t grow = old_limit_ - old_start_;  // Double size.
    CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
                                      grow * kPointerSize,
                                      false));
    old_limit_ += grow;
  }

  if (old_limit_ - old_top_ >= space_needed) return;

  if (old_buffer_is_filtered_) return;
  ASSERT(may_move_store_buffer_entries_);
  Compact();

  old_buffer_is_filtered_ = true;
  bool page_has_scan_on_scavenge_flag = false;

  PointerChunkIterator it(heap_);
  MemoryChunk* chunk;
  while ((chunk = it.next()) != NULL) {
    if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true;
  }

  if (page_has_scan_on_scavenge_flag) {
    Filter(MemoryChunk::SCAN_ON_SCAVENGE);
  }

  // If filtering out the entries from scan_on_scavenge pages got us down to
  // less than half full, then we are satisfied with that.
  if (old_limit_ - old_top_ > old_top_ - old_start_) return;

  // Sample 1 entry in 97 and filter out the pages where we estimate that more
  // than 1 in 8 pointers are to new space.
  static const int kSampleFinenesses = 5;
  static const struct Samples {
    int prime_sample_step;
    int threshold;
  } samples[kSampleFinenesses] =  {
    { 97, ((Page::kPageSize / kPointerSize) / 97) / 8 },
    { 23, ((Page::kPageSize / kPointerSize) / 23) / 16 },
    { 7, ((Page::kPageSize / kPointerSize) / 7) / 32 },
    { 3, ((Page::kPageSize / kPointerSize) / 3) / 256 },
    { 1, 0}
  };
  for (int i = kSampleFinenesses - 1; i >= 0; i--) {
    ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
    // As a last resort we mark all pages as being exempt from the store buffer.
    ASSERT(i != 0 || old_top_ == old_start_);
    if (old_limit_ - old_top_ > old_top_ - old_start_) return;
  }
  UNREACHABLE();
}


// Sample the store buffer to see if some pages are taking up a lot of space
// in the store buffer.
void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
  PointerChunkIterator it(heap_);
  MemoryChunk* chunk;
  while ((chunk = it.next()) != NULL) {
    chunk->set_store_buffer_counter(0);
  }
  bool created_new_scan_on_scavenge_pages = false;
  MemoryChunk* previous_chunk = NULL;
  for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
    Address addr = *p;
    MemoryChunk* containing_chunk = NULL;
    if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
      containing_chunk = previous_chunk;
    } else {
      containing_chunk = MemoryChunk::FromAnyPointerAddress(addr);
    }
    int old_counter = containing_chunk->store_buffer_counter();
    if (old_counter == threshold) {
      containing_chunk->set_scan_on_scavenge(true);
      created_new_scan_on_scavenge_pages = true;
    }
    containing_chunk->set_store_buffer_counter(old_counter + 1);
    previous_chunk = containing_chunk;
  }
  if (created_new_scan_on_scavenge_pages) {
    Filter(MemoryChunk::SCAN_ON_SCAVENGE);
  }
  old_buffer_is_filtered_ = true;
}


void StoreBuffer::Filter(int flag) {
  Address* new_top = old_start_;
  MemoryChunk* previous_chunk = NULL;
  for (Address* p = old_start_; p < old_top_; p++) {
    Address addr = *p;
    MemoryChunk* containing_chunk = NULL;
    if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
      containing_chunk = previous_chunk;
    } else {
      containing_chunk = MemoryChunk::FromAnyPointerAddress(addr);
      previous_chunk = containing_chunk;
    }
    if (!containing_chunk->IsFlagSet(flag)) {
      *new_top++ = addr;
    }
  }
  old_top_ = new_top;

  // Filtering hash sets are inconsistent with the store buffer after this
  // operation.
  ClearFilteringHashSets();
}


void StoreBuffer::SortUniq() {
  Compact();
  if (old_buffer_is_sorted_) return;
  qsort(reinterpret_cast<void*>(old_start_),
        old_top_ - old_start_,
        sizeof(*old_top_),
        &CompareAddresses);
  Uniq();

  old_buffer_is_sorted_ = true;

  // Filtering hash sets are inconsistent with the store buffer after this
  // operation.
  ClearFilteringHashSets();
}


bool StoreBuffer::PrepareForIteration() {
  Compact();
  PointerChunkIterator it(heap_);
  MemoryChunk* chunk;
  bool page_has_scan_on_scavenge_flag = false;
  while ((chunk = it.next()) != NULL) {
    if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true;
  }

  if (page_has_scan_on_scavenge_flag) {
    Filter(MemoryChunk::SCAN_ON_SCAVENGE);
  }

