root/src/xz/coder.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. coder_set_check
  2. coder_set_preset
  3. coder_set_extreme
  4. coder_add_filter
  5. lzma_attribute
  6. coder_set_compression_settings
  7. is_format_xz
  8. is_format_lzma
  9. coder_init
  10. coder_normal
  11. coder_passthru
  12. coder_run

///////////////////////////////////////////////////////////////////////////////
//
/// \file       coder.c
/// \brief      Compresses or uncompresses a file
//
//  Author:     Lasse Collin
//
//  This file has been put into the public domain.
//  You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////

#include "private.h"


/// Return value type for coder_init().
enum coder_init_ret {
        CODER_INIT_NORMAL,
        CODER_INIT_PASSTHRU,
        CODER_INIT_ERROR,
};


enum operation_mode opt_mode = MODE_COMPRESS;
enum format_type opt_format = FORMAT_AUTO;
bool opt_auto_adjust = true;


/// Stream used to communicate with liblzma
static lzma_stream strm = LZMA_STREAM_INIT;

/// Filters needed for all encoding all formats, and also decoding in raw data
static lzma_filter filters[LZMA_FILTERS_MAX + 1];

/// Input and output buffers
static io_buf in_buf;
static io_buf out_buf;

/// Number of filters. Zero indicates that we are using a preset.
static size_t filters_count = 0;

/// Number of the preset (0-9)
static size_t preset_number = 6;

/// If a preset is used (no custom filter chain) and preset_extreme is true,
/// a significantly slower compression is used to achieve slightly better
/// compression ratio.
static bool preset_extreme = false;

/// Integrity check type
static lzma_check check;

/// This becomes false if the --check=CHECK option is used.
static bool check_default = true;


extern void
coder_set_check(lzma_check new_check)
{
        check = new_check;
        check_default = false;
        return;
}


extern void
coder_set_preset(size_t new_preset)
{
        preset_number = new_preset;

        // Setting a preset makes us forget a possibly defined custom
        // filter chain.
        while (filters_count > 0) {
                --filters_count;
                free(filters[filters_count].options);
                filters[filters_count].options = NULL;
        }

        return;
}


extern void
coder_set_extreme(void)
{
        preset_extreme = true;
        return;
}


extern void
coder_add_filter(lzma_vli id, void *options)
{
        if (filters_count == LZMA_FILTERS_MAX)
                message_fatal(_("Maximum number of filters is four"));

        filters[filters_count].id = id;
        filters[filters_count].options = options;
        ++filters_count;

        return;
}


static void lzma_attribute((__noreturn__))
memlimit_too_small(uint64_t memory_usage)
{
        message(V_ERROR, _("Memory usage limit is too low for the given "
                        "filter setup."));
        message_mem_needed(V_ERROR, memory_usage);
        tuklib_exit(E_ERROR, E_ERROR, false);
}


extern void
coder_set_compression_settings(void)
{
        // Options for LZMA1 or LZMA2 in case we are using a preset.
        static lzma_options_lzma opt_lzma;

        if (filters_count == 0) {
                // We are using a preset. This is not a good idea in raw mode
                // except when playing around with things. Different versions
                // of this software may use different options in presets, and
                // thus make uncompressing the raw data difficult.
                if (opt_format == FORMAT_RAW) {
                        // The message is shown only if warnings are allowed
                        // but the exit status isn't changed.
                        message(V_WARNING, _("Using a preset in raw mode "
                                        "is discouraged."));
                        message(V_WARNING, _("The exact options of the "
                                        "presets may vary between software "
                                        "versions."));
                }

                // Get the preset for LZMA1 or LZMA2.
                if (preset_extreme)
                        preset_number |= LZMA_PRESET_EXTREME;

                if (lzma_lzma_preset(&opt_lzma, preset_number))
                        message_bug();

                // Use LZMA2 except with --format=lzma we use LZMA1.
                filters[0].id = opt_format == FORMAT_LZMA
                                ? LZMA_FILTER_LZMA1 : LZMA_FILTER_LZMA2;
                filters[0].options = &opt_lzma;
                filters_count = 1;
        }

