This source file includes following definitions.
- create
- getLumaBufLen
- createOffsets
- destroy
- copyFromPicture
- md5_block
- md5_plane
- updateCRC
- crcFinish
- updateChecksum
- checksumFinish
- updateMD5Plane
#include "common.h"
#include "picyuv.h"
#include "slice.h"
#include "primitives.h"
using namespace X265_NS;
PicYuv::PicYuv()
{
m_picBuf[0] = NULL;
m_picBuf[1] = NULL;
m_picBuf[2] = NULL;
m_picOrg[0] = NULL;
m_picOrg[1] = NULL;
m_picOrg[2] = NULL;
m_cuOffsetY = NULL;
m_cuOffsetC = NULL;
m_buOffsetY = NULL;
m_buOffsetC = NULL;
m_maxLumaLevel = 0;
m_avgLumaLevel = 0;
m_maxChromaULevel = 0;
m_avgChromaULevel = 0;
m_maxChromaVLevel = 0;
m_avgChromaVLevel = 0;
#if (X265_DEPTH > 8)
m_minLumaLevel = 0xFFFF;
m_minChromaULevel = 0xFFFF;
m_minChromaVLevel = 0xFFFF;
#else
m_minLumaLevel = 0xFF;
m_minChromaULevel = 0xFF;
m_minChromaVLevel = 0xFF;
#endif
m_stride = 0;
m_strideC = 0;
m_hChromaShift = 0;
m_vChromaShift = 0;
}
bool PicYuv::create(x265_param* param, pixel *pixelbuf)
{
m_param = param;
uint32_t picWidth = m_param->sourceWidth;
uint32_t picHeight = m_param->sourceHeight;
uint32_t picCsp = m_param->internalCsp;
m_picWidth = picWidth;
m_picHeight = picHeight;
m_hChromaShift = CHROMA_H_SHIFT(picCsp);
m_vChromaShift = CHROMA_V_SHIFT(picCsp);
m_picCsp = picCsp;
uint32_t numCuInWidth = (m_picWidth + param->maxCUSize - 1) / param->maxCUSize;
uint32_t numCuInHeight = (m_picHeight + param->maxCUSize - 1) / param->maxCUSize;
m_lumaMarginX = param->maxCUSize + 32;
m_lumaMarginY = param->maxCUSize + 16;
m_stride = (numCuInWidth * param->maxCUSize) + (m_lumaMarginX << 1);
int maxHeight = numCuInHeight * param->maxCUSize;
if (pixelbuf)
m_picOrg[0] = pixelbuf;
else
{
CHECKED_MALLOC(m_picBuf[0], pixel, m_stride * (maxHeight + (m_lumaMarginY * 2)));
m_picOrg[0] = m_picBuf[0] + m_lumaMarginY * m_stride + m_lumaMarginX;
}
if (picCsp != X265_CSP_I400)
{
m_chromaMarginX = m_lumaMarginX;
m_chromaMarginY = m_lumaMarginY >> m_vChromaShift;
m_strideC = ((numCuInWidth * m_param->maxCUSize) >> m_hChromaShift) + (m_chromaMarginX * 2);
CHECKED_MALLOC(m_picBuf[1], pixel, m_strideC * ((maxHeight >> m_vChromaShift) + (m_chromaMarginY * 2)));
CHECKED_MALLOC(m_picBuf[2], pixel, m_strideC * ((maxHeight >> m_vChromaShift) + (m_chromaMarginY * 2)));
m_picOrg[1] = m_picBuf[1] + m_chromaMarginY * m_strideC + m_chromaMarginX;
m_picOrg[2] = m_picBuf[2] + m_chromaMarginY * m_strideC + m_chromaMarginX;
}
else
{
m_picBuf[1] = m_picBuf[2] = NULL;
m_picOrg[1] = m_picOrg[2] = NULL;
}
return true;
fail:
return false;
}
int PicYuv::getLumaBufLen(uint32_t picWidth, uint32_t picHeight, uint32_t picCsp)
{
m_picWidth = picWidth;
m_picHeight = picHeight;
m_hChromaShift = CHROMA_H_SHIFT(picCsp);