  // Filtering hash sets are inconsistent with the store buffer after
  // iteration.
  ClearFilteringHashSets();

  return page_has_scan_on_scavenge_flag;
}


#ifdef DEBUG
void StoreBuffer::Clean() {
  ClearFilteringHashSets();
  Uniq();  // Also removes things that no longer point to new space.
  CheckForFullBuffer();
}


static Address* in_store_buffer_1_element_cache = NULL;


bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) {
  if (!FLAG_enable_slow_asserts) return true;
  if (in_store_buffer_1_element_cache != NULL &&
      *in_store_buffer_1_element_cache == cell_address) {
    return true;
  }
  Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
  for (Address* current = top - 1; current >= start_; current--) {
    if (*current == cell_address) {
      in_store_buffer_1_element_cache = current;
      return true;
    }
  }
  for (Address* current = old_top_ - 1; current >= old_start_; current--) {
    if (*current == cell_address) {
      in_store_buffer_1_element_cache = current;
      return true;
    }
  }
  return false;
}
#endif


void StoreBuffer::ClearFilteringHashSets() {
  if (!hash_sets_are_empty_) {
    memset(reinterpret_cast<void*>(hash_set_1_),
           0,
           sizeof(uintptr_t) * kHashSetLength);
    memset(reinterpret_cast<void*>(hash_set_2_),
           0,
           sizeof(uintptr_t) * kHashSetLength);
    hash_sets_are_empty_ = true;
  }
}


void StoreBuffer::GCPrologue() {
  ClearFilteringHashSets();
  during_gc_ = true;
}


#ifdef DEBUG
static void DummyScavengePointer(HeapObject** p, HeapObject* o) {
  // Do nothing.
}


void StoreBuffer::VerifyPointers(PagedSpace* space,
                                 RegionCallback region_callback) {
  PageIterator it(space);

  while (it.has_next()) {
    Page* page = it.next();
    FindPointersToNewSpaceOnPage(
        reinterpret_cast<PagedSpace*>(page->owner()),
        page,
        region_callback,
        &DummyScavengePointer);
  }
}


void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
  LargeObjectIterator it(space);
  for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
    if (object->IsFixedArray()) {
      Address slot_address = object->address();
      Address end = object->address() + object->Size();

      while (slot_address < end) {
        HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
        // When we are not in GC the Heap::InNewSpace() predicate
        // checks that pointers which satisfy predicate point into
        // the active semispace.
        heap_->InNewSpace(*slot);
        slot_address += kPointerSize;
      }
    }
  }
}
#endif


void StoreBuffer::Verify() {
#ifdef DEBUG
  VerifyPointers(heap_->old_pointer_space(),
                 &StoreBuffer::FindPointersToNewSpaceInRegion);
  VerifyPointers(heap_->map_space(),
                 &StoreBuffer::FindPointersToNewSpaceInMapsRegion);
  VerifyPointers(heap_->lo_space());
#endif
}


void StoreBuffer::GCEpilogue() {
  during_gc_ = false;
  if (FLAG_verify_heap) {
    Verify();
  }
}


void StoreBuffer::FindPointersToNewSpaceInRegion(
    Address start, Address end, ObjectSlotCallback slot_callback) {
  for (Address slot_address = start;
       slot_address < end;
       slot_address += kPointerSize) {
    Object** slot = reinterpret_cast<Object**>(slot_address);
    if (heap_->InNewSpace(*slot)) {
      HeapObject* object = reinterpret_cast<HeapObject*>(*slot);
      ASSERT(object->IsHeapObject());
      slot_callback(reinterpret_cast<HeapObject**>(slot), object);
      if (heap_->InNewSpace(*slot)) {
        EnterDirectlyIntoStoreBuffer(slot_address);
      }
    }
  }
}


// Compute start address of the first map following given addr.
static inline Address MapStartAlign(Address addr) {
  Address page = Page::FromAddress(addr)->area_start();
  return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize);
}


// Compute end address of the first map preceding given addr.
static inline Address MapEndAlign(Address addr) {
  Address page = Page::FromAllocationTop(addr)->area_start();
  return page + ((addr - page) / Map::kSize * Map::kSize);
}


void StoreBuffer::FindPointersToNewSpaceInMaps(
    Address start,
    Address end,
    ObjectSlotCallback slot_callback) {
  ASSERT(MapStartAlign(start) == start);
  ASSERT(MapEndAlign(end) == end);

