root/source/common/yuv.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. create
  2. destroy
  3. copyToPicYuv
  4. copyFromPicYuv
  5. copyFromYuv
  6. copyPUFromYuv
  7. copyToPartYuv
  8. copyPartToYuv
  9. addClip
  10. addAvg
  11. copyPartToPartLuma
  12. copyPartToPartChroma

/*****************************************************************************
 * Copyright (C) 2013-2017 MulticoreWare, Inc
 *
 * Authors: Steve Borho <steve@borho.org>
 *          Min Chen <chenm003@163.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
 *
 * This program is also available under a commercial proprietary license.
 * For more information, contact us at license @ x265.com.
 *****************************************************************************/


#include "common.h"
#include "yuv.h"
#include "shortyuv.h"
#include "picyuv.h"
#include "primitives.h"

using namespace X265_NS;

Yuv::Yuv()
{
    m_buf[0] = NULL;
    m_buf[1] = NULL;
    m_buf[2] = NULL;
}

bool Yuv::create(uint32_t size, int csp)
{
    m_csp = csp;
    m_hChromaShift = CHROMA_H_SHIFT(csp);
    m_vChromaShift = CHROMA_V_SHIFT(csp);

    m_size  = size;
    m_part = partitionFromSizes(size, size);

    for (int i = 0; i < 2; i++)
        for (int j = 0; j < MAX_NUM_REF; j++)
            for (int k = 0; k < INTEGRAL_PLANE_NUM; k++)
                m_integral[i][j][k] = NULL;

    if (csp == X265_CSP_I400)
    {
        CHECKED_MALLOC(m_buf[0], pixel, size * size + 8);
        m_buf[1] = m_buf[2] = 0;
        m_csize = 0;
        return true;
    }
    else
    {
        m_csize = size >> m_hChromaShift;

        size_t sizeL = size * size;
        size_t sizeC = sizeL >> (m_vChromaShift + m_hChromaShift);

        X265_CHECK((sizeC & 15) == 0, "invalid size");

        // memory allocation (padded for SIMD reads)
        CHECKED_MALLOC(m_buf[0], pixel, sizeL + sizeC * 2 + 8);
        m_buf[1] = m_buf[0] + sizeL;
        m_buf[2] = m_buf[0] + sizeL + sizeC;
        return true;
    }

fail:
    return false;
}

void Yuv::destroy()
{
    X265_FREE(m_buf[0]);
}

void Yuv::copyToPicYuv(PicYuv& dstPic, uint32_t cuAddr, uint32_t absPartIdx) const
{
    pixel* dstY = dstPic.getLumaAddr(cuAddr, absPartIdx);
    primitives.cu[m_part].copy_pp(dstY, dstPic.m_stride, m_buf[0], m_size);
    if (m_csp != X265_CSP_I400)
    {
        pixel* dstU = dstPic.getCbAddr(cuAddr, absPartIdx);
        pixel* dstV = dstPic.getCrAddr(cuAddr, absPartIdx);
        primitives.chroma[m_csp].cu[m_part].copy_pp(dstU, dstPic.m_strideC, m_buf[1], m_csize);
        primitives.chroma[m_csp].cu[m_part].copy_pp(dstV, dstPic.m_strideC, m_buf[2], m_csize);
    }
}

void Yuv::copyFromPicYuv(const PicYuv& srcPic, uint32_t cuAddr, uint32_t absPartIdx)
{
    const pixel* srcY = srcPic.getLumaAddr(cuAddr, absPartIdx);
    primitives.cu[m_part].copy_pp(m_buf[0], m_size, srcY, srcPic.m_stride);
    if (m_csp != X265_CSP_I400)
    {
        const pixel* srcU = srcPic.getCbAddr(cuAddr, absPartIdx);
        const pixel* srcV = srcPic.getCrAddr(cuAddr, absPartIdx);
        primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[1], m_csize, srcU, srcPic.m_strideC);
        primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[2], m_csize, srcV, srcPic.m_strideC);
    }
}

void Yuv::copyFromYuv(const Yuv& srcYuv)
{
    X265_CHECK(m_size >= srcYuv.m_size, "invalid size\n");

    primitives.cu[m_part].copy_pp(m_buf[0], m_size, srcYuv.m_buf[0], srcYuv.m_size);
    if (m_csp != X265_CSP_I400)
    {
        primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[1], m_csize, srcYuv.m_buf[1], srcYuv.m_csize);
        primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[2], m_csize, srcYuv.m_buf[2], srcYuv.m_csize);
    }
}

/* This version is intended for use by ME, which required FENC_STRIDE for luma fenc pixels */
void Yuv::copyPUFromYuv(const Yuv& srcYuv, uint32_t absPartIdx, int partEnum, bool bChroma)
{
    X265_CHECK(m_size == FENC_STRIDE && m_size >= srcYuv.m_size, "PU buffer size mismatch\n");

    const pixel* srcY = srcYuv.m_buf[0] + getAddrOffset(absPartIdx, srcYuv.m_size);
    primitives.pu[partEnum].copy_pp(m_buf[0], m_size, srcY, srcYuv.m_size);

    if (bChroma)
    {
        const pixel* srcU = srcYuv.m_buf[1] + srcYuv.getChromaAddrOffset(absPartIdx);
        const pixel* srcV = srcYuv.m_buf[2] + srcYuv.getChromaAddrOffset(absPartIdx);
        primitives.chroma[m_csp].pu[partEnum].copy_pp(m_buf[1], m_csize, srcU, srcYuv.m_csize);
        primitives.chroma[m_csp].pu[partEnum].copy_pp(m_buf[2], m_csize, srcV, srcYuv.m_csize);
    }
}

