#ifndef X265_SLICE_H
#define X265_SLICE_H
#include "common.h"
namespace X265_NS {
class Frame;
class PicList;
class PicYuv;
class MotionReference;
enum SliceType
{
B_SLICE,
P_SLICE,
I_SLICE
};
struct RPS
{
int numberOfPictures;
int numberOfNegativePictures;
int numberOfPositivePictures;
int poc[MAX_NUM_REF_PICS];
int deltaPOC[MAX_NUM_REF_PICS];
bool bUsed[MAX_NUM_REF_PICS];
RPS()
: numberOfPictures(0)
, numberOfNegativePictures(0)
, numberOfPositivePictures(0)
{
memset(deltaPOC, 0, sizeof(deltaPOC));
memset(poc, 0, sizeof(poc));
memset(bUsed, 0, sizeof(bUsed));
}
void sortDeltaPOC();
};
namespace Profile {
enum Name
{
NONE = 0,
MAIN = 1,
MAIN10 = 2,
MAINSTILLPICTURE = 3,
MAINREXT = 4,
HIGHTHROUGHPUTREXT = 5
};
}
namespace Level {
enum Tier
{
MAIN = 0,
HIGH = 1,
};
enum Name
{
NONE = 0,
LEVEL1 = 30,
LEVEL2 = 60,
LEVEL2_1 = 63,
LEVEL3 = 90,
LEVEL3_1 = 93,
LEVEL4 = 120,
LEVEL4_1 = 123,
LEVEL5 = 150,
LEVEL5_1 = 153,
LEVEL5_2 = 156,
LEVEL6 = 180,
LEVEL6_1 = 183,
LEVEL6_2 = 186,
LEVEL8_5 = 255,
};
}
struct ProfileTierLevel
{
int profileIdc;
int levelIdc;
uint32_t minCrForLevel;
uint32_t maxLumaSrForLevel;
uint32_t bitDepthConstraint;
int chromaFormatConstraint;
bool tierFlag;
bool progressiveSourceFlag;
bool interlacedSourceFlag;
bool nonPackedConstraintFlag;
bool frameOnlyConstraintFlag;
bool profileCompatibilityFlag[32];
bool intraConstraintFlag;
bool onePictureOnlyConstraintFlag;
bool lowerBitRateConstraintFlag;
};
struct HRDInfo
{
uint32_t bitRateScale;
uint32_t cpbSizeScale;
uint32_t initialCpbRemovalDelayLength;
uint32_t cpbRemovalDelayLength;
uint32_t dpbOutputDelayLength;
uint32_t bitRateValue;
uint32_t cpbSizeValue;
bool cbrFlag;
HRDInfo()
: bitRateScale(0)
, cpbSizeScale(0)
, initialCpbRemovalDelayLength(1)
, cpbRemovalDelayLength(1)
, dpbOutputDelayLength(1)
, cbrFlag(false)
{
}
};
struct TimingInfo
{
uint32_t numUnitsInTick;
uint32_t timeScale;
};
struct VPS
{
HRDInfo hrdParameters;
ProfileTierLevel ptl;
uint32_t maxTempSubLayers;
uint32_t numReorderPics;
uint32_t maxDecPicBuffering;
uint32_t maxLatencyIncrease;
};
struct Window
{
int leftOffset;
int rightOffset;
int topOffset;
int bottomOffset;
bool bEnabled;
Window()
{
bEnabled = false;
}
};
struct VUI
{
int aspectRatioIdc;
int sarWidth;
int sarHeight;
int videoFormat;
int colourPrimaries;
int transferCharacteristics;
int matrixCoefficients;
int chromaSampleLocTypeTopField;
int chromaSampleLocTypeBottomField;
bool aspectRatioInfoPresentFlag;
bool overscanInfoPresentFlag;
bool overscanAppropriateFlag;
bool videoSignalTypePresentFlag;
bool videoFullRangeFlag;
bool colourDescriptionPresentFlag;
bool chromaLocInfoPresentFlag;
bool frameFieldInfoPresentFlag;
bool fieldSeqFlag;
bool hrdParametersPresentFlag;
HRDInfo hrdParameters;
Window defaultDisplayWindow;
TimingInfo timingInfo;
};
struct SPS
{
intptr_t* cuOffsetY;
intptr_t* cuOffsetC;
intptr_t* buOffsetY;
intptr_t* buOffsetC;
int chromaFormatIdc;
uint32_t picWidthInLumaSamples;
uint32_t picHeightInLumaSamples;
uint32_t numCuInWidth;
uint32_t numCuInHeight;
uint32_t numCUsInFrame;
uint32_t numPartitions;
uint32_t numPartInCUSize;
int log2MinCodingBlockSize;
int log2DiffMaxMinCodingBlockSize;
int log2MaxPocLsb;
uint32_t quadtreeTULog2MaxSize;
uint32_t quadtreeTULog2MinSize;