  Address map_address = start;
  while (map_address < end) {
    ASSERT(!heap_->InNewSpace(Memory::Object_at(map_address)));
    ASSERT(Memory::Object_at(map_address)->IsMap());

    Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset;
    Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset;

    FindPointersToNewSpaceInRegion(pointer_fields_start,
                                   pointer_fields_end,
                                   slot_callback);
    map_address += Map::kSize;
  }
}


void StoreBuffer::FindPointersToNewSpaceInMapsRegion(
    Address start,
    Address end,
    ObjectSlotCallback slot_callback) {
  Address map_aligned_start = MapStartAlign(start);
  Address map_aligned_end   = MapEndAlign(end);

  ASSERT(map_aligned_start == start);
  ASSERT(map_aligned_end == end);

  FindPointersToNewSpaceInMaps(map_aligned_start,
                               map_aligned_end,
                               slot_callback);
}


// This function iterates over all the pointers in a paged space in the heap,
// looking for pointers into new space.  Within the pages there may be dead
// objects that have not been overwritten by free spaces or fillers because of
// lazy sweeping.  These dead objects may not contain pointers to new space.
// The garbage areas that have been swept properly (these will normally be the
// large ones) will be marked with free space and filler map words.  In
// addition any area that has never been used at all for object allocation must
// be marked with a free space or filler.  Because the free space and filler
// maps do not move we can always recognize these even after a compaction.
// Normal objects like FixedArrays and JSObjects should not contain references
// to these maps.  The special garbage section (see comment in spaces.h) is
// skipped since it can contain absolutely anything.  Any objects that are
// allocated during iteration may or may not be visited by the iteration, but
// they will not be partially visited.
void StoreBuffer::FindPointersToNewSpaceOnPage(
    PagedSpace* space,
    Page* page,
    RegionCallback region_callback,
    ObjectSlotCallback slot_callback) {
  Address visitable_start = page->area_start();
  Address end_of_page = page->area_end();

  Address visitable_end = visitable_start;

  Object* free_space_map = heap_->free_space_map();
  Object* two_pointer_filler_map = heap_->two_pointer_filler_map();

  while (visitable_end < end_of_page) {
    Object* o = *reinterpret_cast<Object**>(visitable_end);
    // Skip fillers but not things that look like fillers in the special
    // garbage section which can contain anything.
    if (o == free_space_map ||
        o == two_pointer_filler_map ||
        (visitable_end == space->top() && visitable_end != space->limit())) {
      if (visitable_start != visitable_end) {
        // After calling this the special garbage section may have moved.
        (this->*region_callback)(visitable_start,
                                 visitable_end,
                                 slot_callback);
        if (visitable_end >= space->top() && visitable_end < space->limit()) {
          visitable_end = space->limit();
          visitable_start = visitable_end;
          continue;
        }
      }
      if (visitable_end == space->top() && visitable_end != space->limit()) {
        visitable_start = visitable_end = space->limit();
      } else {
        // At this point we are either at the start of a filler or we are at
        // the point where the space->top() used to be before the
        // visit_pointer_region call above.  Either way we can skip the
        // object at the current spot:  We don't promise to visit objects
        // allocated during heap traversal, and if space->top() moved then it
        // must be because an object was allocated at this point.
        visitable_start =
            visitable_end + HeapObject::FromAddress(visitable_end)->Size();
        visitable_end = visitable_start;
      }
    } else {
      ASSERT(o != free_space_map);
      ASSERT(o != two_pointer_filler_map);
      ASSERT(visitable_end < space->top() || visitable_end >= space->limit());
      visitable_end += kPointerSize;
    }
  }
  ASSERT(visitable_end == end_of_page);
  if (visitable_start != visitable_end) {
    (this->*region_callback)(visitable_start,
                             visitable_end,
                             slot_callback);
  }
}


void StoreBuffer::IteratePointersInStoreBuffer(
    ObjectSlotCallback slot_callback) {
  Address* limit = old_top_;
  old_top_ = old_start_;
  {
    DontMoveStoreBufferEntriesScope scope(this);
    for (Address* current = old_start_; current < limit; current++) {
#ifdef DEBUG
      Address* saved_top = old_top_;
#endif
      Object** slot = reinterpret_cast<Object**>(*current);
      Object* object = *slot;
      if (heap_->InFromSpace(object)) {
        HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
        slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
        if (heap_->InNewSpace(*slot)) {
          EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
        }
      }
      ASSERT(old_top_ == saved_top + 1 || old_top_ == saved_top);
    }
  }
}


void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
  // We do not sort or remove duplicated entries from the store buffer because
  // we expect that callback will rebuild the store buffer thus removing
  // all duplicates and pointers to old space.
  bool some_pages_to_scan = PrepareForIteration();