m_vChromaShift = CHROMA_V_SHIFT(picCsp);
m_picCsp = picCsp;
uint32_t numCuInWidth = (m_picWidth + m_param->maxCUSize - 1) / m_param->maxCUSize;
uint32_t numCuInHeight = (m_picHeight + m_param->maxCUSize - 1) / m_param->maxCUSize;
m_lumaMarginX = m_param->maxCUSize + 32;
m_lumaMarginY = m_param->maxCUSize + 16;
m_stride = (numCuInWidth * m_param->maxCUSize) + (m_lumaMarginX << 1);
int maxHeight = numCuInHeight * m_param->maxCUSize;
int bufLen = (int)(m_stride * (maxHeight + (m_lumaMarginY * 2)));
return bufLen;
}
bool PicYuv::createOffsets(const SPS& sps)
{
uint32_t numPartitions = 1 << (m_param->unitSizeDepth * 2);
if (m_picCsp != X265_CSP_I400)
{
CHECKED_MALLOC(m_cuOffsetY, intptr_t, sps.numCuInWidth * sps.numCuInHeight);
CHECKED_MALLOC(m_cuOffsetC, intptr_t, sps.numCuInWidth * sps.numCuInHeight);
for (uint32_t cuRow = 0; cuRow < sps.numCuInHeight; cuRow++)
{
for (uint32_t cuCol = 0; cuCol < sps.numCuInWidth; cuCol++)
{
m_cuOffsetY[cuRow * sps.numCuInWidth + cuCol] = m_stride * cuRow * m_param->maxCUSize + cuCol * m_param->maxCUSize;
m_cuOffsetC[cuRow * sps.numCuInWidth + cuCol] = m_strideC * cuRow * (m_param->maxCUSize >> m_vChromaShift) + cuCol * (m_param->maxCUSize >> m_hChromaShift);
}
}
CHECKED_MALLOC(m_buOffsetY, intptr_t, (size_t)numPartitions);
CHECKED_MALLOC(m_buOffsetC, intptr_t, (size_t)numPartitions);
for (uint32_t idx = 0; idx < numPartitions; ++idx)
{
intptr_t x = g_zscanToPelX[idx];
intptr_t y = g_zscanToPelY[idx];
m_buOffsetY[idx] = m_stride * y + x;
m_buOffsetC[idx] = m_strideC * (y >> m_vChromaShift) + (x >> m_hChromaShift);
}
}
else
{
CHECKED_MALLOC(m_cuOffsetY, intptr_t, sps.numCuInWidth * sps.numCuInHeight);
for (uint32_t cuRow = 0; cuRow < sps.numCuInHeight; cuRow++)
for (uint32_t cuCol = 0; cuCol < sps.numCuInWidth; cuCol++)
m_cuOffsetY[cuRow * sps.numCuInWidth + cuCol] = m_stride * cuRow * m_param->maxCUSize + cuCol * m_param->maxCUSize;
CHECKED_MALLOC(m_buOffsetY, intptr_t, (size_t)numPartitions);
for (uint32_t idx = 0; idx < numPartitions; ++idx)
{
intptr_t x = g_zscanToPelX[idx];
intptr_t y = g_zscanToPelY[idx];
m_buOffsetY[idx] = m_stride * y + x;
}
}
return true;
fail:
return false;
}
void PicYuv::destroy()
{
X265_FREE(m_picBuf[0]);
X265_FREE(m_picBuf[1]);
X265_FREE(m_picBuf[2]);
}
void PicYuv::copyFromPicture(const x265_picture& pic, const x265_param& param, int padx, int pady)
{
int width = m_picWidth - padx;
int height = m_picHeight - pady;
uint8_t rem = width & 15;
padx = rem ? 16 - rem : padx;
rem = height & 15;
pady = rem ? 16 - rem : pady;
padx++;
pady++;
m_picCsp = pic.colorSpace;
X265_CHECK(pic.bitDepth >= 8, "pic.bitDepth check failure");
uint64_t lumaSum;
uint64_t cbSum;
uint64_t crSum;