void Yuv::copyToPartYuv(Yuv& dstYuv, uint32_t absPartIdx) const
{
    pixel* dstY = dstYuv.getLumaAddr(absPartIdx);
    primitives.cu[m_part].copy_pp(dstY, dstYuv.m_size, m_buf[0], m_size);
    if (m_csp != X265_CSP_I400)
    {
        pixel* dstU = dstYuv.getCbAddr(absPartIdx);
        pixel* dstV = dstYuv.getCrAddr(absPartIdx);
        primitives.chroma[m_csp].cu[m_part].copy_pp(dstU, dstYuv.m_csize, m_buf[1], m_csize);
        primitives.chroma[m_csp].cu[m_part].copy_pp(dstV, dstYuv.m_csize, m_buf[2], m_csize);
    }
}

void Yuv::copyPartToYuv(Yuv& dstYuv, uint32_t absPartIdx) const
{
    pixel* srcY = m_buf[0] + getAddrOffset(absPartIdx, m_size);
    pixel* dstY = dstYuv.m_buf[0];
    primitives.cu[dstYuv.m_part].copy_pp(dstY, dstYuv.m_size, srcY, m_size);
    if (m_csp != X265_CSP_I400)
    {
        pixel* srcU = m_buf[1] + getChromaAddrOffset(absPartIdx);
        pixel* srcV = m_buf[2] + getChromaAddrOffset(absPartIdx);
        pixel* dstU = dstYuv.m_buf[1];
        pixel* dstV = dstYuv.m_buf[2];
        primitives.chroma[m_csp].cu[dstYuv.m_part].copy_pp(dstU, dstYuv.m_csize, srcU, m_csize);
        primitives.chroma[m_csp].cu[dstYuv.m_part].copy_pp(dstV, dstYuv.m_csize, srcV, m_csize);
    }
}

void Yuv::addClip(const Yuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t log2SizeL, int picCsp)
{
    primitives.cu[log2SizeL - 2].add_ps(m_buf[0], m_size, srcYuv0.m_buf[0], srcYuv1.m_buf[0], srcYuv0.m_size, srcYuv1.m_size);
    if (m_csp != X265_CSP_I400 && picCsp != X265_CSP_I400)
    {
        primitives.chroma[m_csp].cu[log2SizeL - 2].add_ps(m_buf[1], m_csize, srcYuv0.m_buf[1], srcYuv1.m_buf[1], srcYuv0.m_csize, srcYuv1.m_csize);
        primitives.chroma[m_csp].cu[log2SizeL - 2].add_ps(m_buf[2], m_csize, srcYuv0.m_buf[2], srcYuv1.m_buf[2], srcYuv0.m_csize, srcYuv1.m_csize);
    }
    if (picCsp == X265_CSP_I400 && m_csp != X265_CSP_I400)
    {
        primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[1], m_csize, srcYuv0.m_buf[1], srcYuv0.m_csize);
        primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[2], m_csize, srcYuv0.m_buf[2], srcYuv0.m_csize);
    }
}

void Yuv::addAvg(const ShortYuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t absPartIdx, uint32_t width, uint32_t height, bool bLuma, bool bChroma)
{
    int part = partitionFromSizes(width, height);

    if (bLuma)
    {
        const int16_t* srcY0 = srcYuv0.getLumaAddr(absPartIdx);
        const int16_t* srcY1 = srcYuv1.getLumaAddr(absPartIdx);
        pixel* dstY = getLumaAddr(absPartIdx);
        primitives.pu[part].addAvg(srcY0, srcY1, dstY, srcYuv0.m_size, srcYuv1.m_size, m_size);
    }
    if (bChroma)
    {
        const int16_t* srcU0 = srcYuv0.getCbAddr(absPartIdx);
        const int16_t* srcV0 = srcYuv0.getCrAddr(absPartIdx);
        const int16_t* srcU1 = srcYuv1.getCbAddr(absPartIdx);
        const int16_t* srcV1 = srcYuv1.getCrAddr(absPartIdx);
        pixel* dstU = getCbAddr(absPartIdx);
        pixel* dstV = getCrAddr(absPartIdx);
        primitives.chroma[m_csp].pu[part].addAvg(srcU0, srcU1, dstU, srcYuv0.m_csize, srcYuv1.m_csize, m_csize);
        primitives.chroma[m_csp].pu[part].addAvg(srcV0, srcV1, dstV, srcYuv0.m_csize, srcYuv1.m_csize, m_csize);
    }
}

void Yuv::copyPartToPartLuma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2Size) const
{
    const pixel* src = getLumaAddr(absPartIdx);
    pixel* dst = dstYuv.getLumaAddr(absPartIdx);
    primitives.cu[log2Size - 2].copy_pp(dst, dstYuv.m_size, src, m_size);
}

void Yuv::copyPartToPartChroma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2SizeL) const
{
    const pixel* srcU = getCbAddr(absPartIdx);
    const pixel* srcV = getCrAddr(absPartIdx);
    pixel* dstU = dstYuv.getCbAddr(absPartIdx);
    pixel* dstV = dstYuv.getCrAddr(absPartIdx);
    primitives.chroma[m_csp].cu[log2SizeL - 2].copy_pp(dstU, dstYuv.m_csize, srcU, m_csize);
    primitives.chroma[m_csp].cu[log2SizeL - 2].copy_pp(dstV, dstYuv.m_csize, srcV, m_csize);
}

/* [<][>][^][v][top][bottom][index][help] */