root/src/mips/stub-cache-mips.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ProbeTable
  2. GenerateDictionaryNegativeLookup
  3. GenerateProbe
  4. GenerateLoadGlobalFunctionPrototype
  5. GenerateDirectLoadGlobalFunctionPrototype
  6. GenerateFastPropertyLoad
  7. GenerateLoadArrayLength
  8. GenerateStringCheck
  9. GenerateLoadStringLength
  10. GenerateLoadFunctionPrototype
  11. GenerateStoreField
  12. GenerateLoadMiss
  13. GenerateCallFunction
  14. PushInterceptorArguments
  15. CompileCallLoadPropertyWithInterceptor
  16. ReserveSpaceForFastApiCall
  17. FreeSpaceForFastApiCall
  18. GenerateFastApiDirectCall
  19. extra_ic_state_
  20. Compile
  21. CompileCacheable
  22. CompileRegular
  23. LoadWithInterceptor
  24. GenerateCheckPropertyCell
  25. GenerateCheckPropertyCells
  26. StoreIntAsFloat
  27. GenerateUInt2Double
  28. CheckPrototypes
  29. GenerateLoadField
  30. GenerateLoadConstant
  31. GenerateLoadCallback
  32. GenerateLoadInterceptor
  33. GenerateNameCheck
  34. GenerateGlobalReceiverCheck
  35. GenerateLoadFunctionFromCell
  36. GenerateMissBranch
  37. CompileCallField
  38. CompileArrayPushCall
  39. CompileArrayPopCall
  40. CompileStringCharCodeAtCall
  41. CompileStringCharAtCall
  42. CompileStringFromCharCodeCall
  43. CompileMathFloorCall
  44. CompileMathAbsCall
  45. CompileFastApiCall
  46. CompileCallConstant
  47. CompileCallInterceptor
  48. CompileCallGlobal
  49. CompileStoreField
  50. CompileStoreCallback
  51. CompileStoreViaSetter
  52. CompileStoreInterceptor
  53. CompileStoreGlobal
  54. CompileLoadNonexistent
  55. CompileLoadField
  56. CompileLoadCallback
  57. CompileLoadViaGetter
  58. CompileLoadConstant
  59. CompileLoadInterceptor
  60. CompileLoadGlobal
  61. CompileLoadField
  62. CompileLoadCallback
  63. CompileLoadConstant
  64. CompileLoadInterceptor
  65. CompileLoadArrayLength
  66. CompileLoadStringLength
  67. CompileLoadFunctionPrototype
  68. CompileLoadElement
  69. CompileLoadPolymorphic
  70. CompileStoreField
  71. CompileStoreElement
  72. CompileStorePolymorphic
  73. CompileConstructStub
  74. GenerateLoadDictionaryElement
  75. IsElementTypeSigned
  76. GenerateSmiKeyCheck
  77. GenerateLoadExternalArray
  78. GenerateStoreExternalArray
  79. GenerateLoadFastElement
  80. GenerateLoadFastDoubleElement
  81. GenerateStoreFastElement
  82. GenerateStoreFastDoubleElement

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#if defined(V8_TARGET_ARCH_MIPS)

#include "ic-inl.h"
#include "codegen.h"
#include "stub-cache.h"

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)


static void ProbeTable(Isolate* isolate,
                       MacroAssembler* masm,
                       Code::Flags flags,
                       StubCache::Table table,
                       Register receiver,
                       Register name,
                       // Number of the cache entry, not scaled.
                       Register offset,
                       Register scratch,
                       Register scratch2,
                       Register offset_scratch) {
  ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
  ExternalReference value_offset(isolate->stub_cache()->value_reference(table));
  ExternalReference map_offset(isolate->stub_cache()->map_reference(table));

  uint32_t key_off_addr = reinterpret_cast<uint32_t>(key_offset.address());
  uint32_t value_off_addr = reinterpret_cast<uint32_t>(value_offset.address());
  uint32_t map_off_addr = reinterpret_cast<uint32_t>(map_offset.address());

  // Check the relative positions of the address fields.
  ASSERT(value_off_addr > key_off_addr);
  ASSERT((value_off_addr - key_off_addr) % 4 == 0);
  ASSERT((value_off_addr - key_off_addr) < (256 * 4));
  ASSERT(map_off_addr > key_off_addr);
  ASSERT((map_off_addr - key_off_addr) % 4 == 0);
  ASSERT((map_off_addr - key_off_addr) < (256 * 4));

  Label miss;
  Register base_addr = scratch;
  scratch = no_reg;

  // Multiply by 3 because there are 3 fields per entry (name, code, map).
  __ sll(offset_scratch, offset, 1);
  __ Addu(offset_scratch, offset_scratch, offset);

  // Calculate the base address of the entry.
  __ li(base_addr, Operand(key_offset));
  __ sll(at, offset_scratch, kPointerSizeLog2);
  __ Addu(base_addr, base_addr, at);

  // Check that the key in the entry matches the name.
  __ lw(at, MemOperand(base_addr, 0));
  __ Branch(&miss, ne, name, Operand(at));

  // Check the map matches.
  __ lw(at, MemOperand(base_addr, map_off_addr - key_off_addr));
  __ lw(scratch2, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ Branch(&miss, ne, at, Operand(scratch2));

  // Get the code entry from the cache.
  Register code = scratch2;
  scratch2 = no_reg;
  __ lw(code, MemOperand(base_addr, value_off_addr - key_off_addr));

  // Check that the flags match what we're looking for.
  Register flags_reg = base_addr;
  base_addr = no_reg;
  __ lw(flags_reg, FieldMemOperand(code, Code::kFlagsOffset));
  __ And(flags_reg, flags_reg, Operand(~Code::kFlagsNotUsedInLookup));
  __ Branch(&miss, ne, flags_reg, Operand(flags));

#ifdef DEBUG
    if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
      __ jmp(&miss);
    } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
      __ jmp(&miss);
    }
#endif

  // Jump to the first instruction in the code stub.
  __ Addu(at, code, Operand(Code::kHeaderSize - kHeapObjectTag));
  __ Jump(at);

  // Miss: fall through.
  __ bind(&miss);
}


// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be a symbol and receiver must be a heap object.
static void GenerateDictionaryNegativeLookup(MacroAssembler* masm,
                                             Label* miss_label,
                                             Register receiver,
                                             Handle<String> name,
                                             Register scratch0,
                                             Register scratch1) {
  ASSERT(name->IsSymbol());
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1);
  __ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);

  Label done;

  const int kInterceptorOrAccessCheckNeededMask =
      (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);

  // Bail out if the receiver has a named interceptor or requires access checks.
  Register map = scratch1;
  __ lw(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ lbu(scratch0, FieldMemOperand(map, Map::kBitFieldOffset));
  __ And(scratch0, scratch0, Operand(kInterceptorOrAccessCheckNeededMask));
  __ Branch(miss_label, ne, scratch0, Operand(zero_reg));

  // Check that receiver is a JSObject.
  __ lbu(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset));
  __ Branch(miss_label, lt, scratch0, Operand(FIRST_SPEC_OBJECT_TYPE));

  // Load properties array.
  Register properties = scratch0;
  __ lw(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
  // Check that the properties array is a dictionary.
  __ lw(map, FieldMemOperand(properties, HeapObject::kMapOffset));
  Register tmp = properties;
  __ LoadRoot(tmp, Heap::kHashTableMapRootIndex);
  __ Branch(miss_label, ne, map, Operand(tmp));

  // Restore the temporarily used register.
  __ lw(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));


  StringDictionaryLookupStub::GenerateNegativeLookup(masm,
                                                     miss_label,
                                                     &done,
                                                     receiver,
                                                     properties,
                                                     name,
                                                     scratch1);
  __ bind(&done);
  __ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
}


void StubCache::GenerateProbe(MacroAssembler* masm,
                              Code::Flags flags,
                              Register receiver,
                              Register name,
                              Register scratch,
                              Register extra,
                              Register extra2,
                              Register extra3) {
  Isolate* isolate = masm->isolate();
  Label miss;

  // Make sure that code is valid. The multiplying code relies on the
  // entry size being 12.
  ASSERT(sizeof(Entry) == 12);

  // Make sure the flags does not name a specific type.
  ASSERT(Code::ExtractTypeFromFlags(flags) == 0);

  // Make sure that there are no register conflicts.
  ASSERT(!scratch.is(receiver));
  ASSERT(!scratch.is(name));
  ASSERT(!extra.is(receiver));
  ASSERT(!extra.is(name));
  ASSERT(!extra.is(scratch));
  ASSERT(!extra2.is(receiver));
  ASSERT(!extra2.is(name));
  ASSERT(!extra2.is(scratch));
  ASSERT(!extra2.is(extra));

  // Check register validity.
  ASSERT(!scratch.is(no_reg));
  ASSERT(!extra.is(no_reg));
  ASSERT(!extra2.is(no_reg));
  ASSERT(!extra3.is(no_reg));

  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1,
                      extra2, extra3);

  // Check that the receiver isn't a smi.
  __ JumpIfSmi(receiver, &miss);

  // Get the map of the receiver and compute the hash.
  __ lw(scratch, FieldMemOperand(name, String::kHashFieldOffset));
  __ lw(at, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ Addu(scratch, scratch, at);
  uint32_t mask = kPrimaryTableSize - 1;
  // We shift out the last two bits because they are not part of the hash and
  // they are always 01 for maps.
  __ srl(scratch, scratch, kHeapObjectTagSize);
  __ Xor(scratch, scratch, Operand((flags >> kHeapObjectTagSize) & mask));
  __ And(scratch, scratch, Operand(mask));

  // Probe the primary table.
  ProbeTable(isolate,
             masm,
             flags,
             kPrimary,
             receiver,
             name,
             scratch,
             extra,
             extra2,
             extra3);

  // Primary miss: Compute hash for secondary probe.
  __ srl(at, name, kHeapObjectTagSize);
  __ Subu(scratch, scratch, at);
  uint32_t mask2 = kSecondaryTableSize - 1;
  __ Addu(scratch, scratch, Operand((flags >> kHeapObjectTagSize) & mask2));
  __ And(scratch, scratch, Operand(mask2));

  // Probe the secondary table.
  ProbeTable(isolate,
             masm,
             flags,
             kSecondary,
             receiver,
             name,
             scratch,
             extra,
             extra2,
             extra3);

  // Cache miss: Fall-through and let caller handle the miss by
  // entering the runtime system.
  __ bind(&miss);
  __ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1,
                      extra2, extra3);
}


void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
                                                       int index,
                                                       Register prototype) {
  // Load the global or builtins object from the current context.
  __ lw(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
  // Load the global context from the global or builtins object.
  __ lw(prototype,
         FieldMemOperand(prototype, GlobalObject::kGlobalContextOffset));
  // Load the function from the global context.
  __ lw(prototype, MemOperand(prototype, Context::SlotOffset(index)));
  // Load the initial map.  The global functions all have initial maps.
  __ lw(prototype,
         FieldMemOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset));
  // Load the prototype from the initial map.
  __ lw(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset));
}


void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype(
    MacroAssembler* masm,
    int index,
    Register prototype,
    Label* miss) {
  Isolate* isolate = masm->isolate();
  // Check we're still in the same context.
  __ lw(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
  ASSERT(!prototype.is(at));
  __ li(at, isolate->global());
  __ Branch(miss, ne, prototype, Operand(at));
  // Get the global function with the given index.
  Handle<JSFunction> function(
      JSFunction::cast(isolate->global_context()->get(index)));
  // Load its initial map. The global functions all have initial maps.
  __ li(prototype, Handle<Map>(function->initial_map()));
  // Load the prototype from the initial map.
  __ lw(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset));
}


// Load a fast property out of a holder object (src). In-object properties
// are loaded directly otherwise the property is loaded from the properties
// fixed array.
void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm,
                                            Register dst,
                                            Register src,
                                            Handle<JSObject> holder,
                                            int index) {
  // Adjust for the number of properties stored in the holder.
  index -= holder->map()->inobject_properties();
  if (index < 0) {
    // Get the property straight out of the holder.
    int offset = holder->map()->instance_size() + (index * kPointerSize);
    __ lw(dst, FieldMemOperand(src, offset));
  } else {
    // Calculate the offset into the properties array.
    int offset = index * kPointerSize + FixedArray::kHeaderSize;
    __ lw(dst, FieldMemOperand(src, JSObject::kPropertiesOffset));
    __ lw(dst, FieldMemOperand(dst, offset));
  }
}


void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm,
                                           Register receiver,
                                           Register scratch,
                                           Label* miss_label) {
  // Check that the receiver isn't a smi.
  __ JumpIfSmi(receiver, miss_label);

  // Check that the object is a JS array.
  __ GetObjectType(receiver, scratch, scratch);
  __ Branch(miss_label, ne, scratch, Operand(JS_ARRAY_TYPE));

  // Load length directly from the JS array.
  __ lw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));
  __ Ret();
}


// Generate code to check if an object is a string.  If the object is a
// heap object, its map's instance type is left in the scratch1 register.
// If this is not needed, scratch1 and scratch2 may be the same register.
static void GenerateStringCheck(MacroAssembler* masm,
                                Register receiver,
                                Register scratch1,
                                Register scratch2,
                                Label* smi,
                                Label* non_string_object) {
  // Check that the receiver isn't a smi.
  __ JumpIfSmi(receiver, smi, t0);

  // Check that the object is a string.
  __ lw(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
  __ And(scratch2, scratch1, Operand(kIsNotStringMask));
  // The cast is to resolve the overload for the argument of 0x0.
  __ Branch(non_string_object,
            ne,
            scratch2,
            Operand(static_cast<int32_t>(kStringTag)));
}


// Generate code to load the length from a string object and return the length.
// If the receiver object is not a string or a wrapped string object the
// execution continues at the miss label. The register containing the
// receiver is potentially clobbered.
void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm,
                                            Register receiver,
                                            Register scratch1,
                                            Register scratch2,
                                            Label* miss,
                                            bool support_wrappers) {
  Label check_wrapper;

  // Check if the object is a string leaving the instance type in the
  // scratch1 register.
  GenerateStringCheck(masm, receiver, scratch1, scratch2, miss,
                      support_wrappers ? &check_wrapper : miss);

  // Load length directly from the string.
  __ lw(v0, FieldMemOperand(receiver, String::kLengthOffset));
  __ Ret();

  if (support_wrappers) {
    // Check if the object is a JSValue wrapper.
    __ bind(&check_wrapper);
    __ Branch(miss, ne, scratch1, Operand(JS_VALUE_TYPE));

    // Unwrap the value and check if the wrapped value is a string.
    __ lw(scratch1, FieldMemOperand(receiver, JSValue::kValueOffset));
    GenerateStringCheck(masm, scratch1, scratch2, scratch2, miss, miss);
    __ lw(v0, FieldMemOperand(scratch1, String::kLengthOffset));
    __ Ret();
  }
}


void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm,
                                                 Register receiver,
                                                 Register scratch1,
                                                 Register scratch2,
                                                 Label* miss_label) {
  __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
  __ mov(v0, scratch1);
  __ Ret();
}


// Generate StoreField code, value is passed in a0 register.
// After executing generated code, the receiver_reg and name_reg
// may be clobbered.
void StubCompiler::GenerateStoreField(MacroAssembler* masm,
                                      Handle<JSObject> object,
                                      int index,
                                      Handle<Map> transition,
                                      Handle<String> name,
                                      Register receiver_reg,
                                      Register name_reg,
                                      Register scratch1,
                                      Register scratch2,
                                      Label* miss_label) {
  // a0 : value.
  Label exit;

  LookupResult lookup(masm->isolate());
  object->Lookup(*name, &lookup);
  if (lookup.IsFound() && (lookup.IsReadOnly() || !lookup.IsCacheable())) {
    // In sloppy mode, we could just return the value and be done. However, we
    // might be in strict mode, where we have to throw. Since we cannot tell,
    // go into slow case unconditionally.
    __ jmp(miss_label);
    return;
  }

  // Check that the map of the object hasn't changed.
  CompareMapMode mode = transition.is_null() ? ALLOW_ELEMENT_TRANSITION_MAPS
                                             : REQUIRE_EXACT_MAP;
  __ CheckMap(receiver_reg, scratch1, Handle<Map>(object->map()), miss_label,
              DO_SMI_CHECK, mode);

  // Perform global security token check if needed.
  if (object->IsJSGlobalProxy()) {
    __ CheckAccessGlobalProxy(receiver_reg, scratch1, miss_label);
  }

  // Check that we are allowed to write this.
  if (!transition.is_null() && object->GetPrototype()->IsJSObject()) {
    JSObject* holder;
    if (lookup.IsFound()) {
      holder = lookup.holder();
    } else {
      // Find the top object.
      holder = *object;
      do {
        holder = JSObject::cast(holder->GetPrototype());
      } while (holder->GetPrototype()->IsJSObject());
    }
    // We need an extra register, push
    __ push(name_reg);
    Label miss_pop, done_check;
    CheckPrototypes(object, receiver_reg, Handle<JSObject>(holder), name_reg,
                    scratch1, scratch2, name, &miss_pop);
    __ jmp(&done_check);
    __ bind(&miss_pop);
    __ pop(name_reg);
    __ jmp(miss_label);
    __ bind(&done_check);
    __ pop(name_reg);
  }

  // Stub never generated for non-global objects that require access
  // checks.
  ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());

  // Perform map transition for the receiver if necessary.
  if (!transition.is_null() && (object->map()->unused_property_fields() == 0)) {
    // The properties must be extended before we can store the value.
    // We jump to a runtime call that extends the properties array.
    __ push(receiver_reg);
    __ li(a2, Operand(transition));
    __ Push(a2, a0);
    __ TailCallExternalReference(
           ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
                             masm->isolate()),
           3, 1);
    return;
  }

  if (!transition.is_null()) {
    // Update the map of the object.
    __ li(scratch1, Operand(transition));
    __ sw(scratch1, FieldMemOperand(receiver_reg, HeapObject::kMapOffset));

    // Update the write barrier for the map field and pass the now unused
    // name_reg as scratch register.
    __ RecordWriteField(receiver_reg,
                        HeapObject::kMapOffset,
                        scratch1,
                        name_reg,
                        kRAHasNotBeenSaved,
                        kDontSaveFPRegs,
                        OMIT_REMEMBERED_SET,
                        OMIT_SMI_CHECK);
  }

  // Adjust for the number of properties stored in the object. Even in the
  // face of a transition we can use the old map here because the size of the
  // object and the number of in-object properties is not going to change.
  index -= object->map()->inobject_properties();

  if (index < 0) {
    // Set the property straight into the object.
    int offset = object->map()->instance_size() + (index * kPointerSize);
    __ sw(a0, FieldMemOperand(receiver_reg, offset));

    // Skip updating write barrier if storing a smi.
    __ JumpIfSmi(a0, &exit, scratch1);

    // Update the write barrier for the array address.
    // Pass the now unused name_reg as a scratch register.
    __ mov(name_reg, a0);
    __ RecordWriteField(receiver_reg,
                        offset,
                        name_reg,
                        scratch1,
                        kRAHasNotBeenSaved,
                        kDontSaveFPRegs);
  } else {
    // Write to the properties array.
    int offset = index * kPointerSize + FixedArray::kHeaderSize;
    // Get the properties array.
    __ lw(scratch1,
          FieldMemOperand(receiver_reg, JSObject::kPropertiesOffset));
    __ sw(a0, FieldMemOperand(scratch1, offset));

    // Skip updating write barrier if storing a smi.
    __ JumpIfSmi(a0, &exit);

    // Update the write barrier for the array address.
    // Ok to clobber receiver_reg and name_reg, since we return.
    __ mov(name_reg, a0);
    __ RecordWriteField(scratch1,
                        offset,
                        name_reg,
                        receiver_reg,
                        kRAHasNotBeenSaved,
                        kDontSaveFPRegs);
  }