lumaSum = cbSum = crSum = 0;
if (pic.bitDepth == 8)
{
#if (X265_DEPTH > 8)
{
pixel *yPixel = m_picOrg[0];
uint8_t *yChar = (uint8_t*)pic.planes[0];
int shift = (X265_DEPTH - 8);
primitives.planecopy_cp(yChar, pic.stride[0] / sizeof(*yChar), yPixel, m_stride, width, height, shift);
if (param.internalCsp != X265_CSP_I400)
{
pixel *uPixel = m_picOrg[1];
pixel *vPixel = m_picOrg[2];
uint8_t *uChar = (uint8_t*)pic.planes[1];
uint8_t *vChar = (uint8_t*)pic.planes[2];
primitives.planecopy_cp(uChar, pic.stride[1] / sizeof(*uChar), uPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift);
primitives.planecopy_cp(vChar, pic.stride[2] / sizeof(*vChar), vPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift);
}
}
#else
{
pixel *yPixel = m_picOrg[0];
uint8_t *yChar = (uint8_t*)pic.planes[0];
for (int r = 0; r < height; r++)
{
memcpy(yPixel, yChar, width * sizeof(pixel));
yPixel += m_stride;
yChar += pic.stride[0] / sizeof(*yChar);
}
if (param.internalCsp != X265_CSP_I400)
{
pixel *uPixel = m_picOrg[1];
pixel *vPixel = m_picOrg[2];
uint8_t *uChar = (uint8_t*)pic.planes[1];
uint8_t *vChar = (uint8_t*)pic.planes[2];
for (int r = 0; r < height >> m_vChromaShift; r++)
{
memcpy(uPixel, uChar, (width >> m_hChromaShift) * sizeof(pixel));
memcpy(vPixel, vChar, (width >> m_hChromaShift) * sizeof(pixel));
uPixel += m_strideC;
vPixel += m_strideC;
uChar += pic.stride[1] / sizeof(*uChar);
vChar += pic.stride[2] / sizeof(*vChar);
}
}
}
#endif
}
else
{
uint16_t mask = (1 << X265_DEPTH) - 1;
int shift = abs(pic.bitDepth - X265_DEPTH);
pixel *yPixel = m_picOrg[0];
uint16_t *yShort = (uint16_t*)pic.planes[0];
if (pic.bitDepth > X265_DEPTH)
{
primitives.planecopy_sp(yShort, pic.stride[0] / sizeof(*yShort), yPixel, m_stride, width, height, shift, mask);
}
else
{
primitives.planecopy_sp_shl(yShort, pic.stride[0] / sizeof(*yShort), yPixel, m_stride, width, height, shift, mask);
}
if (param.internalCsp != X265_CSP_I400)
{
pixel *uPixel = m_picOrg[1];
pixel *vPixel = m_picOrg[2];
uint16_t *uShort = (uint16_t*)pic.planes[1];
uint16_t *vShort = (uint16_t*)pic.planes[2];
if (pic.bitDepth > X265_DEPTH)
{
primitives.planecopy_sp(uShort, pic.stride[1] / sizeof(*uShort), uPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift, mask);
primitives.planecopy_sp(vShort, pic.stride[2] / sizeof(*vShort), vPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift, mask);
}
else
{
primitives.planecopy_sp_shl(uShort, pic.stride[1] / sizeof(*uShort), uPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift, mask);
primitives.planecopy_sp_shl(vShort, pic.stride[2] / sizeof(*vShort), vPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift, mask);
}
}
}
pixel *Y = m_picOrg[0];
pixel *U = m_picOrg[1];