        // Terminate the filter options array.
        filters[filters_count].id = LZMA_VLI_UNKNOWN;

        // If we are using the .lzma format, allow exactly one filter
        // which has to be LZMA1.
        if (opt_format == FORMAT_LZMA && (filters_count != 1
                        || filters[0].id != LZMA_FILTER_LZMA1))
                message_fatal(_("The .lzma format supports only "
                                "the LZMA1 filter"));

        // If we are using the .xz format, make sure that there is no LZMA1
        // filter to prevent LZMA_PROG_ERROR.
        if (opt_format == FORMAT_XZ)
                for (size_t i = 0; i < filters_count; ++i)
                        if (filters[i].id == LZMA_FILTER_LZMA1)
                                message_fatal(_("LZMA1 cannot be used "
                                                "with the .xz format"));

        // Print the selected filter chain.
        message_filters_show(V_DEBUG, filters);

        // If using --format=raw, we can be decoding. The memusage function
        // also validates the filter chain and the options used for the
        // filters.
        const uint64_t memory_limit = hardware_memlimit_get(opt_mode);
        uint64_t memory_usage;
        if (opt_mode == MODE_COMPRESS)
                memory_usage = lzma_raw_encoder_memusage(filters);
        else
                memory_usage = lzma_raw_decoder_memusage(filters);

        if (memory_usage == UINT64_MAX)
                message_fatal(_("Unsupported filter chain or filter options"));

        // Print memory usage info before possible dictionary
        // size auto-adjusting.
        message_mem_needed(V_DEBUG, memory_usage);
        if (opt_mode == MODE_COMPRESS) {
                const uint64_t decmem = lzma_raw_decoder_memusage(filters);
                if (decmem != UINT64_MAX)
                        message(V_DEBUG, _("Decompression will need "
                                        "%s MiB of memory."), uint64_to_str(
                                                round_up_to_mib(decmem), 0));
        }

        if (memory_usage > memory_limit) {
                // If --no-auto-adjust was used or we didn't find LZMA1 or
                // LZMA2 as the last filter, give an error immediately.
                // --format=raw implies --no-auto-adjust.
                if (!opt_auto_adjust || opt_format == FORMAT_RAW)
                        memlimit_too_small(memory_usage);

                assert(opt_mode == MODE_COMPRESS);

                // Look for the last filter if it is LZMA2 or LZMA1, so
                // we can make it use less RAM. With other filters we don't
                // know what to do.
                size_t i = 0;
                while (filters[i].id != LZMA_FILTER_LZMA2
                                && filters[i].id != LZMA_FILTER_LZMA1) {
                        if (filters[i].id == LZMA_VLI_UNKNOWN)
                                memlimit_too_small(memory_usage);

                        ++i;
                }

                // Decrease the dictionary size until we meet the memory
                // usage limit. First round down to full mebibytes.
                lzma_options_lzma *opt = filters[i].options;
                const uint32_t orig_dict_size = opt->dict_size;
                opt->dict_size &= ~((UINT32_C(1) << 20) - 1);
                while (true) {
                        // If it is below 1 MiB, auto-adjusting failed. We
                        // could be more sophisticated and scale it down even
                        // more, but let's see if many complain about this
                        // version.
                        //
                        // FIXME: Displays the scaled memory usage instead
                        // of the original.
                        if (opt->dict_size < (UINT32_C(1) << 20))
                                memlimit_too_small(memory_usage);

                        memory_usage = lzma_raw_encoder_memusage(filters);
                        if (memory_usage == UINT64_MAX)
                                message_bug();

                        // Accept it if it is low enough.
                        if (memory_usage <= memory_limit)
                                break;

                        // Otherwise 1 MiB down and try again. I hope this
                        // isn't too slow method for cases where the original
                        // dict_size is very big.
                        opt->dict_size -= UINT32_C(1) << 20;
                }