  // Return the value (register v0).
  __ bind(&exit);
  __ mov(v0, a0);
  __ Ret();
}


void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) {
  ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC);
  Handle<Code> code = (kind == Code::LOAD_IC)
      ? masm->isolate()->builtins()->LoadIC_Miss()
      : masm->isolate()->builtins()->KeyedLoadIC_Miss();
  __ Jump(code, RelocInfo::CODE_TARGET);
}


static void GenerateCallFunction(MacroAssembler* masm,
                                 Handle<Object> object,
                                 const ParameterCount& arguments,
                                 Label* miss,
                                 Code::ExtraICState extra_ic_state) {
  // ----------- S t a t e -------------
  //  -- a0: receiver
  //  -- a1: function to call
  // -----------------------------------
  // Check that the function really is a function.
  __ JumpIfSmi(a1, miss);
  __ GetObjectType(a1, a3, a3);
  __ Branch(miss, ne, a3, Operand(JS_FUNCTION_TYPE));

  // Patch the receiver on the stack with the global proxy if
  // necessary.
  if (object->IsGlobalObject()) {
    __ lw(a3, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset));
    __ sw(a3, MemOperand(sp, arguments.immediate() * kPointerSize));
  }

  // Invoke the function.
  CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state)
      ? CALL_AS_FUNCTION
      : CALL_AS_METHOD;
  __ InvokeFunction(a1, arguments, JUMP_FUNCTION, NullCallWrapper(), call_kind);
}


static void PushInterceptorArguments(MacroAssembler* masm,
                                     Register receiver,
                                     Register holder,
                                     Register name,
                                     Handle<JSObject> holder_obj) {
  __ push(name);
  Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
  ASSERT(!masm->isolate()->heap()->InNewSpace(*interceptor));
  Register scratch = name;
  __ li(scratch, Operand(interceptor));
  __ Push(scratch, receiver, holder);
  __ lw(scratch, FieldMemOperand(scratch, InterceptorInfo::kDataOffset));
  __ push(scratch);
  __ li(scratch, Operand(ExternalReference::isolate_address()));
  __ push(scratch);
}


static void CompileCallLoadPropertyWithInterceptor(
    MacroAssembler* masm,
    Register receiver,
    Register holder,
    Register name,
    Handle<JSObject> holder_obj) {
  PushInterceptorArguments(masm, receiver, holder, name, holder_obj);

  ExternalReference ref =
      ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly),
          masm->isolate());
  __ PrepareCEntryArgs(6);
  __ PrepareCEntryFunction(ref);

  CEntryStub stub(1);
  __ CallStub(&stub);
}


static const int kFastApiCallArguments = 4;


// Reserves space for the extra arguments to API function in the
// caller's frame.
//
// These arguments are set by CheckPrototypes and GenerateFastApiDirectCall.
static void ReserveSpaceForFastApiCall(MacroAssembler* masm,
                                       Register scratch) {
  ASSERT(Smi::FromInt(0) == 0);
  for (int i = 0; i < kFastApiCallArguments; i++) {
    __ push(zero_reg);
  }
}


// Undoes the effects of ReserveSpaceForFastApiCall.
static void FreeSpaceForFastApiCall(MacroAssembler* masm) {
  __ Drop(kFastApiCallArguments);
}


static void GenerateFastApiDirectCall(MacroAssembler* masm,
                                      const CallOptimization& optimization,
                                      int argc) {
  // ----------- S t a t e -------------
  //  -- sp[0]              : holder (set by CheckPrototypes)
  //  -- sp[4]              : callee JS function
  //  -- sp[8]              : call data
  //  -- sp[12]             : isolate
  //  -- sp[16]             : last JS argument
  //  -- ...
  //  -- sp[(argc + 3) * 4] : first JS argument
  //  -- sp[(argc + 4) * 4] : receiver
  // -----------------------------------
  // Get the function and setup the context.
  Handle<JSFunction> function = optimization.constant_function();
  __ LoadHeapObject(t1, function);
  __ lw(cp, FieldMemOperand(t1, JSFunction::kContextOffset));

  // Pass the additional arguments.
  Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
  Handle<Object> call_data(api_call_info->data());
  if (masm->isolate()->heap()->InNewSpace(*call_data)) {
    __ li(a0, api_call_info);
    __ lw(t2, FieldMemOperand(a0, CallHandlerInfo::kDataOffset));
  } else {
    __ li(t2, call_data);
  }

  __ li(t3, Operand(ExternalReference::isolate_address()));
  // Store JS function, call data and isolate.
  __ sw(t1, MemOperand(sp, 1 * kPointerSize));
  __ sw(t2, MemOperand(sp, 2 * kPointerSize));
  __ sw(t3, MemOperand(sp, 3 * kPointerSize));

  // Prepare arguments.
  __ Addu(a2, sp, Operand(3 * kPointerSize));

  // Allocate the v8::Arguments structure in the arguments' space since
  // it's not controlled by GC.
  const int kApiStackSpace = 4;

  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(false, kApiStackSpace);

  // NOTE: the O32 abi requires a0 to hold a special pointer when returning a
  // struct from the function (which is currently the case). This means we pass
  // the first argument in a1 instead of a0. TryCallApiFunctionAndReturn
  // will handle setting up a0.

  // a1 = v8::Arguments&
  // Arguments is built at sp + 1 (sp is a reserved spot for ra).
  __ Addu(a1, sp, kPointerSize);

  // v8::Arguments::implicit_args_
  __ sw(a2, MemOperand(a1, 0 * kPointerSize));
  // v8::Arguments::values_
  __ Addu(t0, a2, Operand(argc * kPointerSize));
  __ sw(t0, MemOperand(a1, 1 * kPointerSize));
  // v8::Arguments::length_ = argc
  __ li(t0, Operand(argc));
  __ sw(t0, MemOperand(a1, 2 * kPointerSize));
  // v8::Arguments::is_construct_call = 0
  __ sw(zero_reg, MemOperand(a1, 3 * kPointerSize));

  const int kStackUnwindSpace = argc + kFastApiCallArguments + 1;
  Address function_address = v8::ToCData<Address>(api_call_info->callback());
  ApiFunction fun(function_address);
  ExternalReference ref =
      ExternalReference(&fun,
                        ExternalReference::DIRECT_API_CALL,
                        masm->isolate());
  AllowExternalCallThatCantCauseGC scope(masm);
  __ CallApiFunctionAndReturn(ref, kStackUnwindSpace);
}

class CallInterceptorCompiler BASE_EMBEDDED {
 public:
  CallInterceptorCompiler(StubCompiler* stub_compiler,
                          const ParameterCount& arguments,
                          Register name,
                          Code::ExtraICState extra_ic_state)
      : stub_compiler_(stub_compiler),
        arguments_(arguments),
        name_(name),
        extra_ic_state_(extra_ic_state) {}

  void Compile(MacroAssembler* masm,
               Handle<JSObject> object,
               Handle<JSObject> holder,
               Handle<String> name,
               LookupResult* lookup,
               Register receiver,
               Register scratch1,
               Register scratch2,
               Register scratch3,
               Label* miss) {
    ASSERT(holder->HasNamedInterceptor());
    ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());

    // Check that the receiver isn't a smi.
    __ JumpIfSmi(receiver, miss);
    CallOptimization optimization(lookup);
    if (optimization.is_constant_call()) {
      CompileCacheable(masm, object, receiver, scratch1, scratch2, scratch3,
                       holder, lookup, name, optimization, miss);
    } else {
      CompileRegular(masm, object, receiver, scratch1, scratch2, scratch3,
                     name, holder, miss);
    }
  }

 private:
  void CompileCacheable(MacroAssembler* masm,
                        Handle<JSObject> object,
                        Register receiver,
                        Register scratch1,
                        Register scratch2,
                        Register scratch3,
                        Handle<JSObject> interceptor_holder,
                        LookupResult* lookup,
                        Handle<String> name,
                        const CallOptimization& optimization,
                        Label* miss_label) {
    ASSERT(optimization.is_constant_call());
    ASSERT(!lookup->holder()->IsGlobalObject());
    Counters* counters = masm->isolate()->counters();
    int depth1 = kInvalidProtoDepth;
    int depth2 = kInvalidProtoDepth;
    bool can_do_fast_api_call = false;
    if (optimization.is_simple_api_call() &&
          !lookup->holder()->IsGlobalObject()) {
      depth1 = optimization.GetPrototypeDepthOfExpectedType(
          object, interceptor_holder);
      if (depth1 == kInvalidProtoDepth) {
        depth2 = optimization.GetPrototypeDepthOfExpectedType(
            interceptor_holder, Handle<JSObject>(lookup->holder()));
      }
      can_do_fast_api_call =
          depth1 != kInvalidProtoDepth || depth2 != kInvalidProtoDepth;
    }

    __ IncrementCounter(counters->call_const_interceptor(), 1,
                        scratch1, scratch2);

    if (can_do_fast_api_call) {
      __ IncrementCounter(counters->call_const_interceptor_fast_api(), 1,
                          scratch1, scratch2);
      ReserveSpaceForFastApiCall(masm, scratch1);
    }

    // Check that the maps from receiver to interceptor's holder
    // haven't changed and thus we can invoke interceptor.
    Label miss_cleanup;
    Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label;
    Register holder =
        stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
                                        scratch1, scratch2, scratch3,
                                        name, depth1, miss);

    // Invoke an interceptor and if it provides a value,
    // branch to |regular_invoke|.
    Label regular_invoke;
    LoadWithInterceptor(masm, receiver, holder, interceptor_holder, scratch2,
                        &regular_invoke);

    // Interceptor returned nothing for this property.  Try to use cached
    // constant function.

    // Check that the maps from interceptor's holder to constant function's
    // holder haven't changed and thus we can use cached constant function.
    if (*interceptor_holder != lookup->holder()) {
      stub_compiler_->CheckPrototypes(interceptor_holder, receiver,
                                      Handle<JSObject>(lookup->holder()),
                                      scratch1, scratch2, scratch3,
                                      name, depth2, miss);
    } else {
      // CheckPrototypes has a side effect of fetching a 'holder'
      // for API (object which is instanceof for the signature).  It's
      // safe to omit it here, as if present, it should be fetched
      // by the previous CheckPrototypes.
      ASSERT(depth2 == kInvalidProtoDepth);
    }

    // Invoke function.
    if (can_do_fast_api_call) {
      GenerateFastApiDirectCall(masm, optimization, arguments_.immediate());
    } else {
      CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_)
          ? CALL_AS_FUNCTION
          : CALL_AS_METHOD;
      __ InvokeFunction(optimization.constant_function(), arguments_,
                        JUMP_FUNCTION, NullCallWrapper(), call_kind);
    }

    // Deferred code for fast API call case---clean preallocated space.
    if (can_do_fast_api_call) {
      __ bind(&miss_cleanup);
      FreeSpaceForFastApiCall(masm);
      __ Branch(miss_label);
    }

    // Invoke a regular function.
    __ bind(&regular_invoke);
    if (can_do_fast_api_call) {
      FreeSpaceForFastApiCall(masm);
    }
  }

  void CompileRegular(MacroAssembler* masm,
                      Handle<JSObject> object,
                      Register receiver,
                      Register scratch1,
                      Register scratch2,
                      Register scratch3,
                      Handle<String> name,
                      Handle<JSObject> interceptor_holder,
                      Label* miss_label) {
    Register holder =
        stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
                                        scratch1, scratch2, scratch3,
                                        name, miss_label);

    // Call a runtime function to load the interceptor property.
    FrameScope scope(masm, StackFrame::INTERNAL);
    // Save the name_ register across the call.
    __ push(name_);

    PushInterceptorArguments(masm, receiver, holder, name_, interceptor_holder);

    __ CallExternalReference(
          ExternalReference(
              IC_Utility(IC::kLoadPropertyWithInterceptorForCall),
              masm->isolate()),
          6);
    // Restore the name_ register.
    __ pop(name_);
    // Leave the internal frame.
  }

  void LoadWithInterceptor(MacroAssembler* masm,
                           Register receiver,
                           Register holder,
                           Handle<JSObject> holder_obj,
                           Register scratch,
                           Label* interceptor_succeeded) {
    {
      FrameScope scope(masm, StackFrame::INTERNAL);

      __ Push(holder, name_);
      CompileCallLoadPropertyWithInterceptor(masm,
                                             receiver,
                                             holder,
                                             name_,
                                             holder_obj);
      __ pop(name_);  // Restore the name.
      __ pop(receiver);  // Restore the holder.
    }
    // If interceptor returns no-result sentinel, call the constant function.
    __ LoadRoot(scratch, Heap::kNoInterceptorResultSentinelRootIndex);
    __ Branch(interceptor_succeeded, ne, v0, Operand(scratch));
  }

  StubCompiler* stub_compiler_;
  const ParameterCount& arguments_;
  Register name_;
  Code::ExtraICState extra_ic_state_;
};



// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
static void GenerateCheckPropertyCell(MacroAssembler* masm,
                                      Handle<GlobalObject> global,
                                      Handle<String> name,
                                      Register scratch,
                                      Label* miss) {
  Handle<JSGlobalPropertyCell> cell =
      GlobalObject::EnsurePropertyCell(global, name);
  ASSERT(cell->value()->IsTheHole());
  __ li(scratch, Operand(cell));
  __ lw(scratch,
        FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
  __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
  __ Branch(miss, ne, scratch, Operand(at));
}


// Calls GenerateCheckPropertyCell for each global object in the prototype chain
// from object to (but not including) holder.
static void GenerateCheckPropertyCells(MacroAssembler* masm,
                                       Handle<JSObject> object,
                                       Handle<JSObject> holder,
                                       Handle<String> name,
                                       Register scratch,
                                       Label* miss) {
  Handle<JSObject> current = object;
  while (!current.is_identical_to(holder)) {
    if (current->IsGlobalObject()) {
      GenerateCheckPropertyCell(masm,
                                Handle<GlobalObject>::cast(current),
                                name,
                                scratch,
                                miss);
    }
    current = Handle<JSObject>(JSObject::cast(current->GetPrototype()));
  }
}


// Convert and store int passed in register ival to IEEE 754 single precision
// floating point value at memory location (dst + 4 * wordoffset)
// If FPU is available use it for conversion.
static void StoreIntAsFloat(MacroAssembler* masm,
                            Register dst,
                            Register wordoffset,
                            Register ival,
                            Register fval,
                            Register scratch1,
                            Register scratch2) {
  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    __ mtc1(ival, f0);
    __ cvt_s_w(f0, f0);
    __ sll(scratch1, wordoffset, 2);
    __ addu(scratch1, dst, scratch1);
    __ swc1(f0, MemOperand(scratch1, 0));
  } else {
    // FPU is not available,  do manual conversions.

    Label not_special, done;
    // Move sign bit from source to destination.  This works because the sign
    // bit in the exponent word of the double has the same position and polarity
    // as the 2's complement sign bit in a Smi.
    ASSERT(kBinary32SignMask == 0x80000000u);

    __ And(fval, ival, Operand(kBinary32SignMask));
    // Negate value if it is negative.
    __ subu(scratch1, zero_reg, ival);
    __ Movn(ival, scratch1, fval);

    // We have -1, 0 or 1, which we treat specially. Register ival contains
    // absolute value: it is either equal to 1 (special case of -1 and 1),
    // greater than 1 (not a special case) or less than 1 (special case of 0).
    __ Branch(&not_special, gt, ival, Operand(1));

    // For 1 or -1 we need to or in the 0 exponent (biased).
    static const uint32_t exponent_word_for_1 =
        kBinary32ExponentBias << kBinary32ExponentShift;

    __ Xor(scratch1, ival, Operand(1));
    __ li(scratch2, exponent_word_for_1);
    __ or_(scratch2, fval, scratch2);
    __ Movz(fval, scratch2, scratch1);  // Only if ival is equal to 1.
    __ Branch(&done);

    __ bind(&not_special);
    // Count leading zeros.
    // Gets the wrong answer for 0, but we already checked for that case above.
    Register zeros = scratch2;
    __ Clz(zeros, ival);

    // Compute exponent and or it into the exponent register.
    __ li(scratch1, (kBitsPerInt - 1) + kBinary32ExponentBias);
    __ subu(scratch1, scratch1, zeros);

    __ sll(scratch1, scratch1, kBinary32ExponentShift);
    __ or_(fval, fval, scratch1);

    // Shift up the source chopping the top bit off.
    __ Addu(zeros, zeros, Operand(1));
    // This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
    __ sllv(ival, ival, zeros);
    // And the top (top 20 bits).
    __ srl(scratch1, ival, kBitsPerInt - kBinary32MantissaBits);
    __ or_(fval, fval, scratch1);

    __ bind(&done);

    __ sll(scratch1, wordoffset, 2);
    __ addu(scratch1, dst, scratch1);
    __ sw(fval, MemOperand(scratch1, 0));
  }
}


// Convert unsigned integer with specified number of leading zeroes in binary
// representation to IEEE 754 double.
// Integer to convert is passed in register hiword.
// Resulting double is returned in registers hiword:loword.
// This functions does not work correctly for 0.
static void GenerateUInt2Double(MacroAssembler* masm,
                                Register hiword,
                                Register loword,
                                Register scratch,
                                int leading_zeroes) {
  const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
  const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;

  const int mantissa_shift_for_hi_word =
      meaningful_bits - HeapNumber::kMantissaBitsInTopWord;

  const int mantissa_shift_for_lo_word =
      kBitsPerInt - mantissa_shift_for_hi_word;

  __ li(scratch, biased_exponent << HeapNumber::kExponentShift);
  if (mantissa_shift_for_hi_word > 0) {
    __ sll(loword, hiword, mantissa_shift_for_lo_word);
    __ srl(hiword, hiword, mantissa_shift_for_hi_word);
    __ or_(hiword, scratch, hiword);
  } else {
    __ mov(loword, zero_reg);
    __ sll(hiword, hiword, mantissa_shift_for_hi_word);
    __ or_(hiword, scratch, hiword);
  }

  // If least significant bit of biased exponent was not 1 it was corrupted
  // by most significant bit of mantissa so we should fix that.
  if (!(biased_exponent & 1)) {
    __ li(scratch, 1 << HeapNumber::kExponentShift);
    __ nor(scratch, scratch, scratch);
    __ and_(hiword, hiword, scratch);
  }
}


#undef __
#define __ ACCESS_MASM(masm())


Register StubCompiler::CheckPrototypes(Handle<JSObject> object,
                                       Register object_reg,
                                       Handle<JSObject> holder,
                                       Register holder_reg,
                                       Register scratch1,
                                       Register scratch2,
                                       Handle<String> name,
                                       int save_at_depth,
                                       Label* miss) {
  // Make sure there's no overlap between holder and object registers.
  ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
  ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
         && !scratch2.is(scratch1));

  // Keep track of the current object in register reg.
  Register reg = object_reg;
  int depth = 0;

  if (save_at_depth == depth) {
    __ sw(reg, MemOperand(sp));
  }

  // Check the maps in the prototype chain.
  // Traverse the prototype chain from the object and do map checks.
  Handle<JSObject> current = object;
  while (!current.is_identical_to(holder)) {
    ++depth;

    // Only global objects and objects that do not require access
    // checks are allowed in stubs.
    ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded());

    Handle<JSObject> prototype(JSObject::cast(current->GetPrototype()));
    if (!current->HasFastProperties() &&
        !current->IsJSGlobalObject() &&
        !current->IsJSGlobalProxy()) {
      if (!name->IsSymbol()) {
        name = factory()->LookupSymbol(name);
      }
      ASSERT(current->property_dictionary()->FindEntry(*name) ==
             StringDictionary::kNotFound);

      GenerateDictionaryNegativeLookup(masm(), miss, reg, name,
                                       scratch1, scratch2);

      __ lw(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
      reg = holder_reg;  // From now on the object will be in holder_reg.
      __ lw(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset));
    } else {
      Handle<Map> current_map(current->map());
      __ CheckMap(reg, scratch1, current_map, miss, DONT_DO_SMI_CHECK,
                  ALLOW_ELEMENT_TRANSITION_MAPS);
      // Check access rights to the global object.  This has to happen after
      // the map check so that we know that the object is actually a global
      // object.
      if (current->IsJSGlobalProxy()) {
        __ CheckAccessGlobalProxy(reg, scratch2, miss);
      }
      reg = holder_reg;  // From now on the object will be in holder_reg.

      if (heap()->InNewSpace(*prototype)) {
        // The prototype is in new space; we cannot store a reference to it
        // in the code.  Load it from the map.
        __ lw(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset));
      } else {
        // The prototype is in old space; load it directly.
        __ li(reg, Operand(prototype));
      }
    }

    if (save_at_depth == depth) {
      __ sw(reg, MemOperand(sp));
    }

    // Go to the next object in the prototype chain.
    current = prototype;
  }

  // Log the check depth.
  LOG(masm()->isolate(), IntEvent("check-maps-depth", depth + 1));