  // TODO(gc): we want to skip slots on evacuation candidates
  // but we can't simply figure that out from slot address
  // because slot can belong to a large object.
  IteratePointersInStoreBuffer(slot_callback);

  // We are done scanning all the pointers that were in the store buffer, but
  // there may be some pages marked scan_on_scavenge that have pointers to new
  // space that are not in the store buffer.  We must scan them now.  As we
  // scan, the surviving pointers to new space will be added to the store
  // buffer.  If there are still a lot of pointers to new space then we will
  // keep the scan_on_scavenge flag on the page and discard the pointers that
  // were added to the store buffer.  If there are not many pointers to new
  // space left on the page we will keep the pointers in the store buffer and
  // remove the flag from the page.
  if (some_pages_to_scan) {
    if (callback_ != NULL) {
      (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
    }
    PointerChunkIterator it(heap_);
    MemoryChunk* chunk;
    while ((chunk = it.next()) != NULL) {
      if (chunk->scan_on_scavenge()) {
        chunk->set_scan_on_scavenge(false);
        if (callback_ != NULL) {
          (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
        }
        if (chunk->owner() == heap_->lo_space()) {
          LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
          HeapObject* array = large_page->GetObject();
          ASSERT(array->IsFixedArray());
          Address start = array->address();
          Address end = start + array->Size();
          FindPointersToNewSpaceInRegion(start, end, slot_callback);
        } else {
          Page* page = reinterpret_cast<Page*>(chunk);
          PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
          FindPointersToNewSpaceOnPage(
              owner,
              page,
              (owner == heap_->map_space() ?
                 &StoreBuffer::FindPointersToNewSpaceInMapsRegion :
                 &StoreBuffer::FindPointersToNewSpaceInRegion),
              slot_callback);
        }
      }
    }
    if (callback_ != NULL) {
      (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
    }
  }
}


void StoreBuffer::Compact() {
  Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());

  if (top == start_) return;

  // There's no check of the limit in the loop below so we check here for
  // the worst case (compaction doesn't eliminate any pointers).
  ASSERT(top <= limit_);
  heap_->public_set_store_buffer_top(start_);
  EnsureSpace(top - start_);
  ASSERT(may_move_store_buffer_entries_);
  // Goes through the addresses in the store buffer attempting to remove
  // duplicates.  In the interest of speed this is a lossy operation.  Some
  // duplicates will remain.  We have two hash sets with different hash
  // functions to reduce the number of unnecessary clashes.
  hash_sets_are_empty_ = false;  // Hash sets are in use.
  for (Address* current = start_; current < top; current++) {
    ASSERT(!heap_->cell_space()->Contains(*current));
    ASSERT(!heap_->code_space()->Contains(*current));
    ASSERT(!heap_->old_data_space()->Contains(*current));
    uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
    // Shift out the last bits including any tags.
    int_addr >>= kPointerSizeLog2;
    int hash1 =
        ((int_addr ^ (int_addr >> kHashSetLengthLog2)) & (kHashSetLength - 1));
    if (hash_set_1_[hash1] == int_addr) continue;
    uintptr_t hash2 = (int_addr - (int_addr >> kHashSetLengthLog2));
    hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
    hash2 &= (kHashSetLength - 1);
    if (hash_set_2_[hash2] == int_addr) continue;
    if (hash_set_1_[hash1] == 0) {
      hash_set_1_[hash1] = int_addr;
    } else if (hash_set_2_[hash2] == 0) {
      hash_set_2_[hash2] = int_addr;
    } else {
      // Rather than slowing down we just throw away some entries.  This will
      // cause some duplicates to remain undetected.
      hash_set_1_[hash1] = int_addr;
      hash_set_2_[hash2] = 0;
    }
    old_buffer_is_sorted_ = false;
    old_buffer_is_filtered_ = false;
    *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
    ASSERT(old_top_ <= old_limit_);
  }
  heap_->isolate()->counters()->store_buffer_compactions()->Increment();
  CheckForFullBuffer();
}


void StoreBuffer::CheckForFullBuffer() {
  EnsureSpace(kStoreBufferSize * 2);
}

} }  // namespace v8::internal

/* [<][>][^][v][top][bottom][index][help] */