pixel *V = m_picOrg[2];
pixel *yPic = m_picOrg[0];
pixel *uPic = m_picOrg[1];
pixel *vPic = m_picOrg[2];
for (int r = 0; r < height; r++)
{
for (int c = 0; c < width; c++)
{
m_maxLumaLevel = X265_MAX(yPic[c], m_maxLumaLevel);
m_minLumaLevel = X265_MIN(yPic[c], m_minLumaLevel);
lumaSum += yPic[c];
}
yPic += m_stride;
}
m_avgLumaLevel = (double)lumaSum / (m_picHeight * m_picWidth);
if (param.csvLogLevel >= 2)
{
if (param.internalCsp != X265_CSP_I400)
{
for (int r = 0; r < height >> m_vChromaShift; r++)
{
for (int c = 0; c < width >> m_hChromaShift; c++)
{
m_maxChromaULevel = X265_MAX(uPic[c], m_maxChromaULevel);
m_minChromaULevel = X265_MIN(uPic[c], m_minChromaULevel);
cbSum += uPic[c];
m_maxChromaVLevel = X265_MAX(vPic[c], m_maxChromaVLevel);
m_minChromaVLevel = X265_MIN(vPic[c], m_minChromaVLevel);
crSum += vPic[c];
}
uPic += m_strideC;
vPic += m_strideC;
}
m_avgChromaULevel = (double)cbSum / ((height >> m_vChromaShift) * (width >> m_hChromaShift));
m_avgChromaVLevel = (double)crSum / ((height >> m_vChromaShift) * (width >> m_hChromaShift));
}
}
#if HIGH_BIT_DEPTH
bool calcHDRParams = !!param.minLuma || (param.maxLuma != PIXEL_MAX);
if (calcHDRParams)
{
X265_CHECK(pic.bitDepth == 10, "HDR stats can be applied/calculated only for 10bpp content");
uint64_t sumLuma;
m_maxLumaLevel = primitives.planeClipAndMax(Y, m_stride, width, height, &sumLuma, (pixel)param.minLuma, (pixel)param.maxLuma);
m_avgLumaLevel = (double) sumLuma / (m_picHeight * m_picWidth);
}
#else
(void) param;
#endif
for (int r = 0; r < height; r++)
{
for (int x = 0; x < padx; x++)
Y[width + x] = Y[width - 1];
Y += m_stride;
}
Y = m_picOrg[0] + (height - 1) * m_stride;
for (int i = 1; i <= pady; i++)
memcpy(Y + i * m_stride, Y, (width + padx) * sizeof(pixel));
if (param.internalCsp != X265_CSP_I400)
{
for (int r = 0; r < height >> m_vChromaShift; r++)
{
for (int x = 0; x < padx >> m_hChromaShift; x++)
{
U[(width >> m_hChromaShift) + x] = U[(width >> m_hChromaShift) - 1];
V[(width >> m_hChromaShift) + x] = V[(width >> m_hChromaShift) - 1];
}
U += m_strideC;
V += m_strideC;
}
U = m_picOrg[1] + ((height >> m_vChromaShift) - 1) * m_strideC;
V = m_picOrg[2] + ((height >> m_vChromaShift) - 1) * m_strideC;
for (int j = 1; j <= pady >> m_vChromaShift; j++)
{
memcpy(U + j * m_strideC, U, ((width + padx) >> m_hChromaShift) * sizeof(pixel));
memcpy(V + j * m_strideC, V, ((width + padx) >> m_hChromaShift) * sizeof(pixel));
}
}
}
namespace X265_NS {
template<uint32_t OUTPUT_BITDEPTH_DIV8>
static void md5_block(MD5Context& md5, const pixel* plane, uint32_t n)
{
uint8_t buf[64 / OUTPUT_BITDEPTH_DIV8][OUTPUT_BITDEPTH_DIV8];
for (uint32_t i = 0; i < n; i++)
{
pixel pel = plane[i];