  // Check the holder map.
  __ CheckMap(reg, scratch1, Handle<Map>(current->map()), miss,
              DONT_DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS);

  // Perform security check for access to the global object.
  ASSERT(holder->IsJSGlobalProxy() || !holder->IsAccessCheckNeeded());
  if (holder->IsJSGlobalProxy()) {
    __ CheckAccessGlobalProxy(reg, scratch1, miss);
  }

  // If we've skipped any global objects, it's not enough to verify that
  // their maps haven't changed.  We also need to check that the property
  // cell for the property is still empty.
  GenerateCheckPropertyCells(masm(), object, holder, name, scratch1, miss);

  // Return the register containing the holder.
  return reg;
}


void StubCompiler::GenerateLoadField(Handle<JSObject> object,
                                     Handle<JSObject> holder,
                                     Register receiver,
                                     Register scratch1,
                                     Register scratch2,
                                     Register scratch3,
                                     int index,
                                     Handle<String> name,
                                     Label* miss) {
  // Check that the receiver isn't a smi.
  __ JumpIfSmi(receiver, miss);

  // Check that the maps haven't changed.
  Register reg = CheckPrototypes(
      object, receiver, holder, scratch1, scratch2, scratch3, name, miss);
  GenerateFastPropertyLoad(masm(), v0, reg, holder, index);
  __ Ret();
}


void StubCompiler::GenerateLoadConstant(Handle<JSObject> object,
                                        Handle<JSObject> holder,
                                        Register receiver,
                                        Register scratch1,
                                        Register scratch2,
                                        Register scratch3,
                                        Handle<JSFunction> value,
                                        Handle<String> name,
                                        Label* miss) {
  // Check that the receiver isn't a smi.
  __ JumpIfSmi(receiver, miss, scratch1);

  // Check that the maps haven't changed.
  CheckPrototypes(object, receiver, holder,
                  scratch1, scratch2, scratch3, name, miss);

  // Return the constant value.
  __ LoadHeapObject(v0, value);
  __ Ret();
}


void StubCompiler::GenerateLoadCallback(Handle<JSObject> object,
                                        Handle<JSObject> holder,
                                        Register receiver,
                                        Register name_reg,
                                        Register scratch1,
                                        Register scratch2,
                                        Register scratch3,
                                        Handle<AccessorInfo> callback,
                                        Handle<String> name,
                                        Label* miss) {
  // Check that the receiver isn't a smi.
  __ JumpIfSmi(receiver, miss, scratch1);

  // Check that the maps haven't changed.
  Register reg = CheckPrototypes(object, receiver, holder, scratch1,
                                 scratch2, scratch3, name, miss);

  // Build AccessorInfo::args_ list on the stack and push property name below
  // the exit frame to make GC aware of them and store pointers to them.
  __ push(receiver);
  __ mov(scratch2, sp);  // scratch2 = AccessorInfo::args_
  if (heap()->InNewSpace(callback->data())) {
    __ li(scratch3, callback);
    __ lw(scratch3, FieldMemOperand(scratch3, AccessorInfo::kDataOffset));
  } else {
    __ li(scratch3, Handle<Object>(callback->data()));
  }
  __ Subu(sp, sp, 4 * kPointerSize);
  __ sw(reg, MemOperand(sp, 3 * kPointerSize));
  __ sw(scratch3, MemOperand(sp, 2 * kPointerSize));
  __ li(scratch3, Operand(ExternalReference::isolate_address()));
  __ sw(scratch3, MemOperand(sp, 1 * kPointerSize));
  __ sw(name_reg, MemOperand(sp, 0 * kPointerSize));

  __ mov(a2, scratch2);  // Saved in case scratch2 == a1.
  __ mov(a1, sp);  // a1 (first argument - see note below) = Handle<String>

  // NOTE: the O32 abi requires a0 to hold a special pointer when returning a
  // struct from the function (which is currently the case). This means we pass
  // the arguments in a1-a2 instead of a0-a1. TryCallApiFunctionAndReturn
  // will handle setting up a0.

  const int kApiStackSpace = 1;
  FrameScope frame_scope(masm(), StackFrame::MANUAL);
  __ EnterExitFrame(false, kApiStackSpace);

  // Create AccessorInfo instance on the stack above the exit frame with
  // scratch2 (internal::Object** args_) as the data.
  __ sw(a2, MemOperand(sp, kPointerSize));
  // a2 (second argument - see note above) = AccessorInfo&
  __ Addu(a2, sp, kPointerSize);

  const int kStackUnwindSpace = 5;
  Address getter_address = v8::ToCData<Address>(callback->getter());
  ApiFunction fun(getter_address);
  ExternalReference ref =
      ExternalReference(&fun,
                        ExternalReference::DIRECT_GETTER_CALL,
                        masm()->isolate());
  __ CallApiFunctionAndReturn(ref, kStackUnwindSpace);
}


void StubCompiler::GenerateLoadInterceptor(Handle<JSObject> object,
                                           Handle<JSObject> interceptor_holder,
                                           LookupResult* lookup,
                                           Register receiver,
                                           Register name_reg,
                                           Register scratch1,
                                           Register scratch2,
                                           Register scratch3,
                                           Handle<String> name,
                                           Label* miss) {
  ASSERT(interceptor_holder->HasNamedInterceptor());
  ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined());

  // Check that the receiver isn't a smi.
  __ JumpIfSmi(receiver, miss);

  // So far the most popular follow ups for interceptor loads are FIELD
  // and CALLBACKS, so inline only them, other cases may be added
  // later.
  bool compile_followup_inline = false;
  if (lookup->IsFound() && lookup->IsCacheable()) {
    if (lookup->IsField()) {
      compile_followup_inline = true;
    } else if (lookup->type() == CALLBACKS &&
        lookup->GetCallbackObject()->IsAccessorInfo()) {
      AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject());
      compile_followup_inline = callback->getter() != NULL &&
          callback->IsCompatibleReceiver(*object);
    }
  }

  if (compile_followup_inline) {
    // Compile the interceptor call, followed by inline code to load the
    // property from further up the prototype chain if the call fails.
    // Check that the maps haven't changed.
    Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
                                          scratch1, scratch2, scratch3,
                                          name, miss);
    ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1));

    // Preserve the receiver register explicitly whenever it is different from
    // the holder and it is needed should the interceptor return without any
    // result. The CALLBACKS case needs the receiver to be passed into C++ code,
    // the FIELD case might cause a miss during the prototype check.
    bool must_perfrom_prototype_check = *interceptor_holder != lookup->holder();
    bool must_preserve_receiver_reg = !receiver.is(holder_reg) &&
        (lookup->type() == CALLBACKS || must_perfrom_prototype_check);

    // Save necessary data before invoking an interceptor.
    // Requires a frame to make GC aware of pushed pointers.
    {
      FrameScope frame_scope(masm(), StackFrame::INTERNAL);
      if (must_preserve_receiver_reg) {
        __ Push(receiver, holder_reg, name_reg);
      } else {
        __ Push(holder_reg, name_reg);
      }
      // Invoke an interceptor.  Note: map checks from receiver to
      // interceptor's holder has been compiled before (see a caller
      // of this method).
      CompileCallLoadPropertyWithInterceptor(masm(),
                                             receiver,
                                             holder_reg,
                                             name_reg,
                                             interceptor_holder);
      // Check if interceptor provided a value for property.  If it's
      // the case, return immediately.
      Label interceptor_failed;
      __ LoadRoot(scratch1, Heap::kNoInterceptorResultSentinelRootIndex);
      __ Branch(&interceptor_failed, eq, v0, Operand(scratch1));
      frame_scope.GenerateLeaveFrame();
      __ Ret();

      __ bind(&interceptor_failed);
      __ pop(name_reg);
      __ pop(holder_reg);
      if (must_preserve_receiver_reg) {
        __ pop(receiver);
      }
      // Leave the internal frame.
    }
    // Check that the maps from interceptor's holder to lookup's holder
    // haven't changed.  And load lookup's holder into |holder| register.
    if (must_perfrom_prototype_check) {
      holder_reg = CheckPrototypes(interceptor_holder,
                                   holder_reg,
                                   Handle<JSObject>(lookup->holder()),
                                   scratch1,
                                   scratch2,
                                   scratch3,
                                   name,
                                   miss);
    }

    if (lookup->IsField()) {
      // We found FIELD property in prototype chain of interceptor's holder.
      // Retrieve a field from field's holder.
      GenerateFastPropertyLoad(masm(), v0, holder_reg,
                               Handle<JSObject>(lookup->holder()),
                               lookup->GetFieldIndex());
      __ Ret();
    } else {
      // We found CALLBACKS property in prototype chain of interceptor's
      // holder.
      ASSERT(lookup->type() == CALLBACKS);
      Handle<AccessorInfo> callback(
          AccessorInfo::cast(lookup->GetCallbackObject()));
      ASSERT(callback->getter() != NULL);

      // Tail call to runtime.
      // Important invariant in CALLBACKS case: the code above must be
      // structured to never clobber |receiver| register.
      __ li(scratch2, callback);

      __ Push(receiver, holder_reg);
      __ lw(scratch3,
            FieldMemOperand(scratch2, AccessorInfo::kDataOffset));
      __ li(scratch1, Operand(ExternalReference::isolate_address()));
      __ Push(scratch3, scratch1, scratch2, name_reg);

      ExternalReference ref =
          ExternalReference(IC_Utility(IC::kLoadCallbackProperty),
                            masm()->isolate());
      __ TailCallExternalReference(ref, 6, 1);
    }
  } else {  // !compile_followup_inline
    // Call the runtime system to load the interceptor.
    // Check that the maps haven't changed.
    Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
                                          scratch1, scratch2, scratch3,
                                          name, miss);
    PushInterceptorArguments(masm(), receiver, holder_reg,
                             name_reg, interceptor_holder);

    ExternalReference ref = ExternalReference(
        IC_Utility(IC::kLoadPropertyWithInterceptorForLoad), masm()->isolate());
    __ TailCallExternalReference(ref, 6, 1);
  }
}


void CallStubCompiler::GenerateNameCheck(Handle<String> name, Label* miss) {
  if (kind_ == Code::KEYED_CALL_IC) {
    __ Branch(miss, ne, a2, Operand(name));
  }
}


void CallStubCompiler::GenerateGlobalReceiverCheck(Handle<JSObject> object,
                                                   Handle<JSObject> holder,
                                                   Handle<String> name,
                                                   Label* miss) {
  ASSERT(holder->IsGlobalObject());

  // Get the number of arguments.
  const int argc = arguments().immediate();

  // Get the receiver from the stack.
  __ lw(a0, MemOperand(sp, argc * kPointerSize));

  // Check that the maps haven't changed.
  __ JumpIfSmi(a0, miss);
  CheckPrototypes(object, a0, holder, a3, a1, t0, name, miss);
}


void CallStubCompiler::GenerateLoadFunctionFromCell(
    Handle<JSGlobalPropertyCell> cell,
    Handle<JSFunction> function,
    Label* miss) {
  // Get the value from the cell.
  __ li(a3, Operand(cell));
  __ lw(a1, FieldMemOperand(a3, JSGlobalPropertyCell::kValueOffset));

  // Check that the cell contains the same function.
  if (heap()->InNewSpace(*function)) {
    // We can't embed a pointer to a function in new space so we have
    // to verify that the shared function info is unchanged. This has
    // the nice side effect that multiple closures based on the same
    // function can all use this call IC. Before we load through the
    // function, we have to verify that it still is a function.
    __ JumpIfSmi(a1, miss);
    __ GetObjectType(a1, a3, a3);
    __ Branch(miss, ne, a3, Operand(JS_FUNCTION_TYPE));

    // Check the shared function info. Make sure it hasn't changed.
    __ li(a3, Handle<SharedFunctionInfo>(function->shared()));
    __ lw(t0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
    __ Branch(miss, ne, t0, Operand(a3));
  } else {
    __ Branch(miss, ne, a1, Operand(function));
  }
}


void CallStubCompiler::GenerateMissBranch() {
  Handle<Code> code =
      isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(),
                                               kind_,
                                               extra_state_);
  __ Jump(code, RelocInfo::CODE_TARGET);
}


Handle<Code> CallStubCompiler::CompileCallField(Handle<JSObject> object,
                                                Handle<JSObject> holder,
                                                int index,
                                                Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------
  Label miss;

  GenerateNameCheck(name, &miss);

  const int argc = arguments().immediate();

  // Get the receiver of the function from the stack into a0.
  __ lw(a0, MemOperand(sp, argc * kPointerSize));
  // Check that the receiver isn't a smi.
  __ JumpIfSmi(a0, &miss, t0);

  // Do the right check and compute the holder register.
  Register reg = CheckPrototypes(object, a0, holder, a1, a3, t0, name, &miss);
  GenerateFastPropertyLoad(masm(), a1, reg, holder, index);

  GenerateCallFunction(masm(), object, arguments(), &miss, extra_state_);

  // Handle call cache miss.
  __ bind(&miss);
  GenerateMissBranch();

  // Return the generated code.
  return GetCode(Code::FIELD, name);
}


Handle<Code> CallStubCompiler::CompileArrayPushCall(
    Handle<Object> object,
    Handle<JSObject> holder,
    Handle<JSGlobalPropertyCell> cell,
    Handle<JSFunction> function,
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a2    : name
  //  -- ra    : return address
  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
  //  -- ...
  //  -- sp[argc * 4]           : receiver
  // -----------------------------------

  // If object is not an array, bail out to regular call.
  if (!object->IsJSArray() || !cell.is_null()) return Handle<Code>::null();

  Label miss;

  GenerateNameCheck(name, &miss);

  Register receiver = a1;

  // Get the receiver from the stack.
  const int argc = arguments().immediate();
  __ lw(receiver, MemOperand(sp, argc * kPointerSize));

  // Check that the receiver isn't a smi.
  __ JumpIfSmi(receiver, &miss);

  // Check that the maps haven't changed.
  CheckPrototypes(Handle<JSObject>::cast(object), receiver, holder, a3, v0, t0,
                  name, &miss);

  if (argc == 0) {
    // Nothing to do, just return the length.
    __ lw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));
    __ Drop(argc + 1);
    __ Ret();
  } else {
    Label call_builtin;
    if (argc == 1) {  // Otherwise fall through to call the builtin.
      Label attempt_to_grow_elements;

      Register elements = t2;
      Register end_elements = t1;
      // Get the elements array of the object.
      __ lw(elements, FieldMemOperand(receiver, JSArray::kElementsOffset));

      // Check that the elements are in fast mode and writable.
      __ CheckMap(elements,
                  v0,
                  Heap::kFixedArrayMapRootIndex,
                  &call_builtin,
                  DONT_DO_SMI_CHECK);

      // Get the array's length into v0 and calculate new length.
      __ lw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));
      STATIC_ASSERT(kSmiTagSize == 1);
      STATIC_ASSERT(kSmiTag == 0);
      __ Addu(v0, v0, Operand(Smi::FromInt(argc)));

      // Get the elements' length.
      __ lw(t0, FieldMemOperand(elements, FixedArray::kLengthOffset));

      // Check if we could survive without allocation.
      __ Branch(&attempt_to_grow_elements, gt, v0, Operand(t0));

      // Check if value is a smi.
      Label with_write_barrier;
      __ lw(t0, MemOperand(sp, (argc - 1) * kPointerSize));
      __ JumpIfNotSmi(t0, &with_write_barrier);

      // Save new length.
      __ sw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));

      // Store the value.
      // We may need a register containing the address end_elements below,
      // so write back the value in end_elements.
      __ sll(end_elements, v0, kPointerSizeLog2 - kSmiTagSize);
      __ Addu(end_elements, elements, end_elements);
      const int kEndElementsOffset =
          FixedArray::kHeaderSize - kHeapObjectTag - argc * kPointerSize;
      __ Addu(end_elements, end_elements, kEndElementsOffset);
      __ sw(t0, MemOperand(end_elements));

      // Check for a smi.
      __ Drop(argc + 1);
      __ Ret();

      __ bind(&with_write_barrier);

      __ lw(a3, FieldMemOperand(receiver, HeapObject::kMapOffset));

      if (FLAG_smi_only_arrays  && !FLAG_trace_elements_transitions) {
        Label fast_object, not_fast_object;
        __ CheckFastObjectElements(a3, t3, &not_fast_object);
        __ jmp(&fast_object);
        // In case of fast smi-only, convert to fast object, otherwise bail out.
        __ bind(&not_fast_object);
        __ CheckFastSmiElements(a3, t3, &call_builtin);
        // edx: receiver
        // r3: map
        Label try_holey_map;
        __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
                                               FAST_ELEMENTS,
                                               a3,
                                               t3,
                                               &try_holey_map);
        __ mov(a2, receiver);
        ElementsTransitionGenerator::
            GenerateMapChangeElementsTransition(masm());
        __ jmp(&fast_object);

        __ bind(&try_holey_map);
        __ LoadTransitionedArrayMapConditional(FAST_HOLEY_SMI_ELEMENTS,
                                               FAST_HOLEY_ELEMENTS,
                                               a3,
                                               t3,
                                               &call_builtin);
        __ mov(a2, receiver);
        ElementsTransitionGenerator::
            GenerateMapChangeElementsTransition(masm());
        __ bind(&fast_object);
      } else {
        __ CheckFastObjectElements(a3, a3, &call_builtin);
      }

      // Save new length.
      __ sw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));

      // Store the value.
      // We may need a register containing the address end_elements below,
      // so write back the value in end_elements.
      __ sll(end_elements, v0, kPointerSizeLog2 - kSmiTagSize);
      __ Addu(end_elements, elements, end_elements);
      __ Addu(end_elements, end_elements, kEndElementsOffset);
      __ sw(t0, MemOperand(end_elements));

      __ RecordWrite(elements,
                     end_elements,
                     t0,
                     kRAHasNotBeenSaved,
                     kDontSaveFPRegs,
                     EMIT_REMEMBERED_SET,
                     OMIT_SMI_CHECK);
      __ Drop(argc + 1);
      __ Ret();

      __ bind(&attempt_to_grow_elements);
      // v0: array's length + 1.
      // t0: elements' length.

      if (!FLAG_inline_new) {
        __ Branch(&call_builtin);
      }

      __ lw(a2, MemOperand(sp, (argc - 1) * kPointerSize));
      // Growing elements that are SMI-only requires special handling in case
      // the new element is non-Smi. For now, delegate to the builtin.
      Label no_fast_elements_check;
      __ JumpIfSmi(a2, &no_fast_elements_check);
      __ lw(t3, FieldMemOperand(receiver, HeapObject::kMapOffset));
      __ CheckFastObjectElements(t3, t3, &call_builtin);
      __ bind(&no_fast_elements_check);

      ExternalReference new_space_allocation_top =
          ExternalReference::new_space_allocation_top_address(
              masm()->isolate());
      ExternalReference new_space_allocation_limit =
          ExternalReference::new_space_allocation_limit_address(
              masm()->isolate());

      const int kAllocationDelta = 4;
      // Load top and check if it is the end of elements.
      __ sll(end_elements, v0, kPointerSizeLog2 - kSmiTagSize);
      __ Addu(end_elements, elements, end_elements);
      __ Addu(end_elements, end_elements, Operand(kEndElementsOffset));
      __ li(t3, Operand(new_space_allocation_top));
      __ lw(a3, MemOperand(t3));
      __ Branch(&call_builtin, ne, end_elements, Operand(a3));

      __ li(t5, Operand(new_space_allocation_limit));
      __ lw(t5, MemOperand(t5));
      __ Addu(a3, a3, Operand(kAllocationDelta * kPointerSize));
      __ Branch(&call_builtin, hi, a3, Operand(t5));

      // We fit and could grow elements.
      // Update new_space_allocation_top.
      __ sw(a3, MemOperand(t3));
      // Push the argument.
      __ sw(a2, MemOperand(end_elements));
      // Fill the rest with holes.
      __ LoadRoot(a3, Heap::kTheHoleValueRootIndex);
      for (int i = 1; i < kAllocationDelta; i++) {
        __ sw(a3, MemOperand(end_elements, i * kPointerSize));
      }