                // Tell the user that we decreased the dictionary size.
                message(V_WARNING, _("Adjusted LZMA%c dictionary size "
                                "from %s MiB to %s MiB to not exceed "
                                "the memory usage limit of %s MiB"),
                                filters[i].id == LZMA_FILTER_LZMA2
                                        ? '2' : '1',
                                uint64_to_str(orig_dict_size >> 20, 0),
                                uint64_to_str(opt->dict_size >> 20, 1),
                                uint64_to_str(round_up_to_mib(
                                        memory_limit), 2));
        }

/*
        // Limit the number of worker threads so that memory usage
        // limit isn't exceeded.
        assert(memory_usage > 0);
        size_t thread_limit = memory_limit / memory_usage;
        if (thread_limit == 0)
                thread_limit = 1;

        if (opt_threads > thread_limit)
                opt_threads = thread_limit;
*/

        if (check_default) {
                // The default check type is CRC64, but fallback to CRC32
                // if CRC64 isn't supported by the copy of liblzma we are
                // using. CRC32 is always supported.
                check = LZMA_CHECK_CRC64;
                if (!lzma_check_is_supported(check))
                        check = LZMA_CHECK_CRC32;
        }

        return;
}


/// Return true if the data in in_buf seems to be in the .xz format.
static bool
is_format_xz(void)
{
        // Specify the magic as hex to be compatible with EBCDIC systems.
        static const uint8_t magic[6] = { 0xFD, 0x37, 0x7A, 0x58, 0x5A, 0x00 };
        return strm.avail_in >= sizeof(magic)
                        && memcmp(in_buf.u8, magic, sizeof(magic)) == 0;
}


/// Return true if the data in in_buf seems to be in the .lzma format.
static bool
is_format_lzma(void)
{
        // The .lzma header is 13 bytes.
        if (strm.avail_in < 13)
                return false;

        // Decode the LZMA1 properties.
        lzma_filter filter = { .id = LZMA_FILTER_LZMA1 };
        if (lzma_properties_decode(&filter, NULL, in_buf.u8, 5) != LZMA_OK)
                return false;

        // A hack to ditch tons of false positives: We allow only dictionary
        // sizes that are 2^n or 2^n + 2^(n-1) or UINT32_MAX. LZMA_Alone
        // created only files with 2^n, but accepts any dictionary size.
        // If someone complains, this will be reconsidered.
        lzma_options_lzma *opt = filter.options;
        const uint32_t dict_size = opt->dict_size;
        free(opt);

        if (dict_size != UINT32_MAX) {
                uint32_t d = dict_size - 1;
                d |= d >> 2;
                d |= d >> 3;
                d |= d >> 4;
                d |= d >> 8;
                d |= d >> 16;
                ++d;
                if (d != dict_size || dict_size == 0)
                        return false;
        }

        // Another hack to ditch false positives: Assume that if the
        // uncompressed size is known, it must be less than 256 GiB.
        // Again, if someone complains, this will be reconsidered.
        uint64_t uncompressed_size = 0;
        for (size_t i = 0; i < 8; ++i)
                uncompressed_size |= (uint64_t)(in_buf.u8[5 + i]) << (i * 8);

        if (uncompressed_size != UINT64_MAX
                        && uncompressed_size > (UINT64_C(1) << 38))
                return false;

        return true;
}


/// Detect the input file type (for now, this done only when decompressing),
/// and initialize an appropriate coder. Return value indicates if a normal
/// liblzma-based coder was initialized (CODER_INIT_NORMAL), if passthru
/// mode should be used (CODER_INIT_PASSTHRU), or if an error occurred
/// (CODER_INIT_ERROR).
static enum coder_init_ret
coder_init(file_pair *pair)
{
        lzma_ret ret = LZMA_PROG_ERROR;

        if (opt_mode == MODE_COMPRESS) {
                switch (opt_format) {
                case FORMAT_AUTO:
                        // args.c ensures this.
                        assert(0);
                        break;

                case FORMAT_XZ:
                        ret = lzma_stream_encoder(&strm, filters, check);
                        break;

                case FORMAT_LZMA:
                        ret = lzma_alone_encoder(&strm, filters[0].options);
                        break;

                case FORMAT_RAW:
                        ret = lzma_raw_encoder(&strm, filters);
                        break;
                }
        } else {
                const uint32_t flags = LZMA_TELL_UNSUPPORTED_CHECK
                                | LZMA_CONCATENATED;