uint32_t quadtreeTUMaxDepthInter;
uint32_t quadtreeTUMaxDepthIntra;
uint32_t maxAMPDepth;
uint32_t maxTempSubLayers;
uint32_t maxDecPicBuffering;
uint32_t maxLatencyIncrease;
int numReorderPics;
RPS spsrps[MAX_NUM_SHORT_TERM_RPS];
int spsrpsNum;
int numGOPBegin;
bool bUseSAO;
bool bUseAMP;
bool bUseStrongIntraSmoothing;
bool bTemporalMVPEnabled;
bool bEmitVUITimingInfo;
bool bEmitVUIHRDInfo;
Window conformanceWindow;
VUI vuiParameters;
SPS()
{
memset(this, 0, sizeof(*this));
}
~SPS()
{
X265_FREE(cuOffsetY);
X265_FREE(cuOffsetC);
X265_FREE(buOffsetY);
X265_FREE(buOffsetC);
}
};
struct PPS
{
uint32_t maxCuDQPDepth;
int chromaQpOffset[2];
int deblockingFilterBetaOffsetDiv2;
int deblockingFilterTcOffsetDiv2;
bool bUseWeightPred;
bool bUseWeightedBiPred;
bool bUseDQP;
bool bConstrainedIntraPred;
bool bTransquantBypassEnabled;
bool bTransformSkipEnabled;
bool bEntropyCodingSyncEnabled;
bool bSignHideEnabled;
bool bDeblockingFilterControlPresent;
bool bPicDisableDeblockingFilter;
int numRefIdxDefault[2];
bool pps_slice_chroma_qp_offsets_present_flag;
};
struct WeightParam
{
uint32_t log2WeightDenom;
int inputWeight;
int inputOffset;
bool bPresentFlag;
void setFromWeightAndOffset(int w, int o, int denom, bool bNormalize)
{
inputOffset = o;
log2WeightDenom = denom;
inputWeight = w;
while (bNormalize && log2WeightDenom > 0 && (inputWeight > 127))
{
log2WeightDenom--;
inputWeight >>= 1;
}
inputWeight = X265_MIN(inputWeight, 127);
}
};
#define SET_WEIGHT(w, b, s, d, o) \
{ \
(w).inputWeight = (s); \
(w).log2WeightDenom = (d); \
(w).inputOffset = (o); \
(w).bPresentFlag = (b); \
}
class Slice
{
public:
const SPS* m_sps;
const PPS* m_pps;
Frame* m_refFrameList[2][MAX_NUM_REF + 1];
PicYuv* m_refReconPicList[2][MAX_NUM_REF + 1];
WeightParam m_weightPredTable[2][MAX_NUM_REF][3];
MotionReference (*m_mref)[MAX_NUM_REF + 1];
RPS m_rps;
NalUnitType m_nalUnitType;
SliceType m_sliceType;
int m_sliceQp;
int m_chromaQpOffset[2];
int m_poc;
int m_lastIDR;
int m_rpsIdx;
uint32_t m_colRefIdx;
int m_numRefIdx[2];
int m_refPOCList[2][MAX_NUM_REF + 1];
uint32_t m_maxNumMergeCand;
uint32_t m_endCUAddr;
bool m_bCheckLDC;
bool m_sLFaseFlag;
bool m_colFromL0Flag;
int m_iPPSQpMinus26;
int numRefIdxDefault[2];
int m_iNumRPSInSPS;
const x265_param *m_param;
Slice()
{
m_lastIDR = 0;
m_sLFaseFlag = true;
m_numRefIdx[0] = m_numRefIdx[1] = 0;
memset(m_refFrameList, 0, sizeof(m_refFrameList));
memset(m_refReconPicList, 0, sizeof(m_refReconPicList));
memset(m_refPOCList, 0, sizeof(m_refPOCList));
disableWeights();
m_iPPSQpMinus26 = 0;
numRefIdxDefault[0] = 1;
numRefIdxDefault[1] = 1;
m_rpsIdx = -1;
m_chromaQpOffset[0] = m_chromaQpOffset[1] = 0;
}
void disableWeights();
void setRefPicList(PicList& picList);
bool getRapPicFlag() const
{
return m_nalUnitType == NAL_UNIT_CODED_SLICE_IDR_W_RADL
|| m_nalUnitType == NAL_UNIT_CODED_SLICE_CRA;
}
bool getIdrPicFlag() const
{
return m_nalUnitType == NAL_UNIT_CODED_SLICE_IDR_W_RADL;
}
bool isIRAP() const { return m_nalUnitType >= 16 && m_nalUnitType <= 23; }
bool isIntra() const { return m_sliceType == I_SLICE; }
bool isInterB() const { return m_sliceType == B_SLICE; }
bool isInterP() const { return m_sliceType == P_SLICE; }
uint32_t realEndAddress(uint32_t endCUAddr) const;
};
}
#endif