      // Update elements' and array's sizes.
      __ sw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));
      __ Addu(t0, t0, Operand(Smi::FromInt(kAllocationDelta)));
      __ sw(t0, FieldMemOperand(elements, FixedArray::kLengthOffset));

      // Elements are in new space, so write barrier is not required.
      __ Drop(argc + 1);
      __ Ret();
    }
    __ bind(&call_builtin);
    __ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPush,
                                                   masm()->isolate()),
                                 argc + 1,
                                 1);
  }

  // Handle call cache miss.
  __ bind(&miss);
  GenerateMissBranch();

  // Return the generated code.
  return GetCode(function);
}


Handle<Code> CallStubCompiler::CompileArrayPopCall(
    Handle<Object> object,
    Handle<JSObject> holder,
    Handle<JSGlobalPropertyCell> cell,
    Handle<JSFunction> function,
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a2    : name
  //  -- ra    : return address
  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
  //  -- ...
  //  -- sp[argc * 4]           : receiver
  // -----------------------------------

  // If object is not an array, bail out to regular call.
  if (!object->IsJSArray() || !cell.is_null()) return Handle<Code>::null();

  Label miss, return_undefined, call_builtin;
  Register receiver = a1;
  Register elements = a3;
  GenerateNameCheck(name, &miss);

  // Get the receiver from the stack.
  const int argc = arguments().immediate();
  __ lw(receiver, MemOperand(sp, argc * kPointerSize));
  // Check that the receiver isn't a smi.
  __ JumpIfSmi(receiver, &miss);

  // Check that the maps haven't changed.
  CheckPrototypes(Handle<JSObject>::cast(object), receiver, holder, elements,
                  t0, v0, name, &miss);

  // Get the elements array of the object.
  __ lw(elements, FieldMemOperand(receiver, JSArray::kElementsOffset));

  // Check that the elements are in fast mode and writable.
  __ CheckMap(elements,
              v0,
              Heap::kFixedArrayMapRootIndex,
              &call_builtin,
              DONT_DO_SMI_CHECK);

  // Get the array's length into t0 and calculate new length.
  __ lw(t0, FieldMemOperand(receiver, JSArray::kLengthOffset));
  __ Subu(t0, t0, Operand(Smi::FromInt(1)));
  __ Branch(&return_undefined, lt, t0, Operand(zero_reg));

  // Get the last element.
  __ LoadRoot(t2, Heap::kTheHoleValueRootIndex);
  STATIC_ASSERT(kSmiTagSize == 1);
  STATIC_ASSERT(kSmiTag == 0);
  // We can't address the last element in one operation. Compute the more
  // expensive shift first, and use an offset later on.
  __ sll(t1, t0, kPointerSizeLog2 - kSmiTagSize);
  __ Addu(elements, elements, t1);
  __ lw(v0, FieldMemOperand(elements, FixedArray::kHeaderSize));
  __ Branch(&call_builtin, eq, v0, Operand(t2));

  // Set the array's length.
  __ sw(t0, FieldMemOperand(receiver, JSArray::kLengthOffset));

  // Fill with the hole.
  __ sw(t2, FieldMemOperand(elements, FixedArray::kHeaderSize));
  __ Drop(argc + 1);
  __ Ret();

  __ bind(&return_undefined);
  __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
  __ Drop(argc + 1);
  __ Ret();

  __ bind(&call_builtin);
  __ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPop,
                                                 masm()->isolate()),
                               argc + 1,
                               1);

  // Handle call cache miss.
  __ bind(&miss);
  GenerateMissBranch();

  // Return the generated code.
  return GetCode(function);
}


Handle<Code> CallStubCompiler::CompileStringCharCodeAtCall(
    Handle<Object> object,
    Handle<JSObject> holder,
    Handle<JSGlobalPropertyCell> cell,
    Handle<JSFunction> function,
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a2                     : function name
  //  -- ra                     : return address
  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
  //  -- ...
  //  -- sp[argc * 4]           : receiver
  // -----------------------------------

  // If object is not a string, bail out to regular call.
  if (!object->IsString() || !cell.is_null()) return Handle<Code>::null();

  const int argc = arguments().immediate();
  Label miss;
  Label name_miss;
  Label index_out_of_range;

  Label* index_out_of_range_label = &index_out_of_range;

  if (kind_ == Code::CALL_IC &&
      (CallICBase::StringStubState::decode(extra_state_) ==
       DEFAULT_STRING_STUB)) {
    index_out_of_range_label = &miss;
  }

  GenerateNameCheck(name, &name_miss);

  // Check that the maps starting from the prototype haven't changed.
  GenerateDirectLoadGlobalFunctionPrototype(masm(),
                                            Context::STRING_FUNCTION_INDEX,
                                            v0,
                                            &miss);
  ASSERT(!object.is_identical_to(holder));
  CheckPrototypes(Handle<JSObject>(JSObject::cast(object->GetPrototype())),
                  v0, holder, a1, a3, t0, name, &miss);

  Register receiver = a1;
  Register index = t1;
  Register result = v0;
  __ lw(receiver, MemOperand(sp, argc * kPointerSize));
  if (argc > 0) {
    __ lw(index, MemOperand(sp, (argc - 1) * kPointerSize));
  } else {
    __ LoadRoot(index, Heap::kUndefinedValueRootIndex);
  }

  StringCharCodeAtGenerator generator(receiver,
                                      index,
                                      result,
                                      &miss,  // When not a string.
                                      &miss,  // When not a number.
                                      index_out_of_range_label,
                                      STRING_INDEX_IS_NUMBER);
  generator.GenerateFast(masm());
  __ Drop(argc + 1);
  __ Ret();

  StubRuntimeCallHelper call_helper;
  generator.GenerateSlow(masm(), call_helper);

  if (index_out_of_range.is_linked()) {
    __ bind(&index_out_of_range);
    __ LoadRoot(v0, Heap::kNanValueRootIndex);
    __ Drop(argc + 1);
    __ Ret();
  }

  __ bind(&miss);
  // Restore function name in a2.
  __ li(a2, name);
  __ bind(&name_miss);
  GenerateMissBranch();

  // Return the generated code.
  return GetCode(function);
}


Handle<Code> CallStubCompiler::CompileStringCharAtCall(
    Handle<Object> object,
    Handle<JSObject> holder,
    Handle<JSGlobalPropertyCell> cell,
    Handle<JSFunction> function,
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a2                     : function name
  //  -- ra                     : return address
  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
  //  -- ...
  //  -- sp[argc * 4]           : receiver
  // -----------------------------------

  // If object is not a string, bail out to regular call.
  if (!object->IsString() || !cell.is_null()) return Handle<Code>::null();

  const int argc = arguments().immediate();
  Label miss;
  Label name_miss;
  Label index_out_of_range;
  Label* index_out_of_range_label = &index_out_of_range;
  if (kind_ == Code::CALL_IC &&
      (CallICBase::StringStubState::decode(extra_state_) ==
       DEFAULT_STRING_STUB)) {
    index_out_of_range_label = &miss;
  }
  GenerateNameCheck(name, &name_miss);

  // Check that the maps starting from the prototype haven't changed.
  GenerateDirectLoadGlobalFunctionPrototype(masm(),
                                            Context::STRING_FUNCTION_INDEX,
                                            v0,
                                            &miss);
  ASSERT(!object.is_identical_to(holder));
  CheckPrototypes(Handle<JSObject>(JSObject::cast(object->GetPrototype())),
                  v0, holder, a1, a3, t0, name, &miss);

  Register receiver = v0;
  Register index = t1;
  Register scratch = a3;
  Register result = v0;
  __ lw(receiver, MemOperand(sp, argc * kPointerSize));
  if (argc > 0) {
    __ lw(index, MemOperand(sp, (argc - 1) * kPointerSize));
  } else {
    __ LoadRoot(index, Heap::kUndefinedValueRootIndex);
  }

  StringCharAtGenerator generator(receiver,
                                  index,
                                  scratch,
                                  result,
                                  &miss,  // When not a string.
                                  &miss,  // When not a number.
                                  index_out_of_range_label,
                                  STRING_INDEX_IS_NUMBER);
  generator.GenerateFast(masm());
  __ Drop(argc + 1);
  __ Ret();

  StubRuntimeCallHelper call_helper;
  generator.GenerateSlow(masm(), call_helper);

  if (index_out_of_range.is_linked()) {
    __ bind(&index_out_of_range);
    __ LoadRoot(v0, Heap::kEmptyStringRootIndex);
    __ Drop(argc + 1);
    __ Ret();
  }

  __ bind(&miss);
  // Restore function name in a2.
  __ li(a2, name);
  __ bind(&name_miss);
  GenerateMissBranch();

  // Return the generated code.
  return GetCode(function);
}


Handle<Code> CallStubCompiler::CompileStringFromCharCodeCall(
    Handle<Object> object,
    Handle<JSObject> holder,
    Handle<JSGlobalPropertyCell> cell,
    Handle<JSFunction> function,
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a2                     : function name
  //  -- ra                     : return address
  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
  //  -- ...
  //  -- sp[argc * 4]           : receiver
  // -----------------------------------

  const int argc = arguments().immediate();

  // If the object is not a JSObject or we got an unexpected number of
  // arguments, bail out to the regular call.
  if (!object->IsJSObject() || argc != 1) return Handle<Code>::null();

  Label miss;
  GenerateNameCheck(name, &miss);

  if (cell.is_null()) {
    __ lw(a1, MemOperand(sp, 1 * kPointerSize));

    STATIC_ASSERT(kSmiTag == 0);
    __ JumpIfSmi(a1, &miss);

    CheckPrototypes(Handle<JSObject>::cast(object), a1, holder, v0, a3, t0,
                    name, &miss);
  } else {
    ASSERT(cell->value() == *function);
    GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
                                &miss);
    GenerateLoadFunctionFromCell(cell, function, &miss);
  }

  // Load the char code argument.
  Register code = a1;
  __ lw(code, MemOperand(sp, 0 * kPointerSize));

  // Check the code is a smi.
  Label slow;
  STATIC_ASSERT(kSmiTag == 0);
  __ JumpIfNotSmi(code, &slow);

  // Convert the smi code to uint16.
  __ And(code, code, Operand(Smi::FromInt(0xffff)));

  StringCharFromCodeGenerator generator(code, v0);
  generator.GenerateFast(masm());
  __ Drop(argc + 1);
  __ Ret();

  StubRuntimeCallHelper call_helper;
  generator.GenerateSlow(masm(), call_helper);

  // Tail call the full function. We do not have to patch the receiver
  // because the function makes no use of it.
  __ bind(&slow);
  __ InvokeFunction(
      function, arguments(), JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);

  __ bind(&miss);
  // a2: function name.
  GenerateMissBranch();

  // Return the generated code.
  return cell.is_null() ? GetCode(function) : GetCode(Code::NORMAL, name);
}


Handle<Code> CallStubCompiler::CompileMathFloorCall(
    Handle<Object> object,
    Handle<JSObject> holder,
    Handle<JSGlobalPropertyCell> cell,
    Handle<JSFunction> function,
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a2                     : function name
  //  -- ra                     : return address
  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
  //  -- ...
  //  -- sp[argc * 4]           : receiver
  // -----------------------------------

  if (!CpuFeatures::IsSupported(FPU)) {
    return Handle<Code>::null();
  }

  CpuFeatures::Scope scope_fpu(FPU);
  const int argc = arguments().immediate();
  // If the object is not a JSObject or we got an unexpected number of
  // arguments, bail out to the regular call.
  if (!object->IsJSObject() || argc != 1) return Handle<Code>::null();

  Label miss, slow;
  GenerateNameCheck(name, &miss);

  if (cell.is_null()) {
    __ lw(a1, MemOperand(sp, 1 * kPointerSize));
    STATIC_ASSERT(kSmiTag == 0);
    __ JumpIfSmi(a1, &miss);
    CheckPrototypes(Handle<JSObject>::cast(object), a1, holder, a0, a3, t0,
                    name, &miss);
  } else {
    ASSERT(cell->value() == *function);
    GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
                                &miss);
    GenerateLoadFunctionFromCell(cell, function, &miss);
  }

  // Load the (only) argument into v0.
  __ lw(v0, MemOperand(sp, 0 * kPointerSize));

  // If the argument is a smi, just return.
  STATIC_ASSERT(kSmiTag == 0);
  __ And(t0, v0, Operand(kSmiTagMask));
  __ Drop(argc + 1, eq, t0, Operand(zero_reg));
  __ Ret(eq, t0, Operand(zero_reg));

  __ CheckMap(v0, a1, Heap::kHeapNumberMapRootIndex, &slow, DONT_DO_SMI_CHECK);

  Label wont_fit_smi, no_fpu_error, restore_fcsr_and_return;

  // If fpu is enabled, we use the floor instruction.

  // Load the HeapNumber value.
  __ ldc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));

  // Backup FCSR.
  __ cfc1(a3, FCSR);
  // Clearing FCSR clears the exception mask with no side-effects.
  __ ctc1(zero_reg, FCSR);
  // Convert the argument to an integer.
  __ floor_w_d(f0, f0);

  // Start checking for special cases.
  // Get the argument exponent and clear the sign bit.
  __ lw(t1, FieldMemOperand(v0, HeapNumber::kValueOffset + kPointerSize));
  __ And(t2, t1, Operand(~HeapNumber::kSignMask));
  __ srl(t2, t2, HeapNumber::kMantissaBitsInTopWord);

  // Retrieve FCSR and check for fpu errors.
  __ cfc1(t5, FCSR);
  __ And(t5, t5, Operand(kFCSRExceptionFlagMask));
  __ Branch(&no_fpu_error, eq, t5, Operand(zero_reg));

  // Check for NaN, Infinity, and -Infinity.
  // They are invariant through a Math.Floor call, so just
  // return the original argument.
  __ Subu(t3, t2, Operand(HeapNumber::kExponentMask
        >> HeapNumber::kMantissaBitsInTopWord));
  __ Branch(&restore_fcsr_and_return, eq, t3, Operand(zero_reg));
  // We had an overflow or underflow in the conversion. Check if we
  // have a big exponent.
  // If greater or equal, the argument is already round and in v0.
  __ Branch(&restore_fcsr_and_return, ge, t3,
      Operand(HeapNumber::kMantissaBits));
  __ Branch(&wont_fit_smi);

  __ bind(&no_fpu_error);
  // Move the result back to v0.
  __ mfc1(v0, f0);
  // Check if the result fits into a smi.
  __ Addu(a1, v0, Operand(0x40000000));
  __ Branch(&wont_fit_smi, lt, a1, Operand(zero_reg));
  // Tag the result.
  STATIC_ASSERT(kSmiTag == 0);
  __ sll(v0, v0, kSmiTagSize);

  // Check for -0.
  __ Branch(&restore_fcsr_and_return, ne, v0, Operand(zero_reg));
  // t1 already holds the HeapNumber exponent.
  __ And(t0, t1, Operand(HeapNumber::kSignMask));
  // If our HeapNumber is negative it was -0, so load its address and return.
  // Else v0 is loaded with 0, so we can also just return.
  __ Branch(&restore_fcsr_and_return, eq, t0, Operand(zero_reg));
  __ lw(v0, MemOperand(sp, 0 * kPointerSize));

  __ bind(&restore_fcsr_and_return);
  // Restore FCSR and return.
  __ ctc1(a3, FCSR);

  __ Drop(argc + 1);
  __ Ret();

  __ bind(&wont_fit_smi);
  // Restore FCSR and fall to slow case.
  __ ctc1(a3, FCSR);

  __ bind(&slow);
  // Tail call the full function. We do not have to patch the receiver
  // because the function makes no use of it.
  __ InvokeFunction(
      function, arguments(), JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);

  __ bind(&miss);
  // a2: function name.
  GenerateMissBranch();

  // Return the generated code.
  return cell.is_null() ? GetCode(function) : GetCode(Code::NORMAL, name);
}


Handle<Code> CallStubCompiler::CompileMathAbsCall(
    Handle<Object> object,
    Handle<JSObject> holder,
    Handle<JSGlobalPropertyCell> cell,
    Handle<JSFunction> function,
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a2                     : function name
  //  -- ra                     : return address
  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
  //  -- ...
  //  -- sp[argc * 4]           : receiver
  // -----------------------------------

  const int argc = arguments().immediate();
  // If the object is not a JSObject or we got an unexpected number of
  // arguments, bail out to the regular call.
  if (!object->IsJSObject() || argc != 1) return Handle<Code>::null();

  Label miss;

  GenerateNameCheck(name, &miss);
  if (cell.is_null()) {
    __ lw(a1, MemOperand(sp, 1 * kPointerSize));
    STATIC_ASSERT(kSmiTag == 0);
    __ JumpIfSmi(a1, &miss);
    CheckPrototypes(Handle<JSObject>::cast(object), a1, holder, v0, a3, t0,
                    name, &miss);
  } else {
    ASSERT(cell->value() == *function);
    GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
                                &miss);
    GenerateLoadFunctionFromCell(cell, function, &miss);
  }

  // Load the (only) argument into v0.
  __ lw(v0, MemOperand(sp, 0 * kPointerSize));

  // Check if the argument is a smi.
  Label not_smi;
  STATIC_ASSERT(kSmiTag == 0);
  __ JumpIfNotSmi(v0, &not_smi);

  // Do bitwise not or do nothing depending on the sign of the
  // argument.
  __ sra(t0, v0, kBitsPerInt - 1);
  __ Xor(a1, v0, t0);

  // Add 1 or do nothing depending on the sign of the argument.
  __ Subu(v0, a1, t0);

  // If the result is still negative, go to the slow case.
  // This only happens for the most negative smi.
  Label slow;
  __ Branch(&slow, lt, v0, Operand(zero_reg));

  // Smi case done.
  __ Drop(argc + 1);
  __ Ret();

  // Check if the argument is a heap number and load its exponent and
  // sign.
  __ bind(&not_smi);
  __ CheckMap(v0, a1, Heap::kHeapNumberMapRootIndex, &slow, DONT_DO_SMI_CHECK);
  __ lw(a1, FieldMemOperand(v0, HeapNumber::kExponentOffset));

  // Check the sign of the argument. If the argument is positive,
  // just return it.
  Label negative_sign;
  __ And(t0, a1, Operand(HeapNumber::kSignMask));
  __ Branch(&negative_sign, ne, t0, Operand(zero_reg));
  __ Drop(argc + 1);
  __ Ret();

  // If the argument is negative, clear the sign, and return a new
  // number.
  __ bind(&negative_sign);
  __ Xor(a1, a1, Operand(HeapNumber::kSignMask));
  __ lw(a3, FieldMemOperand(v0, HeapNumber::kMantissaOffset));
  __ LoadRoot(t2, Heap::kHeapNumberMapRootIndex);
  __ AllocateHeapNumber(v0, t0, t1, t2, &slow);
  __ sw(a1, FieldMemOperand(v0, HeapNumber::kExponentOffset));
  __ sw(a3, FieldMemOperand(v0, HeapNumber::kMantissaOffset));
  __ Drop(argc + 1);
  __ Ret();

  // Tail call the full function. We do not have to patch the receiver
  // because the function makes no use of it.
  __ bind(&slow);
  __ InvokeFunction(
      function, arguments(), JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);

  __ bind(&miss);
  // a2: function name.
  GenerateMissBranch();

  // Return the generated code.
  return cell.is_null() ? GetCode(function) : GetCode(Code::NORMAL, name);
}


Handle<Code> CallStubCompiler::CompileFastApiCall(
    const CallOptimization& optimization,
    Handle<Object> object,
    Handle<JSObject> holder,
    Handle<JSGlobalPropertyCell> cell,
    Handle<JSFunction> function,
    Handle<String> name) {

  Counters* counters = isolate()->counters();

  ASSERT(optimization.is_simple_api_call());
  // Bail out if object is a global object as we don't want to
  // repatch it to global receiver.
  if (object->IsGlobalObject()) return Handle<Code>::null();
  if (!cell.is_null()) return Handle<Code>::null();
  if (!object->IsJSObject()) return Handle<Code>::null();
  int depth = optimization.GetPrototypeDepthOfExpectedType(
      Handle<JSObject>::cast(object), holder);
  if (depth == kInvalidProtoDepth) return Handle<Code>::null();

  Label miss, miss_before_stack_reserved;

  GenerateNameCheck(name, &miss_before_stack_reserved);

  // Get the receiver from the stack.
  const int argc = arguments().immediate();
  __ lw(a1, MemOperand(sp, argc * kPointerSize));