for (uint32_t d = 0; d < OUTPUT_BITDEPTH_DIV8; d++)
buf[i][d] = (uint8_t)(pel >> (d * 8));
}
MD5Update(&md5, (uint8_t*)buf, n * OUTPUT_BITDEPTH_DIV8);
}
template<uint32_t OUTPUT_BITDEPTH_DIV8>
static void md5_plane(MD5Context& md5, const pixel* plane, uint32_t width, uint32_t height, intptr_t stride)
{
uint32_t N = 32;
uint32_t width_modN = width % N;
uint32_t width_less_modN = width - width_modN;
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width_less_modN; x += N)
md5_block<OUTPUT_BITDEPTH_DIV8>(md5, &plane[y * stride + x], N);
md5_block<OUTPUT_BITDEPTH_DIV8>(md5, &plane[y * stride + width_less_modN], width_modN);
}
}
void updateCRC(const pixel* plane, uint32_t& crcVal, uint32_t height, uint32_t width, intptr_t stride)
{
uint32_t crcMsb;
uint32_t bitVal;
uint32_t bitIdx;
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
for (bitIdx = 0; bitIdx < 8; bitIdx++)
{
crcMsb = (crcVal >> 15) & 1;
bitVal = (plane[y * stride + x] >> (7 - bitIdx)) & 1;
crcVal = (((crcVal << 1) + bitVal) & 0xffff) ^ (crcMsb * 0x1021);
}
#if _MSC_VER
#pragma warning(disable: 4127)
#endif
if (X265_DEPTH > 8)
{
for (bitIdx = 0; bitIdx < 8; bitIdx++)
{
crcMsb = (crcVal >> 15) & 1;
bitVal = (plane[y * stride + x] >> (15 - bitIdx)) & 1;
crcVal = (((crcVal << 1) + bitVal) & 0xffff) ^ (crcMsb * 0x1021);
}
}
}
}
}
void crcFinish(uint32_t& crcVal, uint8_t digest[16])
{
uint32_t crcMsb;
for (int bitIdx = 0; bitIdx < 16; bitIdx++)
{
crcMsb = (crcVal >> 15) & 1;
crcVal = ((crcVal << 1) & 0xffff) ^ (crcMsb * 0x1021);
}
digest[0] = (crcVal >> 8) & 0xff;
digest[1] = crcVal & 0xff;
}
void updateChecksum(const pixel* plane, uint32_t& checksumVal, uint32_t height, uint32_t width, intptr_t stride, int row, uint32_t cuHeight)
{
uint8_t xor_mask;
for (uint32_t y = row * cuHeight; y < ((row * cuHeight) + height); y++)
{
for (uint32_t x = 0; x < width; x++)
{
xor_mask = (uint8_t)((x & 0xff) ^ (y & 0xff) ^ (x >> 8) ^ (y >> 8));
checksumVal = (checksumVal + ((plane[y * stride + x] & 0xff) ^ xor_mask)) & 0xffffffff;
if (X265_DEPTH > 8)
checksumVal = (checksumVal + ((plane[y * stride + x] >> 7 >> 1) ^ xor_mask)) & 0xffffffff;
}
}
}
void checksumFinish(uint32_t checksum, uint8_t digest[16])
{
digest[0] = (checksum >> 24) & 0xff;
digest[1] = (checksum >> 16) & 0xff;
digest[2] = (checksum >> 8) & 0xff;
digest[3] = checksum & 0xff;
}
void updateMD5Plane(MD5Context& md5, const pixel* plane, uint32_t width, uint32_t height, intptr_t stride)
{
typedef void(*MD5PlaneFunc)(MD5Context&, const pixel*, uint32_t, uint32_t, intptr_t);
MD5PlaneFunc md5_plane_func;
md5_plane_func = X265_DEPTH <= 8 ? (MD5PlaneFunc)md5_plane<1> : (MD5PlaneFunc)md5_plane<2>;
md5_plane_func(md5, plane, width, height, stride);
}
}