  // Check that the receiver isn't a smi.
  __ JumpIfSmi(a1, &miss_before_stack_reserved);

  __ IncrementCounter(counters->call_const(), 1, a0, a3);
  __ IncrementCounter(counters->call_const_fast_api(), 1, a0, a3);

  ReserveSpaceForFastApiCall(masm(), a0);

  // Check that the maps haven't changed and find a Holder as a side effect.
  CheckPrototypes(Handle<JSObject>::cast(object), a1, holder, a0, a3, t0, name,
                  depth, &miss);

  GenerateFastApiDirectCall(masm(), optimization, argc);

  __ bind(&miss);
  FreeSpaceForFastApiCall(masm());

  __ bind(&miss_before_stack_reserved);
  GenerateMissBranch();

  // Return the generated code.
  return GetCode(function);
}


Handle<Code> CallStubCompiler::CompileCallConstant(Handle<Object> object,
                                                   Handle<JSObject> holder,
                                                   Handle<JSFunction> function,
                                                   Handle<String> name,
                                                   CheckType check) {
  // ----------- S t a t e -------------
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------
  if (HasCustomCallGenerator(function)) {
    Handle<Code> code = CompileCustomCall(object, holder,
                                          Handle<JSGlobalPropertyCell>::null(),
                                          function, name);
    // A null handle means bail out to the regular compiler code below.
    if (!code.is_null()) return code;
  }

  Label miss;

  GenerateNameCheck(name, &miss);

  // Get the receiver from the stack.
  const int argc = arguments().immediate();
  __ lw(a1, MemOperand(sp, argc * kPointerSize));

  // Check that the receiver isn't a smi.
  if (check != NUMBER_CHECK) {
    __ JumpIfSmi(a1, &miss);
  }

  // Make sure that it's okay not to patch the on stack receiver
  // unless we're doing a receiver map check.
  ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK);
  switch (check) {
    case RECEIVER_MAP_CHECK:
      __ IncrementCounter(masm()->isolate()->counters()->call_const(),
          1, a0, a3);

      // Check that the maps haven't changed.
      CheckPrototypes(Handle<JSObject>::cast(object), a1, holder, a0, a3, t0,
                      name, &miss);

      // Patch the receiver on the stack with the global proxy if
      // necessary.
      if (object->IsGlobalObject()) {
        __ lw(a3, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset));
        __ sw(a3, MemOperand(sp, argc * kPointerSize));
      }
      break;

    case STRING_CHECK:
      if (function->IsBuiltin() || !function->shared()->is_classic_mode()) {
        // Check that the object is a two-byte string or a symbol.
        __ GetObjectType(a1, a3, a3);
        __ Branch(&miss, Ugreater_equal, a3, Operand(FIRST_NONSTRING_TYPE));
        // Check that the maps starting from the prototype haven't changed.
        GenerateDirectLoadGlobalFunctionPrototype(
            masm(), Context::STRING_FUNCTION_INDEX, a0, &miss);
        CheckPrototypes(
            Handle<JSObject>(JSObject::cast(object->GetPrototype())),
            a0, holder, a3, a1, t0, name, &miss);
      } else {
        // Calling non-strict non-builtins with a value as the receiver
        // requires boxing.
        __ jmp(&miss);
      }
      break;

    case NUMBER_CHECK:
      if (function->IsBuiltin() || !function->shared()->is_classic_mode()) {
      Label fast;
        // Check that the object is a smi or a heap number.
        __ JumpIfSmi(a1, &fast);
        __ GetObjectType(a1, a0, a0);
        __ Branch(&miss, ne, a0, Operand(HEAP_NUMBER_TYPE));
        __ bind(&fast);
        // Check that the maps starting from the prototype haven't changed.
        GenerateDirectLoadGlobalFunctionPrototype(
            masm(), Context::NUMBER_FUNCTION_INDEX, a0, &miss);
        CheckPrototypes(
            Handle<JSObject>(JSObject::cast(object->GetPrototype())),
            a0, holder, a3, a1, t0, name, &miss);
      } else {
        // Calling non-strict non-builtins with a value as the receiver
        // requires boxing.
        __ jmp(&miss);
      }
      break;

    case BOOLEAN_CHECK:
      if (function->IsBuiltin() || !function->shared()->is_classic_mode()) {
        Label fast;
        // Check that the object is a boolean.
        __ LoadRoot(t0, Heap::kTrueValueRootIndex);
        __ Branch(&fast, eq, a1, Operand(t0));
        __ LoadRoot(t0, Heap::kFalseValueRootIndex);
        __ Branch(&miss, ne, a1, Operand(t0));
        __ bind(&fast);
        // Check that the maps starting from the prototype haven't changed.
        GenerateDirectLoadGlobalFunctionPrototype(
            masm(), Context::BOOLEAN_FUNCTION_INDEX, a0, &miss);
        CheckPrototypes(
            Handle<JSObject>(JSObject::cast(object->GetPrototype())),
            a0, holder, a3, a1, t0, name, &miss);
      } else {
        // Calling non-strict non-builtins with a value as the receiver
        // requires boxing.
        __ jmp(&miss);
      }
      break;
    }

  CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
      ? CALL_AS_FUNCTION
      : CALL_AS_METHOD;
  __ InvokeFunction(
      function, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind);

  // Handle call cache miss.
  __ bind(&miss);

  GenerateMissBranch();

  // Return the generated code.
  return GetCode(function);
}


Handle<Code> CallStubCompiler::CompileCallInterceptor(Handle<JSObject> object,
                                                      Handle<JSObject> holder,
                                                      Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------

  Label miss;

  GenerateNameCheck(name, &miss);

  // Get the number of arguments.
  const int argc = arguments().immediate();
  LookupResult lookup(isolate());
  LookupPostInterceptor(holder, name, &lookup);

  // Get the receiver from the stack.
  __ lw(a1, MemOperand(sp, argc * kPointerSize));

  CallInterceptorCompiler compiler(this, arguments(), a2, extra_state_);
  compiler.Compile(masm(), object, holder, name, &lookup, a1, a3, t0, a0,
                   &miss);

  // Move returned value, the function to call, to a1.
  __ mov(a1, v0);
  // Restore receiver.
  __ lw(a0, MemOperand(sp, argc * kPointerSize));

  GenerateCallFunction(masm(), object, arguments(), &miss, extra_state_);

  // Handle call cache miss.
  __ bind(&miss);
  GenerateMissBranch();

  // Return the generated code.
  return GetCode(Code::INTERCEPTOR, name);
}


Handle<Code> CallStubCompiler::CompileCallGlobal(
    Handle<JSObject> object,
    Handle<GlobalObject> holder,
    Handle<JSGlobalPropertyCell> cell,
    Handle<JSFunction> function,
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------

  if (HasCustomCallGenerator(function)) {
    Handle<Code> code = CompileCustomCall(object, holder, cell, function, name);
    // A null handle means bail out to the regular compiler code below.
    if (!code.is_null()) return code;
  }

  Label miss;
  GenerateNameCheck(name, &miss);

  // Get the number of arguments.
  const int argc = arguments().immediate();
  GenerateGlobalReceiverCheck(object, holder, name, &miss);
  GenerateLoadFunctionFromCell(cell, function, &miss);

  // Patch the receiver on the stack with the global proxy if
  // necessary.
  if (object->IsGlobalObject()) {
    __ lw(a3, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset));
    __ sw(a3, MemOperand(sp, argc * kPointerSize));
  }

  // Set up the context (function already in r1).
  __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));

  // Jump to the cached code (tail call).
  Counters* counters = masm()->isolate()->counters();
  __ IncrementCounter(counters->call_global_inline(), 1, a3, t0);
  ParameterCount expected(function->shared()->formal_parameter_count());
  CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
      ? CALL_AS_FUNCTION
      : CALL_AS_METHOD;
  // We call indirectly through the code field in the function to
  // allow recompilation to take effect without changing any of the
  // call sites.
  __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
  __ InvokeCode(a3, expected, arguments(), JUMP_FUNCTION,
                NullCallWrapper(), call_kind);

  // Handle call cache miss.
  __ bind(&miss);
  __ IncrementCounter(counters->call_global_inline_miss(), 1, a1, a3);
  GenerateMissBranch();

  // Return the generated code.
  return GetCode(Code::NORMAL, name);
}


Handle<Code> StoreStubCompiler::CompileStoreField(Handle<JSObject> object,
                                                  int index,
                                                  Handle<Map> transition,
                                                  Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : receiver
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------
  Label miss;

  // Name register might be clobbered.
  GenerateStoreField(masm(),
                     object,
                     index,
                     transition,
                     name,
                     a1, a2, a3, t0,
                     &miss);
  __ bind(&miss);
  __ li(a2, Operand(Handle<String>(name)));  // Restore name.
  Handle<Code> ic = masm()->isolate()->builtins()->Builtins::StoreIC_Miss();
  __ Jump(ic, RelocInfo::CODE_TARGET);

  // Return the generated code.
  return GetCode(transition.is_null()
                 ? Code::FIELD
                 : Code::MAP_TRANSITION, name);
}


Handle<Code> StoreStubCompiler::CompileStoreCallback(
    Handle<JSObject> object,
    Handle<AccessorInfo> callback,
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : receiver
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------
  Label miss;

  // Check that the map of the object hasn't changed.
  __ CheckMap(a1, a3, Handle<Map>(object->map()), &miss,
              DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS);

  // Perform global security token check if needed.
  if (object->IsJSGlobalProxy()) {
    __ CheckAccessGlobalProxy(a1, a3, &miss);
  }

  // Stub never generated for non-global objects that require access
  // checks.
  ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());

  __ push(a1);  // Receiver.
  __ li(a3, Operand(callback));  // Callback info.
  __ Push(a3, a2, a0);

  // Do tail-call to the runtime system.
  ExternalReference store_callback_property =
      ExternalReference(IC_Utility(IC::kStoreCallbackProperty),
          masm()->isolate());
  __ TailCallExternalReference(store_callback_property, 4, 1);

  // Handle store cache miss.
  __ bind(&miss);
  Handle<Code> ic = masm()->isolate()->builtins()->StoreIC_Miss();
  __ Jump(ic, RelocInfo::CODE_TARGET);

  // Return the generated code.
  return GetCode(Code::CALLBACKS, name);
}


Handle<Code> StoreStubCompiler::CompileStoreViaSetter(
    Handle<String> name,
    Handle<JSObject> receiver,
    Handle<JSObject> holder,
    Handle<JSFunction> setter) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : receiver
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------
  Label miss;

  // Check that the maps haven't changed.
  __ JumpIfSmi(a1, &miss);
  CheckPrototypes(receiver, a1, holder, a3, t0, t1, name, &miss);

  {
    FrameScope scope(masm(), StackFrame::INTERNAL);

    // Save value register, so we can restore it later.
    __ push(a0);

    // Call the JavaScript setter with the receiver and the value on the stack.
    __ push(a1);
    __ push(a0);
    ParameterCount actual(1);
    __ InvokeFunction(setter, actual, CALL_FUNCTION, NullCallWrapper(),
                      CALL_AS_METHOD);

    // We have to return the passed value, not the return value of the setter.
    __ pop(v0);

    // Restore context register.
    __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  }
  __ Ret();

  __ bind(&miss);
  Handle<Code> ic = masm()->isolate()->builtins()->StoreIC_Miss();
  __ Jump(ic, RelocInfo::CODE_TARGET);

  // Return the generated code.
  return GetCode(Code::CALLBACKS, name);
}


Handle<Code> StoreStubCompiler::CompileStoreInterceptor(
    Handle<JSObject> receiver,
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : receiver
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------
  Label miss;

  // Check that the map of the object hasn't changed.
  __ CheckMap(a1, a3, Handle<Map>(receiver->map()), &miss,
              DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS);

  // Perform global security token check if needed.
  if (receiver->IsJSGlobalProxy()) {
    __ CheckAccessGlobalProxy(a1, a3, &miss);
  }

  // Stub is never generated for non-global objects that require access
  // checks.
  ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded());

  __ Push(a1, a2, a0);  // Receiver, name, value.

  __ li(a0, Operand(Smi::FromInt(strict_mode_)));
  __ push(a0);  // Strict mode.

  // Do tail-call to the runtime system.
  ExternalReference store_ic_property =
      ExternalReference(IC_Utility(IC::kStoreInterceptorProperty),
          masm()->isolate());
  __ TailCallExternalReference(store_ic_property, 4, 1);

  // Handle store cache miss.
  __ bind(&miss);
  Handle<Code> ic = masm()->isolate()->builtins()->Builtins::StoreIC_Miss();
  __ Jump(ic, RelocInfo::CODE_TARGET);

  // Return the generated code.
  return GetCode(Code::INTERCEPTOR, name);
}


Handle<Code> StoreStubCompiler::CompileStoreGlobal(
    Handle<GlobalObject> object,
    Handle<JSGlobalPropertyCell> cell,
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : receiver
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------
  Label miss;

  // Check that the map of the global has not changed.
  __ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
  __ Branch(&miss, ne, a3, Operand(Handle<Map>(object->map())));

  // Check that the value in the cell is not the hole. If it is, this
  // cell could have been deleted and reintroducing the global needs
  // to update the property details in the property dictionary of the
  // global object. We bail out to the runtime system to do that.
  __ li(t0, Operand(cell));
  __ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
  __ lw(t2, FieldMemOperand(t0, JSGlobalPropertyCell::kValueOffset));
  __ Branch(&miss, eq, t1, Operand(t2));

  // Store the value in the cell.
  __ sw(a0, FieldMemOperand(t0, JSGlobalPropertyCell::kValueOffset));
  __ mov(v0, a0);  // Stored value must be returned in v0.
  // Cells are always rescanned, so no write barrier here.

  Counters* counters = masm()->isolate()->counters();
  __ IncrementCounter(counters->named_store_global_inline(), 1, a1, a3);
  __ Ret();

  // Handle store cache miss.
  __ bind(&miss);
  __ IncrementCounter(counters->named_store_global_inline_miss(), 1, a1, a3);
  Handle<Code> ic = masm()->isolate()->builtins()->StoreIC_Miss();
  __ Jump(ic, RelocInfo::CODE_TARGET);

  // Return the generated code.
  return GetCode(Code::NORMAL, name);
}


Handle<Code> LoadStubCompiler::CompileLoadNonexistent(Handle<String> name,
                                                      Handle<JSObject> object,
                                                      Handle<JSObject> last) {
  // ----------- S t a t e -------------
  //  -- a0    : receiver
  //  -- ra    : return address
  // -----------------------------------
  Label miss;

  // Check that the receiver is not a smi.
  __ JumpIfSmi(a0, &miss);

  // Check the maps of the full prototype chain.
  CheckPrototypes(object, a0, last, a3, a1, t0, name, &miss);

  // If the last object in the prototype chain is a global object,
  // check that the global property cell is empty.
  if (last->IsGlobalObject()) {
    GenerateCheckPropertyCell(
        masm(), Handle<GlobalObject>::cast(last), name, a1, &miss);
  }

  // Return undefined if maps of the full prototype chain is still the same.
  __ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
  __ Ret();

  __ bind(&miss);
  GenerateLoadMiss(masm(), Code::LOAD_IC);

  // Return the generated code.
  return GetCode(Code::NONEXISTENT, factory()->empty_string());
}


Handle<Code> LoadStubCompiler::CompileLoadField(Handle<JSObject> object,
                                                Handle<JSObject> holder,
                                                int index,
                                                Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a0    : receiver
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------
  Label miss;

  __ mov(v0, a0);

  GenerateLoadField(object, holder, v0, a3, a1, t0, index, name, &miss);
  __ bind(&miss);
  GenerateLoadMiss(masm(), Code::LOAD_IC);

  // Return the generated code.
  return GetCode(Code::FIELD, name);
}


Handle<Code> LoadStubCompiler::CompileLoadCallback(
    Handle<String> name,
    Handle<JSObject> object,
    Handle<JSObject> holder,
    Handle<AccessorInfo> callback) {
  // ----------- S t a t e -------------
  //  -- a0    : receiver
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------
  Label miss;
  GenerateLoadCallback(object, holder, a0, a2, a3, a1, t0, callback, name,
                       &miss);
  __ bind(&miss);
  GenerateLoadMiss(masm(), Code::LOAD_IC);

  // Return the generated code.
  return GetCode(Code::CALLBACKS, name);
}


Handle<Code> LoadStubCompiler::CompileLoadViaGetter(
    Handle<String> name,
    Handle<JSObject> receiver,
    Handle<JSObject> holder,
    Handle<JSFunction> getter) {
  // ----------- S t a t e -------------
  //  -- a0    : receiver
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------
  Label miss;

  // Check that the maps haven't changed.
  __ JumpIfSmi(a0, &miss);
  CheckPrototypes(receiver, a0, holder, a3, t0, a1, name, &miss);

  {
    FrameScope scope(masm(), StackFrame::INTERNAL);

    // Call the JavaScript getter with the receiver on the stack.
    __ push(a0);
    ParameterCount actual(0);
    __ InvokeFunction(getter, actual, CALL_FUNCTION, NullCallWrapper(),
                      CALL_AS_METHOD);

    // Restore context register.
    __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  }
  __ Ret();

  __ bind(&miss);
  GenerateLoadMiss(masm(), Code::LOAD_IC);

  // Return the generated code.
  return GetCode(Code::CALLBACKS, name);
}


Handle<Code> LoadStubCompiler::CompileLoadConstant(Handle<JSObject> object,
                                                   Handle<JSObject> holder,
                                                   Handle<JSFunction> value,
                                                   Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a0    : receiver
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------
  Label miss;

  GenerateLoadConstant(object, holder, a0, a3, a1, t0, value, name, &miss);
  __ bind(&miss);
  GenerateLoadMiss(masm(), Code::LOAD_IC);

  // Return the generated code.
  return GetCode(Code::CONSTANT_FUNCTION, name);
}


Handle<Code> LoadStubCompiler::CompileLoadInterceptor(Handle<JSObject> object,
                                                      Handle<JSObject> holder,
                                                      Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a0    : receiver
  //  -- a2    : name
  //  -- ra    : return address
  //  -- [sp]  : receiver
  // -----------------------------------
  Label miss;

  LookupResult lookup(isolate());
  LookupPostInterceptor(holder, name, &lookup);
  GenerateLoadInterceptor(object, holder, &lookup, a0, a2, a3, a1, t0, name,
                          &miss);
  __ bind(&miss);
  GenerateLoadMiss(masm(), Code::LOAD_IC);

  // Return the generated code.
  return GetCode(Code::INTERCEPTOR, name);
}


Handle<Code> LoadStubCompiler::CompileLoadGlobal(
    Handle<JSObject> object,
    Handle<GlobalObject> holder,
    Handle<JSGlobalPropertyCell> cell,
    Handle<String> name,
    bool is_dont_delete) {
  // ----------- S t a t e -------------
  //  -- a0    : receiver
  //  -- a2    : name
  //  -- ra    : return address
  // -----------------------------------
  Label miss;

  // Check that the map of the global has not changed.
  __ JumpIfSmi(a0, &miss);
  CheckPrototypes(object, a0, holder, a3, t0, a1, name, &miss);

  // Get the value from the cell.
  __ li(a3, Operand(cell));
  __ lw(t0, FieldMemOperand(a3, JSGlobalPropertyCell::kValueOffset));

  // Check for deleted property if property can actually be deleted.
  if (!is_dont_delete) {
    __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
    __ Branch(&miss, eq, t0, Operand(at));
  }

  __ mov(v0, t0);
  Counters* counters = masm()->isolate()->counters();
  __ IncrementCounter(counters->named_load_global_stub(), 1, a1, a3);
  __ Ret();

  __ bind(&miss);
  __ IncrementCounter(counters->named_load_global_stub_miss(), 1, a1, a3);
  GenerateLoadMiss(masm(), Code::LOAD_IC);

  // Return the generated code.
  return GetCode(Code::NORMAL, name);
}


Handle<Code> KeyedLoadStubCompiler::CompileLoadField(Handle<String> name,
                                                     Handle<JSObject> receiver,
                                                     Handle<JSObject> holder,
                                                     int index) {
  // ----------- S t a t e -------------
  //  -- ra    : return address
  //  -- a0    : key
  //  -- a1    : receiver
  // -----------------------------------
  Label miss;

  // Check the key is the cached one.
  __ Branch(&miss, ne, a0, Operand(name));

  GenerateLoadField(receiver, holder, a1, a2, a3, t0, index, name, &miss);
  __ bind(&miss);
  GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);

  return GetCode(Code::FIELD, name);
}


Handle<Code> KeyedLoadStubCompiler::CompileLoadCallback(
    Handle<String> name,
    Handle<JSObject> receiver,
    Handle<JSObject> holder,
    Handle<AccessorInfo> callback) {
  // ----------- S t a t e -------------
  //  -- ra    : return address
  //  -- a0    : key
  //  -- a1    : receiver
  // -----------------------------------
  Label miss;

  // Check the key is the cached one.
  __ Branch(&miss, ne, a0, Operand(name));

  GenerateLoadCallback(receiver, holder, a1, a0, a2, a3, t0, callback, name,
                       &miss);
  __ bind(&miss);
  GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);

  return GetCode(Code::CALLBACKS, name);
}


Handle<Code> KeyedLoadStubCompiler::CompileLoadConstant(
    Handle<String> name,
    Handle<JSObject> receiver,
    Handle<JSObject> holder,
    Handle<JSFunction> value) {
  // ----------- S t a t e -------------
  //  -- ra    : return address
  //  -- a0    : key
  //  -- a1    : receiver
  // -----------------------------------
  Label miss;

  // Check the key is the cached one.
  __ Branch(&miss, ne, a0, Operand(name));

  GenerateLoadConstant(receiver, holder, a1, a2, a3, t0, value, name, &miss);
  __ bind(&miss);
  GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);

  // Return the generated code.
  return GetCode(Code::CONSTANT_FUNCTION, name);
}


Handle<Code> KeyedLoadStubCompiler::CompileLoadInterceptor(
    Handle<JSObject> receiver,
    Handle<JSObject> holder,
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- ra    : return address
  //  -- a0    : key
  //  -- a1    : receiver
  // -----------------------------------
  Label miss;

  // Check the key is the cached one.
  __ Branch(&miss, ne, a0, Operand(name));

  LookupResult lookup(isolate());
  LookupPostInterceptor(holder, name, &lookup);
  GenerateLoadInterceptor(receiver, holder, &lookup, a1, a0, a2, a3, t0, name,
                          &miss);
  __ bind(&miss);
  GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);

  return GetCode(Code::INTERCEPTOR, name);
}


Handle<Code> KeyedLoadStubCompiler::CompileLoadArrayLength(
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- ra    : return address
  //  -- a0    : key
  //  -- a1    : receiver
  // -----------------------------------
  Label miss;

  // Check the key is the cached one.
  __ Branch(&miss, ne, a0, Operand(name));

  GenerateLoadArrayLength(masm(), a1, a2, &miss);
  __ bind(&miss);
  GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);

  return GetCode(Code::CALLBACKS, name);
}


Handle<Code> KeyedLoadStubCompiler::CompileLoadStringLength(
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- ra    : return address
  //  -- a0    : key
  //  -- a1    : receiver
  // -----------------------------------
  Label miss;

  Counters* counters = masm()->isolate()->counters();
  __ IncrementCounter(counters->keyed_load_string_length(), 1, a2, a3);

  // Check the key is the cached one.
  __ Branch(&miss, ne, a0, Operand(name));

  GenerateLoadStringLength(masm(), a1, a2, a3, &miss, true);
  __ bind(&miss);
  __ DecrementCounter(counters->keyed_load_string_length(), 1, a2, a3);

  GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);

  return GetCode(Code::CALLBACKS, name);
}


Handle<Code> KeyedLoadStubCompiler::CompileLoadFunctionPrototype(
    Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- ra    : return address
  //  -- a0    : key
  //  -- a1    : receiver
  // -----------------------------------
  Label miss;

  Counters* counters = masm()->isolate()->counters();
  __ IncrementCounter(counters->keyed_load_function_prototype(), 1, a2, a3);

  // Check the name hasn't changed.
  __ Branch(&miss, ne, a0, Operand(name));

  GenerateLoadFunctionPrototype(masm(), a1, a2, a3, &miss);
  __ bind(&miss);
  __ DecrementCounter(counters->keyed_load_function_prototype(), 1, a2, a3);
  GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);

  return GetCode(Code::CALLBACKS, name);
}


Handle<Code> KeyedLoadStubCompiler::CompileLoadElement(
    Handle<Map> receiver_map) {
  // ----------- S t a t e -------------
  //  -- ra    : return address
  //  -- a0    : key
  //  -- a1    : receiver
  // -----------------------------------
  ElementsKind elements_kind = receiver_map->elements_kind();
  Handle<Code> stub = KeyedLoadElementStub(elements_kind).GetCode();

  __ DispatchMap(a1, a2, receiver_map, stub, DO_SMI_CHECK);

  Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Miss();
  __ Jump(ic, RelocInfo::CODE_TARGET);

  // Return the generated code.
  return GetCode(Code::NORMAL, factory()->empty_string());
}


Handle<Code> KeyedLoadStubCompiler::CompileLoadPolymorphic(
    MapHandleList* receiver_maps,
    CodeHandleList* handler_ics) {
  // ----------- S t a t e -------------
  //  -- ra    : return address
  //  -- a0    : key
  //  -- a1    : receiver
  // -----------------------------------
  Label miss;
  __ JumpIfSmi(a1, &miss);

  int receiver_count = receiver_maps->length();
  __ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset));
  for (int current = 0; current < receiver_count; ++current) {
    __ Jump(handler_ics->at(current), RelocInfo::CODE_TARGET,
        eq, a2, Operand(receiver_maps->at(current)));
  }

  __ bind(&miss);
  Handle<Code> miss_ic = isolate()->builtins()->KeyedLoadIC_Miss();
  __ Jump(miss_ic, RelocInfo::CODE_TARGET);

  // Return the generated code.
  return GetCode(Code::NORMAL, factory()->empty_string(), MEGAMORPHIC);
}


Handle<Code> KeyedStoreStubCompiler::CompileStoreField(Handle<JSObject> object,
                                                       int index,
                                                       Handle<Map> transition,
                                                       Handle<String> name) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : key
  //  -- a2    : receiver
  //  -- ra    : return address
  // -----------------------------------

  Label miss;

  Counters* counters = masm()->isolate()->counters();
  __ IncrementCounter(counters->keyed_store_field(), 1, a3, t0);

  // Check that the name has not changed.
  __ Branch(&miss, ne, a1, Operand(name));

  // a3 is used as scratch register. a1 and a2 keep their values if a jump to
  // the miss label is generated.
  GenerateStoreField(masm(),
                     object,
                     index,
                     transition,
                     name,
                     a2, a1, a3, t0,
                     &miss);
  __ bind(&miss);

  __ DecrementCounter(counters->keyed_store_field(), 1, a3, t0);
  Handle<Code> ic = masm()->isolate()->builtins()->KeyedStoreIC_Miss();
  __ Jump(ic, RelocInfo::CODE_TARGET);

  // Return the generated code.
  return GetCode(transition.is_null()
                 ? Code::FIELD
                 : Code::MAP_TRANSITION, name);
}


Handle<Code> KeyedStoreStubCompiler::CompileStoreElement(
    Handle<Map> receiver_map) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : key
  //  -- a2    : receiver
  //  -- ra    : return address
  //  -- a3    : scratch
  // -----------------------------------
  ElementsKind elements_kind = receiver_map->elements_kind();
  bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
  Handle<Code> stub =
      KeyedStoreElementStub(is_js_array, elements_kind, grow_mode_).GetCode();

  __ DispatchMap(a2, a3, receiver_map, stub, DO_SMI_CHECK);

  Handle<Code> ic = isolate()->builtins()->KeyedStoreIC_Miss();
  __ Jump(ic, RelocInfo::CODE_TARGET);

  // Return the generated code.
  return GetCode(Code::NORMAL, factory()->empty_string());
}


Handle<Code> KeyedStoreStubCompiler::CompileStorePolymorphic(
    MapHandleList* receiver_maps,
    CodeHandleList* handler_stubs,
    MapHandleList* transitioned_maps) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : key
  //  -- a2    : receiver
  //  -- ra    : return address
  //  -- a3    : scratch
  // -----------------------------------
  Label miss;
  __ JumpIfSmi(a2, &miss);

  int receiver_count = receiver_maps->length();
  __ lw(a3, FieldMemOperand(a2, HeapObject::kMapOffset));
  for (int i = 0; i < receiver_count; ++i) {
    if (transitioned_maps->at(i).is_null()) {
      __ Jump(handler_stubs->at(i), RelocInfo::CODE_TARGET, eq,
          a3, Operand(receiver_maps->at(i)));
    } else {
      Label next_map;
      __ Branch(&next_map, ne, a3, Operand(receiver_maps->at(i)));
      __ li(a3, Operand(transitioned_maps->at(i)));
      __ Jump(handler_stubs->at(i), RelocInfo::CODE_TARGET);
      __ bind(&next_map);
    }
  }

  __ bind(&miss);
  Handle<Code> miss_ic = isolate()->builtins()->KeyedStoreIC_Miss();
  __ Jump(miss_ic, RelocInfo::CODE_TARGET);

  // Return the generated code.
  return GetCode(Code::NORMAL, factory()->empty_string(), MEGAMORPHIC);
}


Handle<Code> ConstructStubCompiler::CompileConstructStub(
    Handle<JSFunction> function) {
  // a0    : argc
  // a1    : constructor
  // ra    : return address
  // [sp]  : last argument
  Label generic_stub_call;

  // Use t7 for holding undefined which is used in several places below.
  __ LoadRoot(t7, Heap::kUndefinedValueRootIndex);

#ifdef ENABLE_DEBUGGER_SUPPORT
  // Check to see whether there are any break points in the function code. If
  // there are jump to the generic constructor stub which calls the actual
  // code for the function thereby hitting the break points.
  __ lw(t5, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
  __ lw(a2, FieldMemOperand(t5, SharedFunctionInfo::kDebugInfoOffset));
  __ Branch(&generic_stub_call, ne, a2, Operand(t7));
#endif

  // Load the initial map and verify that it is in fact a map.
  // a1: constructor function
  // t7: undefined
  __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
  __ JumpIfSmi(a2, &generic_stub_call);
  __ GetObjectType(a2, a3, t0);
  __ Branch(&generic_stub_call, ne, t0, Operand(MAP_TYPE));

#ifdef DEBUG
  // Cannot construct functions this way.
  // a0: argc
  // a1: constructor function
  // a2: initial map
  // t7: undefined
  __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
  __ Check(ne, "Function constructed by construct stub.",
      a3, Operand(JS_FUNCTION_TYPE));
#endif

  // Now allocate the JSObject in new space.
  // a0: argc
  // a1: constructor function
  // a2: initial map
  // t7: undefined
  __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
  __ AllocateInNewSpace(a3, t4, t5, t6, &generic_stub_call, SIZE_IN_WORDS);

  // Allocated the JSObject, now initialize the fields. Map is set to initial
  // map and properties and elements are set to empty fixed array.
  // a0: argc
  // a1: constructor function
  // a2: initial map
  // a3: object size (in words)
  // t4: JSObject (not tagged)
  // t7: undefined
  __ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex);
  __ mov(t5, t4);
  __ sw(a2, MemOperand(t5, JSObject::kMapOffset));
  __ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset));
  __ sw(t6, MemOperand(t5, JSObject::kElementsOffset));
  __ Addu(t5, t5, Operand(3 * kPointerSize));
  ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
  ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
  ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);


  // Calculate the location of the first argument. The stack contains only the
  // argc arguments.
  __ sll(a1, a0, kPointerSizeLog2);
  __ Addu(a1, a1, sp);

  // Fill all the in-object properties with undefined.
  // a0: argc
  // a1: first argument
  // a3: object size (in words)
  // t4: JSObject (not tagged)
  // t5: First in-object property of JSObject (not tagged)
  // t7: undefined
  // Fill the initialized properties with a constant value or a passed argument
  // depending on the this.x = ...; assignment in the function.
  Handle<SharedFunctionInfo> shared(function->shared());
  for (int i = 0; i < shared->this_property_assignments_count(); i++) {
    if (shared->IsThisPropertyAssignmentArgument(i)) {
      Label not_passed, next;
      // Check if the argument assigned to the property is actually passed.
      int arg_number = shared->GetThisPropertyAssignmentArgument(i);
      __ Branch(&not_passed, less_equal, a0, Operand(arg_number));
      // Argument passed - find it on the stack.
      __ lw(a2, MemOperand(a1, (arg_number + 1) * -kPointerSize));
      __ sw(a2, MemOperand(t5));
      __ Addu(t5, t5, kPointerSize);
      __ jmp(&next);
      __ bind(&not_passed);
      // Set the property to undefined.
      __ sw(t7, MemOperand(t5));
      __ Addu(t5, t5, Operand(kPointerSize));
      __ bind(&next);
    } else {
      // Set the property to the constant value.
      Handle<Object> constant(shared->GetThisPropertyAssignmentConstant(i));
      __ li(a2, Operand(constant));
      __ sw(a2, MemOperand(t5));
      __ Addu(t5, t5, kPointerSize);
    }
  }

  // Fill the unused in-object property fields with undefined.
  ASSERT(function->has_initial_map());
  for (int i = shared->this_property_assignments_count();
       i < function->initial_map()->inobject_properties();
       i++) {
      __ sw(t7, MemOperand(t5));
      __ Addu(t5, t5, kPointerSize);
  }

  // a0: argc
  // t4: JSObject (not tagged)
  // Move argc to a1 and the JSObject to return to v0 and tag it.
  __ mov(a1, a0);
  __ mov(v0, t4);
  __ Or(v0, v0, Operand(kHeapObjectTag));

  // v0: JSObject
  // a1: argc
  // Remove caller arguments and receiver from the stack and return.
  __ sll(t0, a1, kPointerSizeLog2);
  __ Addu(sp, sp, t0);
  __ Addu(sp, sp, Operand(kPointerSize));
  Counters* counters = masm()->isolate()->counters();
  __ IncrementCounter(counters->constructed_objects(), 1, a1, a2);
  __ IncrementCounter(counters->constructed_objects_stub(), 1, a1, a2);
  __ Ret();

  // Jump to the generic stub in case the specialized code cannot handle the
  // construction.
  __ bind(&generic_stub_call);
  Handle<Code> generic_construct_stub =
      masm()->isolate()->builtins()->JSConstructStubGeneric();
  __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);

  // Return the generated code.
  return GetCode();
}


#undef __
#define __ ACCESS_MASM(masm)


void KeyedLoadStubCompiler::GenerateLoadDictionaryElement(
    MacroAssembler* masm) {
  // ---------- S t a t e --------------
  //  -- ra     : return address
  //  -- a0     : key
  //  -- a1     : receiver
  // -----------------------------------
  Label slow, miss_force_generic;

  Register key = a0;
  Register receiver = a1;

  __ JumpIfNotSmi(key, &miss_force_generic);
  __ lw(t0, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ sra(a2, a0, kSmiTagSize);
  __ LoadFromNumberDictionary(&slow, t0, a0, v0, a2, a3, t1);
  __ Ret();

  // Slow case, key and receiver still in a0 and a1.
  __ bind(&slow);
  __ IncrementCounter(
      masm->isolate()->counters()->keyed_load_external_array_slow(),
      1, a2, a3);
  // Entry registers are intact.
  // ---------- S t a t e --------------
  //  -- ra     : return address
  //  -- a0     : key
  //  -- a1     : receiver
  // -----------------------------------
  Handle<Code> slow_ic =
      masm->isolate()->builtins()->KeyedLoadIC_Slow();
  __ Jump(slow_ic, RelocInfo::CODE_TARGET);

  // Miss case, call the runtime.
  __ bind(&miss_force_generic);

  // ---------- S t a t e --------------
  //  -- ra     : return address
  //  -- a0     : key
  //  -- a1     : receiver
  // -----------------------------------

  Handle<Code> miss_ic =
     masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
  __ Jump(miss_ic, RelocInfo::CODE_TARGET);
}


static bool IsElementTypeSigned(ElementsKind elements_kind) {
  switch (elements_kind) {
    case EXTERNAL_BYTE_ELEMENTS:
    case EXTERNAL_SHORT_ELEMENTS:
    case EXTERNAL_INT_ELEMENTS:
      return true;

    case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
    case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
    case EXTERNAL_UNSIGNED_INT_ELEMENTS:
    case EXTERNAL_PIXEL_ELEMENTS:
      return false;

    case EXTERNAL_FLOAT_ELEMENTS:
    case EXTERNAL_DOUBLE_ELEMENTS:
    case FAST_SMI_ELEMENTS:
    case FAST_ELEMENTS:
    case FAST_DOUBLE_ELEMENTS:
    case FAST_HOLEY_SMI_ELEMENTS:
    case FAST_HOLEY_ELEMENTS:
    case FAST_HOLEY_DOUBLE_ELEMENTS:
    case DICTIONARY_ELEMENTS:
    case NON_STRICT_ARGUMENTS_ELEMENTS:
      UNREACHABLE();
      return false;
  }
  return false;
}


static void GenerateSmiKeyCheck(MacroAssembler* masm,
                                Register key,
                                Register scratch0,
                                Register scratch1,
                                FPURegister double_scratch0,
                                Label* fail) {
  if (CpuFeatures::IsSupported(FPU)) {
    CpuFeatures::Scope scope(FPU);
    Label key_ok;
    // Check for smi or a smi inside a heap number.  We convert the heap
    // number and check if the conversion is exact and fits into the smi
    // range.
    __ JumpIfSmi(key, &key_ok);
    __ CheckMap(key,
                scratch0,
                Heap::kHeapNumberMapRootIndex,
                fail,
                DONT_DO_SMI_CHECK);
    __ ldc1(double_scratch0, FieldMemOperand(key, HeapNumber::kValueOffset));
    __ EmitFPUTruncate(kRoundToZero,
                       double_scratch0,
                       double_scratch0,
                       scratch0,
                       scratch1,
                       kCheckForInexactConversion);

    __ Branch(fail, ne, scratch1, Operand(zero_reg));

    __ mfc1(scratch0, double_scratch0);
    __ SmiTagCheckOverflow(key, scratch0, scratch1);
    __ BranchOnOverflow(fail, scratch1);
    __ bind(&key_ok);
  } else {
    // Check that the key is a smi.
    __ JumpIfNotSmi(key, fail);
  }
}


void KeyedLoadStubCompiler::GenerateLoadExternalArray(
    MacroAssembler* masm,
    ElementsKind elements_kind) {
  // ---------- S t a t e --------------
  //  -- ra     : return address
  //  -- a0     : key
  //  -- a1     : receiver
  // -----------------------------------
  Label miss_force_generic, slow, failed_allocation;

  Register key = a0;
  Register receiver = a1;

  // This stub is meant to be tail-jumped to, the receiver must already
  // have been verified by the caller to not be a smi.

  // Check that the key is a smi or a heap number convertible to a smi.
  GenerateSmiKeyCheck(masm, key, t0, t1, f2, &miss_force_generic);

  __ lw(a3, FieldMemOperand(receiver, JSObject::kElementsOffset));
  // a3: elements array

  // Check that the index is in range.
  __ lw(t1, FieldMemOperand(a3, ExternalArray::kLengthOffset));
  __ sra(t2, key, kSmiTagSize);
  // Unsigned comparison catches both negative and too-large values.
  __ Branch(&miss_force_generic, Ugreater_equal, key, Operand(t1));

  __ lw(a3, FieldMemOperand(a3, ExternalArray::kExternalPointerOffset));
  // a3: base pointer of external storage

  // We are not untagging smi key and instead work with it
  // as if it was premultiplied by 2.
  STATIC_ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));

  Register value = a2;
  switch (elements_kind) {
    case EXTERNAL_BYTE_ELEMENTS:
      __ srl(t2, key, 1);
      __ addu(t3, a3, t2);
      __ lb(value, MemOperand(t3, 0));
      break;
    case EXTERNAL_PIXEL_ELEMENTS:
    case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
      __ srl(t2, key, 1);
      __ addu(t3, a3, t2);
      __ lbu(value, MemOperand(t3, 0));
      break;
    case EXTERNAL_SHORT_ELEMENTS:
      __ addu(t3, a3, key);
      __ lh(value, MemOperand(t3, 0));
      break;
    case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
      __ addu(t3, a3, key);
      __ lhu(value, MemOperand(t3, 0));
      break;
    case EXTERNAL_INT_ELEMENTS:
    case EXTERNAL_UNSIGNED_INT_ELEMENTS:
      __ sll(t2, key, 1);
      __ addu(t3, a3, t2);
      __ lw(value, MemOperand(t3, 0));
      break;
    case EXTERNAL_FLOAT_ELEMENTS:
      __ sll(t3, t2, 2);
      __ addu(t3, a3, t3);
      if (CpuFeatures::IsSupported(FPU)) {
        CpuFeatures::Scope scope(FPU);
        __ lwc1(f0, MemOperand(t3, 0));
      } else {
        __ lw(value, MemOperand(t3, 0));
      }
      break;
    case EXTERNAL_DOUBLE_ELEMENTS:
      __ sll(t2, key, 2);
      __ addu(t3, a3, t2);
      if (CpuFeatures::IsSupported(FPU)) {
        CpuFeatures::Scope scope(FPU);
        __ ldc1(f0, MemOperand(t3, 0));
      } else {
        // t3: pointer to the beginning of the double we want to load.
        __ lw(a2, MemOperand(t3, 0));
        __ lw(a3, MemOperand(t3, Register::kSizeInBytes));
      }
      break;
    case FAST_ELEMENTS:
    case FAST_SMI_ELEMENTS:
    case FAST_DOUBLE_ELEMENTS:
    case FAST_HOLEY_ELEMENTS:
    case FAST_HOLEY_SMI_ELEMENTS:
    case FAST_HOLEY_DOUBLE_ELEMENTS:
    case DICTIONARY_ELEMENTS:
    case NON_STRICT_ARGUMENTS_ELEMENTS:
      UNREACHABLE();
      break;
  }

  // For integer array types:
  // a2: value
  // For float array type:
  // f0: value (if FPU is supported)
  // a2: value (if FPU is not supported)
  // For double array type:
  // f0: value (if FPU is supported)
  // a2/a3: value (if FPU is not supported)

  if (elements_kind == EXTERNAL_INT_ELEMENTS) {
    // For the Int and UnsignedInt array types, we need to see whether
    // the value can be represented in a Smi. If not, we need to convert
    // it to a HeapNumber.
    Label box_int;
    __ Subu(t3, value, Operand(0xC0000000));  // Non-smi value gives neg result.
    __ Branch(&box_int, lt, t3, Operand(zero_reg));
    // Tag integer as smi and return it.
    __ sll(v0, value, kSmiTagSize);
    __ Ret();

    __ bind(&box_int);
    // Allocate a HeapNumber for the result and perform int-to-double
    // conversion.
    // The arm version uses a temporary here to save r0, but we don't need to
    // (a0 is not modified).
    __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
    __ AllocateHeapNumber(v0, a3, t0, t1, &slow);

    if (CpuFeatures::IsSupported(FPU)) {
      CpuFeatures::Scope scope(FPU);
      __ mtc1(value, f0);
      __ cvt_d_w(f0, f0);
      __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
      __ Ret();
    } else {
      Register dst1 = t2;
      Register dst2 = t3;
      FloatingPointHelper::Destination dest =
          FloatingPointHelper::kCoreRegisters;
      FloatingPointHelper::ConvertIntToDouble(masm,
                                              value,
                                              dest,
                                              f0,
                                              dst1,
                                              dst2,
                                              t1,
                                              f2);
      __ sw(dst1, FieldMemOperand(v0, HeapNumber::kMantissaOffset));
      __ sw(dst2, FieldMemOperand(v0, HeapNumber::kExponentOffset));
      __ Ret();
    }
  } else if (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) {
    // The test is different for unsigned int values. Since we need
    // the value to be in the range of a positive smi, we can't
    // handle either of the top two bits being set in the value.
    if (CpuFeatures::IsSupported(FPU)) {
      CpuFeatures::Scope scope(FPU);
      Label pl_box_int;
      __ And(t2, value, Operand(0xC0000000));
      __ Branch(&pl_box_int, ne, t2, Operand(zero_reg));

      // It can fit in an Smi.
      // Tag integer as smi and return it.
      __ sll(v0, value, kSmiTagSize);
      __ Ret();

      __ bind(&pl_box_int);
      // Allocate a HeapNumber for the result and perform int-to-double
      // conversion. Don't use a0 and a1 as AllocateHeapNumber clobbers all
      // registers - also when jumping due to exhausted young space.
      __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
      __ AllocateHeapNumber(v0, t2, t3, t6, &slow);

      // This is replaced by a macro:
      // __ mtc1(value, f0);     // LS 32-bits.
      // __ mtc1(zero_reg, f1);  // MS 32-bits are all zero.
      // __ cvt_d_l(f0, f0); // Use 64 bit conv to get correct unsigned 32-bit.

      __ Cvt_d_uw(f0, value, f22);

      __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));

      __ Ret();
    } else {
      // Check whether unsigned integer fits into smi.
      Label box_int_0, box_int_1, done;
      __ And(t2, value, Operand(0x80000000));
      __ Branch(&box_int_0, ne, t2, Operand(zero_reg));
      __ And(t2, value, Operand(0x40000000));
      __ Branch(&box_int_1, ne, t2, Operand(zero_reg));

      // Tag integer as smi and return it.
      __ sll(v0, value, kSmiTagSize);
      __ Ret();

      Register hiword = value;  // a2.
      Register loword = a3;

      __ bind(&box_int_0);
      // Integer does not have leading zeros.
      GenerateUInt2Double(masm, hiword, loword, t0, 0);
      __ Branch(&done);

      __ bind(&box_int_1);
      // Integer has one leading zero.
      GenerateUInt2Double(masm, hiword, loword, t0, 1);


      __ bind(&done);
      // Integer was converted to double in registers hiword:loword.
      // Wrap it into a HeapNumber. Don't use a0 and a1 as AllocateHeapNumber
      // clobbers all registers - also when jumping due to exhausted young
      // space.
      __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
      __ AllocateHeapNumber(t2, t3, t5, t6, &slow);

      __ sw(hiword, FieldMemOperand(t2, HeapNumber::kExponentOffset));
      __ sw(loword, FieldMemOperand(t2, HeapNumber::kMantissaOffset));

      __ mov(v0, t2);
      __ Ret();
    }
  } else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
    // For the floating-point array type, we need to always allocate a
    // HeapNumber.
    if (CpuFeatures::IsSupported(FPU)) {
      CpuFeatures::Scope scope(FPU);
      // Allocate a HeapNumber for the result. Don't use a0 and a1 as
      // AllocateHeapNumber clobbers all registers - also when jumping due to
      // exhausted young space.
      __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
      __ AllocateHeapNumber(v0, t3, t5, t6, &slow);
      // The float (single) value is already in fpu reg f0 (if we use float).
      __ cvt_d_s(f0, f0);
      __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
      __ Ret();
    } else {
      // Allocate a HeapNumber for the result. Don't use a0 and a1 as
      // AllocateHeapNumber clobbers all registers - also when jumping due to
      // exhausted young space.
      __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
      __ AllocateHeapNumber(v0, t3, t5, t6, &slow);
      // FPU is not available, do manual single to double conversion.

      // a2: floating point value (binary32).
      // v0: heap number for result

      // Extract mantissa to t4.
      __ And(t4, value, Operand(kBinary32MantissaMask));

      // Extract exponent to t5.
      __ srl(t5, value, kBinary32MantissaBits);
      __ And(t5, t5, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));

      Label exponent_rebiased;
      __ Branch(&exponent_rebiased, eq, t5, Operand(zero_reg));

      __ li(t0, 0x7ff);
      __ Xor(t1, t5, Operand(0xFF));
      __ Movz(t5, t0, t1);  // Set t5 to 0x7ff only if t5 is equal to 0xff.
      __ Branch(&exponent_rebiased, eq, t1, Operand(zero_reg));

      // Rebias exponent.
      __ Addu(t5,
              t5,
              Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));

      __ bind(&exponent_rebiased);
      __ And(a2, value, Operand(kBinary32SignMask));
      value = no_reg;
      __ sll(t0, t5, HeapNumber::kMantissaBitsInTopWord);
      __ or_(a2, a2, t0);

      // Shift mantissa.
      static const int kMantissaShiftForHiWord =
          kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;

      static const int kMantissaShiftForLoWord =
          kBitsPerInt - kMantissaShiftForHiWord;

      __ srl(t0, t4, kMantissaShiftForHiWord);
      __ or_(a2, a2, t0);
      __ sll(a0, t4, kMantissaShiftForLoWord);

      __ sw(a2, FieldMemOperand(v0, HeapNumber::kExponentOffset));
      __ sw(a0, FieldMemOperand(v0, HeapNumber::kMantissaOffset));
      __ Ret();
    }

  } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
    if (CpuFeatures::IsSupported(FPU)) {
      CpuFeatures::Scope scope(FPU);
      // Allocate a HeapNumber for the result. Don't use a0 and a1 as
      // AllocateHeapNumber clobbers all registers - also when jumping due to
      // exhausted young space.
      __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
      __ AllocateHeapNumber(v0, t3, t5, t6, &slow);
      // The double value is already in f0
      __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
      __ Ret();
    } else {
      // Allocate a HeapNumber for the result. Don't use a0 and a1 as
      // AllocateHeapNumber clobbers all registers - also when jumping due to
      // exhausted young space.
      __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
      __ AllocateHeapNumber(v0, t3, t5, t6, &slow);

      __ sw(a2, FieldMemOperand(v0, HeapNumber::kMantissaOffset));
      __ sw(a3, FieldMemOperand(v0, HeapNumber::kExponentOffset));
      __ Ret();
    }

  } else {
    // Tag integer as smi and return it.
    __ sll(v0, value, kSmiTagSize);
    __ Ret();
  }

  // Slow case, key and receiver still in a0 and a1.
  __ bind(&slow);
  __ IncrementCounter(
      masm->isolate()->counters()->keyed_load_external_array_slow(),
      1, a2, a3);

  // ---------- S t a t e --------------
  //  -- ra     : return address
  //  -- a0     : key
  //  -- a1     : receiver
  // -----------------------------------

  __ Push(a1, a0);

  __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);

  __ bind(&miss_force_generic);
  Handle<Code> stub =
      masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
  __ Jump(stub, RelocInfo::CODE_TARGET);
}


void KeyedStoreStubCompiler::GenerateStoreExternalArray(
    MacroAssembler* masm,
    ElementsKind elements_kind) {
  // ---------- S t a t e --------------
  //  -- a0     : value
  //  -- a1     : key
  //  -- a2     : receiver
  //  -- ra     : return address
  // -----------------------------------

  Label slow, check_heap_number, miss_force_generic;

  // Register usage.
  Register value = a0;
  Register key = a1;
  Register receiver = a2;
  // a3 mostly holds the elements array or the destination external array.

  // This stub is meant to be tail-jumped to, the receiver must already
  // have been verified by the caller to not be a smi.

  // Check that the key is a smi or a heap number convertible to a smi.
  GenerateSmiKeyCheck(masm, key, t0, t1, f2, &miss_force_generic);

  __ lw(a3, FieldMemOperand(receiver, JSObject::kElementsOffset));

  // Check that the index is in range.
  __ lw(t1, FieldMemOperand(a3, ExternalArray::kLengthOffset));
  // Unsigned comparison catches both negative and too-large values.
  __ Branch(&miss_force_generic, Ugreater_equal, key, Operand(t1));

  // Handle both smis and HeapNumbers in the fast path. Go to the
  // runtime for all other kinds of values.
  // a3: external array.

  if (elements_kind == EXTERNAL_PIXEL_ELEMENTS) {
    // Double to pixel conversion is only implemented in the runtime for now.
    __ JumpIfNotSmi(value, &slow);
  } else {
    __ JumpIfNotSmi(value, &check_heap_number);
  }
  __ SmiUntag(t1, value);
  __ lw(a3, FieldMemOperand(a3, ExternalArray::kExternalPointerOffset));

  // a3: base pointer of external storage.
  // t1: value (integer).

  switch (elements_kind) {
    case EXTERNAL_PIXEL_ELEMENTS: {
      // Clamp the value to [0..255].
      // v0 is used as a scratch register here.
      Label done;
      __ li(v0, Operand(255));
      // Normal branch: nop in delay slot.
      __ Branch(&done, gt, t1, Operand(v0));
      // Use delay slot in this branch.
      __ Branch(USE_DELAY_SLOT, &done, lt, t1, Operand(zero_reg));
      __ mov(v0, zero_reg);  // In delay slot.
      __ mov(v0, t1);  // Value is in range 0..255.
      __ bind(&done);
      __ mov(t1, v0);

      __ srl(t8, key, 1);
      __ addu(t8, a3, t8);
      __ sb(t1, MemOperand(t8, 0));
      }
      break;
    case EXTERNAL_BYTE_ELEMENTS:
    case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
      __ srl(t8, key, 1);
      __ addu(t8, a3, t8);
      __ sb(t1, MemOperand(t8, 0));
      break;
    case EXTERNAL_SHORT_ELEMENTS:
    case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
      __ addu(t8, a3, key);
      __ sh(t1, MemOperand(t8, 0));
      break;
    case EXTERNAL_INT_ELEMENTS:
    case EXTERNAL_UNSIGNED_INT_ELEMENTS:
      __ sll(t8, key, 1);
      __ addu(t8, a3, t8);
      __ sw(t1, MemOperand(t8, 0));
      break;
    case EXTERNAL_FLOAT_ELEMENTS:
      // Perform int-to-float conversion and store to memory.
      __ SmiUntag(t0, key);
      StoreIntAsFloat(masm, a3, t0, t1, t2, t3, t4);
      break;
    case EXTERNAL_DOUBLE_ELEMENTS:
      __ sll(t8, key, 2);
      __ addu(a3, a3, t8);
      // a3: effective address of the double element
      FloatingPointHelper::Destination destination;
      if (CpuFeatures::IsSupported(FPU)) {
        destination = FloatingPointHelper::kFPURegisters;
      } else {
        destination = FloatingPointHelper::kCoreRegisters;
      }
      FloatingPointHelper::ConvertIntToDouble(
          masm, t1, destination,
          f0, t2, t3,  // These are: double_dst, dst1, dst2.
          t0, f2);  // These are: scratch2, single_scratch.
      if (destination == FloatingPointHelper::kFPURegisters) {
        CpuFeatures::Scope scope(FPU);
        __ sdc1(f0, MemOperand(a3, 0));
      } else {
        __ sw(t2, MemOperand(a3, 0));
        __ sw(t3, MemOperand(a3, Register::kSizeInBytes));
      }
      break;
    case FAST_ELEMENTS:
    case FAST_SMI_ELEMENTS:
    case FAST_DOUBLE_ELEMENTS:
    case FAST_HOLEY_ELEMENTS:
    case FAST_HOLEY_SMI_ELEMENTS:
    case FAST_HOLEY_DOUBLE_ELEMENTS:
    case DICTIONARY_ELEMENTS:
    case NON_STRICT_ARGUMENTS_ELEMENTS:
      UNREACHABLE();
      break;
  }

  // Entry registers are intact, a0 holds the value which is the return value.
  __ mov(v0, a0);
  __ Ret();

  if (elements_kind != EXTERNAL_PIXEL_ELEMENTS) {
    // a3: external array.
    __ bind(&check_heap_number);
    __ GetObjectType(value, t1, t2);
    __ Branch(&slow, ne, t2, Operand(HEAP_NUMBER_TYPE));

    __ lw(a3, FieldMemOperand(a3, ExternalArray::kExternalPointerOffset));

    // a3: base pointer of external storage.

    // The WebGL specification leaves the behavior of storing NaN and
    // +/-Infinity into integer arrays basically undefined. For more
    // reproducible behavior, convert these to zero.

    if (CpuFeatures::IsSupported(FPU)) {
      CpuFeatures::Scope scope(FPU);

      __ ldc1(f0, FieldMemOperand(a0, HeapNumber::kValueOffset));

      if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
        __ cvt_s_d(f0, f0);
        __ sll(t8, key, 1);
        __ addu(t8, a3, t8);
        __ swc1(f0, MemOperand(t8, 0));
      } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
        __ sll(t8, key, 2);
        __ addu(t8, a3, t8);
        __ sdc1(f0, MemOperand(t8, 0));
      } else {
        __ EmitECMATruncate(t3, f0, f2, t2, t1, t5);

        switch (elements_kind) {
          case EXTERNAL_BYTE_ELEMENTS:
          case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
            __ srl(t8, key, 1);
            __ addu(t8, a3, t8);
            __ sb(t3, MemOperand(t8, 0));
            break;
          case EXTERNAL_SHORT_ELEMENTS:
          case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
            __ addu(t8, a3, key);
            __ sh(t3, MemOperand(t8, 0));
            break;
          case EXTERNAL_INT_ELEMENTS:
          case EXTERNAL_UNSIGNED_INT_ELEMENTS:
            __ sll(t8, key, 1);
            __ addu(t8, a3, t8);
            __ sw(t3, MemOperand(t8, 0));
            break;
          case EXTERNAL_PIXEL_ELEMENTS:
          case EXTERNAL_FLOAT_ELEMENTS:
          case EXTERNAL_DOUBLE_ELEMENTS:
          case FAST_ELEMENTS:
          case FAST_SMI_ELEMENTS:
          case FAST_DOUBLE_ELEMENTS:
          case FAST_HOLEY_ELEMENTS:
          case FAST_HOLEY_SMI_ELEMENTS:
          case FAST_HOLEY_DOUBLE_ELEMENTS:
          case DICTIONARY_ELEMENTS:
          case NON_STRICT_ARGUMENTS_ELEMENTS:
            UNREACHABLE();
            break;
        }
      }

      // Entry registers are intact, a0 holds the value
      // which is the return value.
      __ mov(v0, a0);
      __ Ret();
    } else {
      // FPU is not available, do manual conversions.

      __ lw(t3, FieldMemOperand(value, HeapNumber::kExponentOffset));
      __ lw(t4, FieldMemOperand(value, HeapNumber::kMantissaOffset));

      if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
        Label done, nan_or_infinity_or_zero;
        static const int kMantissaInHiWordShift =
            kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;

        static const int kMantissaInLoWordShift =
            kBitsPerInt - kMantissaInHiWordShift;

        // Test for all special exponent values: zeros, subnormal numbers, NaNs
        // and infinities. All these should be converted to 0.
        __ li(t5, HeapNumber::kExponentMask);
        __ and_(t6, t3, t5);
        __ Branch(&nan_or_infinity_or_zero, eq, t6, Operand(zero_reg));

        __ xor_(t1, t6, t5);
        __ li(t2, kBinary32ExponentMask);
        __ Movz(t6, t2, t1);  // Only if t6 is equal to t5.
        __ Branch(&nan_or_infinity_or_zero, eq, t1, Operand(zero_reg));

        // Rebias exponent.
        __ srl(t6, t6, HeapNumber::kExponentShift);
        __ Addu(t6,
                t6,
                Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));

        __ li(t1, Operand(kBinary32MaxExponent));
        __ Slt(t1, t1, t6);
        __ And(t2, t3, Operand(HeapNumber::kSignMask));
        __ Or(t2, t2, Operand(kBinary32ExponentMask));
        __ Movn(t3, t2, t1);  // Only if t6 is gt kBinary32MaxExponent.
        __ Branch(&done, gt, t6, Operand(kBinary32MaxExponent));

        __ Slt(t1, t6, Operand(kBinary32MinExponent));
        __ And(t2, t3, Operand(HeapNumber::kSignMask));
        __ Movn(t3, t2, t1);  // Only if t6 is lt kBinary32MinExponent.
        __ Branch(&done, lt, t6, Operand(kBinary32MinExponent));

        __ And(t7, t3, Operand(HeapNumber::kSignMask));
        __ And(t3, t3, Operand(HeapNumber::kMantissaMask));
        __ sll(t3, t3, kMantissaInHiWordShift);
        __ or_(t7, t7, t3);
        __ srl(t4, t4, kMantissaInLoWordShift);
        __ or_(t7, t7, t4);
        __ sll(t6, t6, kBinary32ExponentShift);
        __ or_(t3, t7, t6);

        __ bind(&done);
        __ sll(t9, key, 1);
        __ addu(t9, a3, t9);
        __ sw(t3, MemOperand(t9, 0));

        // Entry registers are intact, a0 holds the value which is the return
        // value.
        __ mov(v0, a0);
        __ Ret();

        __ bind(&nan_or_infinity_or_zero);
        __ And(t7, t3, Operand(HeapNumber::kSignMask));
        __ And(t3, t3, Operand(HeapNumber::kMantissaMask));
        __ or_(t6, t6, t7);
        __ sll(t3, t3, kMantissaInHiWordShift);
        __ or_(t6, t6, t3);
        __ srl(t4, t4, kMantissaInLoWordShift);
        __ or_(t3, t6, t4);
        __ Branch(&done);
      } else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
        __ sll(t8, key, 2);
        __ addu(t8, a3, t8);
        // t8: effective address of destination element.
        __ sw(t4, MemOperand(t8, 0));
        __ sw(t3, MemOperand(t8, Register::kSizeInBytes));
        __ mov(v0, a0);
        __ Ret();
      } else {
        bool is_signed_type = IsElementTypeSigned(elements_kind);
        int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
        int32_t min_value    = is_signed_type ? 0x80000000 : 0x00000000;

        Label done, sign;

        // Test for all special exponent values: zeros, subnormal numbers, NaNs
        // and infinities. All these should be converted to 0.
        __ li(t5, HeapNumber::kExponentMask);
        __ and_(t6, t3, t5);
        __ Movz(t3, zero_reg, t6);  // Only if t6 is equal to zero.
        __ Branch(&done, eq, t6, Operand(zero_reg));

        __ xor_(t2, t6, t5);
        __ Movz(t3, zero_reg, t2);  // Only if t6 is equal to t5.
        __ Branch(&done, eq, t6, Operand(t5));

        // Unbias exponent.
        __ srl(t6, t6, HeapNumber::kExponentShift);
        __ Subu(t6, t6, Operand(HeapNumber::kExponentBias));
        // If exponent is negative then result is 0.
        __ slt(t2, t6, zero_reg);
        __ Movn(t3, zero_reg, t2);  // Only if exponent is negative.
        __ Branch(&done, lt, t6, Operand(zero_reg));

        // If exponent is too big then result is minimal value.
        __ slti(t1, t6, meaningfull_bits - 1);
        __ li(t2, min_value);
        __ Movz(t3, t2, t1);  // Only if t6 is ge meaningfull_bits - 1.
        __ Branch(&done, ge, t6, Operand(meaningfull_bits - 1));

        __ And(t5, t3, Operand(HeapNumber::kSignMask));
        __ And(t3, t3, Operand(HeapNumber::kMantissaMask));
        __ Or(t3, t3, Operand(1u << HeapNumber::kMantissaBitsInTopWord));

        __ li(t9, HeapNumber::kMantissaBitsInTopWord);
        __ subu(t6, t9, t6);
        __ slt(t1, t6, zero_reg);
        __ srlv(t2, t3, t6);
        __ Movz(t3, t2, t1);  // Only if t6 is positive.
        __ Branch(&sign, ge, t6, Operand(zero_reg));

        __ subu(t6, zero_reg, t6);
        __ sllv(t3, t3, t6);
        __ li(t9, meaningfull_bits);
        __ subu(t6, t9, t6);
        __ srlv(t4, t4, t6);
        __ or_(t3, t3, t4);

        __ bind(&sign);
        __ subu(t2, t3, zero_reg);
        __ Movz(t3, t2, t5);  // Only if t5 is zero.

        __ bind(&done);

        // Result is in t3.
        // This switch block should be exactly the same as above (FPU mode).
        switch (elements_kind) {
          case EXTERNAL_BYTE_ELEMENTS:
          case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
            __ srl(t8, key, 1);
            __ addu(t8, a3, t8);
            __ sb(t3, MemOperand(t8, 0));
            break;
          case EXTERNAL_SHORT_ELEMENTS:
          case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
            __ addu(t8, a3, key);
            __ sh(t3, MemOperand(t8, 0));
            break;
          case EXTERNAL_INT_ELEMENTS:
          case EXTERNAL_UNSIGNED_INT_ELEMENTS:
            __ sll(t8, key, 1);
            __ addu(t8, a3, t8);
            __ sw(t3, MemOperand(t8, 0));
            break;
          case EXTERNAL_PIXEL_ELEMENTS:
          case EXTERNAL_FLOAT_ELEMENTS:
          case EXTERNAL_DOUBLE_ELEMENTS:
          case FAST_ELEMENTS:
          case FAST_SMI_ELEMENTS:
          case FAST_DOUBLE_ELEMENTS:
          case FAST_HOLEY_ELEMENTS:
          case FAST_HOLEY_SMI_ELEMENTS:
          case FAST_HOLEY_DOUBLE_ELEMENTS:
          case DICTIONARY_ELEMENTS:
          case NON_STRICT_ARGUMENTS_ELEMENTS:
            UNREACHABLE();
            break;
        }
      }
    }
  }

  // Slow case, key and receiver still in a0 and a1.
  __ bind(&slow);
  __ IncrementCounter(
      masm->isolate()->counters()->keyed_load_external_array_slow(),
      1, a2, a3);
  // Entry registers are intact.
  // ---------- S t a t e --------------
  //  -- ra     : return address
  //  -- a0     : key
  //  -- a1     : receiver
  // -----------------------------------
  Handle<Code> slow_ic =
      masm->isolate()->builtins()->KeyedStoreIC_Slow();
  __ Jump(slow_ic, RelocInfo::CODE_TARGET);

  // Miss case, call the runtime.
  __ bind(&miss_force_generic);

  // ---------- S t a t e --------------
  //  -- ra     : return address
  //  -- a0     : key
  //  -- a1     : receiver
  // -----------------------------------

  Handle<Code> miss_ic =
     masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
  __ Jump(miss_ic, RelocInfo::CODE_TARGET);
}


void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- ra    : return address
  //  -- a0    : key
  //  -- a1    : receiver
  // -----------------------------------
  Label miss_force_generic;

  // This stub is meant to be tail-jumped to, the receiver must already
  // have been verified by the caller to not be a smi.

  // Check that the key is a smi or a heap number convertible to a smi.
  GenerateSmiKeyCheck(masm, a0, t0, t1, f2, &miss_force_generic);

  // Get the elements array.
  __ lw(a2, FieldMemOperand(a1, JSObject::kElementsOffset));
  __ AssertFastElements(a2);

  // Check that the key is within bounds.
  __ lw(a3, FieldMemOperand(a2, FixedArray::kLengthOffset));
  __ Branch(USE_DELAY_SLOT, &miss_force_generic, hs, a0, Operand(a3));

  // Load the result and make sure it's not the hole.
  __ Addu(a3, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
  __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
  __ Addu(t0, t0, a3);
  __ lw(t0, MemOperand(t0));
  __ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
  __ Branch(&miss_force_generic, eq, t0, Operand(t1));
  __ Ret(USE_DELAY_SLOT);
  __ mov(v0, t0);

  __ bind(&miss_force_generic);
  Handle<Code> stub =
      masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
  __ Jump(stub, RelocInfo::CODE_TARGET);
}


void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement(
    MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- ra    : return address
  //  -- a0    : key
  //  -- a1    : receiver
  // -----------------------------------
  Label miss_force_generic, slow_allocate_heapnumber;

  Register key_reg = a0;
  Register receiver_reg = a1;
  Register elements_reg = a2;
  Register heap_number_reg = a2;
  Register indexed_double_offset = a3;
  Register scratch = t0;
  Register scratch2 = t1;
  Register scratch3 = t2;
  Register heap_number_map = t3;

  // This stub is meant to be tail-jumped to, the receiver must already
  // have been verified by the caller to not be a smi.

  // Check that the key is a smi or a heap number convertible to a smi.
  GenerateSmiKeyCheck(masm, key_reg, t0, t1, f2, &miss_force_generic);

  // Get the elements array.
  __ lw(elements_reg,
        FieldMemOperand(receiver_reg, JSObject::kElementsOffset));

  // Check that the key is within bounds.
  __ lw(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
  __ Branch(&miss_force_generic, hs, key_reg, Operand(scratch));

  // Load the upper word of the double in the fixed array and test for NaN.
  __ sll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize);
  __ Addu(indexed_double_offset, elements_reg, Operand(scratch2));
  uint32_t upper_32_offset = FixedArray::kHeaderSize + sizeof(kHoleNanLower32);
  __ lw(scratch, FieldMemOperand(indexed_double_offset, upper_32_offset));
  __ Branch(&miss_force_generic, eq, scratch, Operand(kHoleNanUpper32));

  // Non-NaN. Allocate a new heap number and copy the double value into it.
  __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
  __ AllocateHeapNumber(heap_number_reg, scratch2, scratch3,
                        heap_number_map, &slow_allocate_heapnumber);

  // Don't need to reload the upper 32 bits of the double, it's already in
  // scratch.
  __ sw(scratch, FieldMemOperand(heap_number_reg,
                                 HeapNumber::kExponentOffset));
  __ lw(scratch, FieldMemOperand(indexed_double_offset,
                                 FixedArray::kHeaderSize));
  __ sw(scratch, FieldMemOperand(heap_number_reg,
                                 HeapNumber::kMantissaOffset));

  __ mov(v0, heap_number_reg);
  __ Ret();

  __ bind(&slow_allocate_heapnumber);
  Handle<Code> slow_ic =
      masm->isolate()->builtins()->KeyedLoadIC_Slow();
  __ Jump(slow_ic, RelocInfo::CODE_TARGET);

  __ bind(&miss_force_generic);
  Handle<Code> miss_ic =
      masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
  __ Jump(miss_ic, RelocInfo::CODE_TARGET);
}


void KeyedStoreStubCompiler::GenerateStoreFastElement(
    MacroAssembler* masm,
    bool is_js_array,
    ElementsKind elements_kind,
    KeyedAccessGrowMode grow_mode) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : key
  //  -- a2    : receiver
  //  -- ra    : return address
  //  -- a3    : scratch
  //  -- a4    : scratch (elements)
  // -----------------------------------
  Label miss_force_generic, transition_elements_kind, grow, slow;
  Label finish_store, check_capacity;

  Register value_reg = a0;
  Register key_reg = a1;
  Register receiver_reg = a2;
  Register scratch = t0;
  Register elements_reg = a3;
  Register length_reg = t1;
  Register scratch2 = t2;

  // This stub is meant to be tail-jumped to, the receiver must already
  // have been verified by the caller to not be a smi.

  // Check that the key is a smi or a heap number convertible to a smi.
  GenerateSmiKeyCheck(masm, key_reg, t0, t1, f2, &miss_force_generic);

  if (IsFastSmiElementsKind(elements_kind)) {
    __ JumpIfNotSmi(value_reg, &transition_elements_kind);
  }

  // Check that the key is within bounds.
  __ lw(elements_reg,
        FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
  if (is_js_array) {
    __ lw(scratch, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
  } else {
    __ lw(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
  }
  // Compare smis.
  if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) {
    __ Branch(&grow, hs, key_reg, Operand(scratch));
  } else {
    __ Branch(&miss_force_generic, hs, key_reg, Operand(scratch));
  }

  // Make sure elements is a fast element array, not 'cow'.
  __ CheckMap(elements_reg,
              scratch,
              Heap::kFixedArrayMapRootIndex,
              &miss_force_generic,
              DONT_DO_SMI_CHECK);

  __ bind(&finish_store);

  if (IsFastSmiElementsKind(elements_kind)) {
    __ Addu(scratch,
            elements_reg,
            Operand(FixedArray::kHeaderSize - kHeapObjectTag));
    STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
    __ sll(scratch2, key_reg, kPointerSizeLog2 - kSmiTagSize);
    __ Addu(scratch, scratch, scratch2);
    __ sw(value_reg, MemOperand(scratch));
  } else {
    ASSERT(IsFastObjectElementsKind(elements_kind));
    __ Addu(scratch,
            elements_reg,
            Operand(FixedArray::kHeaderSize - kHeapObjectTag));
    STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
    __ sll(scratch2, key_reg, kPointerSizeLog2 - kSmiTagSize);
    __ Addu(scratch, scratch, scratch2);
    __ sw(value_reg, MemOperand(scratch));
    __ mov(receiver_reg, value_reg);
    __ RecordWrite(elements_reg,  // Object.
                   scratch,       // Address.
                   receiver_reg,  // Value.
                   kRAHasNotBeenSaved,
                   kDontSaveFPRegs);
  }
  // value_reg (a0) is preserved.
  // Done.
  __ Ret();

  __ bind(&miss_force_generic);
  Handle<Code> ic =
      masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
  __ Jump(ic, RelocInfo::CODE_TARGET);

  __ bind(&transition_elements_kind);
  Handle<Code> ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss();
  __ Jump(ic_miss, RelocInfo::CODE_TARGET);

  if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) {
    // Grow the array by a single element if possible.
    __ bind(&grow);

    // Make sure the array is only growing by a single element, anything else
    // must be handled by the runtime.
    __ Branch(&miss_force_generic, ne, key_reg, Operand(scratch));

    // Check for the empty array, and preallocate a small backing store if
    // possible.
    __ lw(length_reg,
          FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
    __ lw(elements_reg,
          FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
    __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
    __ Branch(&check_capacity, ne, elements_reg, Operand(at));

    int size = FixedArray::SizeFor(JSArray::kPreallocatedArrayElements);
    __ AllocateInNewSpace(size, elements_reg, scratch, scratch2, &slow,
                          TAG_OBJECT);

    __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex);
    __ sw(scratch, FieldMemOperand(elements_reg, JSObject::kMapOffset));
    __ li(scratch, Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements)));
    __ sw(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
    __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
    for (int i = 1; i < JSArray::kPreallocatedArrayElements; ++i) {
      __ sw(scratch, FieldMemOperand(elements_reg, FixedArray::SizeFor(i)));
    }

    // Store the element at index zero.
    __ sw(value_reg, FieldMemOperand(elements_reg, FixedArray::SizeFor(0)));

    // Install the new backing store in the JSArray.
    __ sw(elements_reg,
          FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
    __ RecordWriteField(receiver_reg, JSObject::kElementsOffset, elements_reg,
                        scratch, kRAHasNotBeenSaved, kDontSaveFPRegs,
                        EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);

    // Increment the length of the array.
    __ li(length_reg, Operand(Smi::FromInt(1)));
    __ sw(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
    __ Ret();

    __ bind(&check_capacity);
    // Check for cow elements, in general they are not handled by this stub
    __ CheckMap(elements_reg,
                scratch,
                Heap::kFixedCOWArrayMapRootIndex,
                &miss_force_generic,
                DONT_DO_SMI_CHECK);

    __ lw(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
    __ Branch(&slow, hs, length_reg, Operand(scratch));

    // Grow the array and finish the store.
    __ Addu(length_reg, length_reg, Operand(Smi::FromInt(1)));
    __ sw(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
    __ jmp(&finish_store);

    __ bind(&slow);
    Handle<Code> ic_slow = masm->isolate()->builtins()->KeyedStoreIC_Slow();
    __ Jump(ic_slow, RelocInfo::CODE_TARGET);
  }
}


void KeyedStoreStubCompiler::GenerateStoreFastDoubleElement(
    MacroAssembler* masm,
    bool is_js_array,
    KeyedAccessGrowMode grow_mode) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : key
  //  -- a2    : receiver
  //  -- ra    : return address
  //  -- a3    : scratch
  //  -- t0    : scratch (elements_reg)
  //  -- t1    : scratch (mantissa_reg)
  //  -- t2    : scratch (exponent_reg)
  //  -- t3    : scratch4
  // -----------------------------------
  Label miss_force_generic, transition_elements_kind, grow, slow;
  Label finish_store, check_capacity;

  Register value_reg = a0;
  Register key_reg = a1;
  Register receiver_reg = a2;
  Register elements_reg = a3;
  Register scratch1 = t0;
  Register scratch2 = t1;
  Register scratch3 = t2;
  Register scratch4 = t3;
  Register length_reg = t3;

  // This stub is meant to be tail-jumped to, the receiver must already
  // have been verified by the caller to not be a smi.

  // Check that the key is a smi or a heap number convertible to a smi.
  GenerateSmiKeyCheck(masm, key_reg, t0, t1, f2, &miss_force_generic);

  __ lw(elements_reg,
         FieldMemOperand(receiver_reg, JSObject::kElementsOffset));

  // Check that the key is within bounds.
  if (is_js_array) {
    __ lw(scratch1, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
  } else {
    __ lw(scratch1,
          FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
  }
  // Compare smis, unsigned compare catches both negative and out-of-bound
  // indexes.
  if (grow_mode == ALLOW_JSARRAY_GROWTH) {
    __ Branch(&grow, hs, key_reg, Operand(scratch1));
  } else {
    __ Branch(&miss_force_generic, hs, key_reg, Operand(scratch1));
  }

  __ bind(&finish_store);

  __ StoreNumberToDoubleElements(value_reg,
                                 key_reg,
                                 receiver_reg,
                                 elements_reg,
                                 scratch1,
                                 scratch2,
                                 scratch3,
                                 scratch4,
                                 &transition_elements_kind);

  __ Ret(USE_DELAY_SLOT);
  __ mov(v0, value_reg);  // In delay slot.

  // Handle store cache miss, replacing the ic with the generic stub.
  __ bind(&miss_force_generic);
  Handle<Code> ic =
      masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
  __ Jump(ic, RelocInfo::CODE_TARGET);

  __ bind(&transition_elements_kind);
  Handle<Code> ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss();
  __ Jump(ic_miss, RelocInfo::CODE_TARGET);

  if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) {
    // Grow the array by a single element if possible.
    __ bind(&grow);

    // Make sure the array is only growing by a single element, anything else
    // must be handled by the runtime.
    __ Branch(&miss_force_generic, ne, key_reg, Operand(scratch1));

    // Transition on values that can't be stored in a FixedDoubleArray.
    Label value_is_smi;
    __ JumpIfSmi(value_reg, &value_is_smi);
    __ lw(scratch1, FieldMemOperand(value_reg, HeapObject::kMapOffset));
    __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
    __ Branch(&transition_elements_kind, ne, scratch1, Operand(at));
    __ bind(&value_is_smi);

    // Check for the empty array, and preallocate a small backing store if
    // possible.
    __ lw(length_reg,
          FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
    __ lw(elements_reg,
          FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
    __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
    __ Branch(&check_capacity, ne, elements_reg, Operand(at));

    int size = FixedDoubleArray::SizeFor(JSArray::kPreallocatedArrayElements);
    __ AllocateInNewSpace(size, elements_reg, scratch1, scratch2, &slow,
                          TAG_OBJECT);

    // Initialize the new FixedDoubleArray. Leave elements unitialized for
    // efficiency, they are guaranteed to be initialized before use.
    __ LoadRoot(scratch1, Heap::kFixedDoubleArrayMapRootIndex);
    __ sw(scratch1, FieldMemOperand(elements_reg, JSObject::kMapOffset));
    __ li(scratch1, Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements)));
    __ sw(scratch1,
          FieldMemOperand(elements_reg, FixedDoubleArray::kLengthOffset));

    // Install the new backing store in the JSArray.
    __ sw(elements_reg,
          FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
    __ RecordWriteField(receiver_reg, JSObject::kElementsOffset, elements_reg,
                        scratch1, kRAHasNotBeenSaved, kDontSaveFPRegs,
                        EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);

    // Increment the length of the array.
    __ li(length_reg, Operand(Smi::FromInt(1)));
    __ sw(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
    __ lw(elements_reg,
          FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
    __ jmp(&finish_store);

    __ bind(&check_capacity);
    // Make sure that the backing store can hold additional elements.
    __ lw(scratch1,
          FieldMemOperand(elements_reg, FixedDoubleArray::kLengthOffset));
    __ Branch(&slow, hs, length_reg, Operand(scratch1));

    // Grow the array and finish the store.
    __ Addu(length_reg, length_reg, Operand(Smi::FromInt(1)));
    __ sw(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
    __ jmp(&finish_store);

    __ bind(&slow);
    Handle<Code> ic_slow = masm->isolate()->builtins()->KeyedStoreIC_Slow();
    __ Jump(ic_slow, RelocInfo::CODE_TARGET);
  }
}


#undef __

} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_MIPS

/* [<][>][^][v][top][bottom][index][help] */