                // We abuse FORMAT_AUTO to indicate unknown file format,
                // for which we may consider passthru mode.
                enum format_type init_format = FORMAT_AUTO;

                switch (opt_format) {
                case FORMAT_AUTO:
                        if (is_format_xz())
                                init_format = FORMAT_XZ;
                        else if (is_format_lzma())
                                init_format = FORMAT_LZMA;
                        break;

                case FORMAT_XZ:
                        if (is_format_xz())
                                init_format = FORMAT_XZ;
                        break;

                case FORMAT_LZMA:
                        if (is_format_lzma())
                                init_format = FORMAT_LZMA;
                        break;

                case FORMAT_RAW:
                        init_format = FORMAT_RAW;
                        break;
                }

                switch (init_format) {
                case FORMAT_AUTO:
                        // Uknown file format. If --decompress --stdout
                        // --force have been given, then we copy the input
                        // as is to stdout. Checking for MODE_DECOMPRESS
                        // is needed, because we don't want to do use
                        // passthru mode with --test.
                        if (opt_mode == MODE_DECOMPRESS
                                        && opt_stdout && opt_force)
                                return CODER_INIT_PASSTHRU;

                        ret = LZMA_FORMAT_ERROR;
                        break;

                case FORMAT_XZ:
                        ret = lzma_stream_decoder(&strm,
                                        hardware_memlimit_get(
                                                MODE_DECOMPRESS), flags);
                        break;

                case FORMAT_LZMA:
                        ret = lzma_alone_decoder(&strm,
                                        hardware_memlimit_get(
                                                MODE_DECOMPRESS));
                        break;

                case FORMAT_RAW:
                        // Memory usage has already been checked in
                        // coder_set_compression_settings().
                        ret = lzma_raw_decoder(&strm, filters);
                        break;
                }

                // Try to decode the headers. This will catch too low
                // memory usage limit in case it happens in the first
                // Block of the first Stream, which is where it very
                // probably will happen if it is going to happen.
                if (ret == LZMA_OK && init_format != FORMAT_RAW) {
                        strm.next_out = NULL;
                        strm.avail_out = 0;
                        ret = lzma_code(&strm, LZMA_RUN);
                }
        }

        if (ret != LZMA_OK) {
                message_error("%s: %s", pair->src_name, message_strm(ret));
                if (ret == LZMA_MEMLIMIT_ERROR)
                        message_mem_needed(V_ERROR, lzma_memusage(&strm));

                return CODER_INIT_ERROR;
        }

        return CODER_INIT_NORMAL;
}


/// Compress or decompress using liblzma.
static bool
coder_normal(file_pair *pair)
{
        // Encoder needs to know when we have given all the input to it.
        // The decoders need to know it too when we are using
        // LZMA_CONCATENATED. We need to check for src_eof here, because
        // the first input chunk has been already read, and that may
        // have been the only chunk we will read.
        lzma_action action = pair->src_eof ? LZMA_FINISH : LZMA_RUN;

        lzma_ret ret;

        // Assume that something goes wrong.
        bool success = false;

        strm.next_out = out_buf.u8;
        strm.avail_out = IO_BUFFER_SIZE;

        while (!user_abort) {
                // Fill the input buffer if it is empty and we haven't reached
                // end of file yet.
                if (strm.avail_in == 0 && !pair->src_eof) {
                        strm.next_in = in_buf.u8;
                        strm.avail_in = io_read(
                                        pair, &in_buf, IO_BUFFER_SIZE);

                        if (strm.avail_in == SIZE_MAX)
                                break;

                        if (pair->src_eof)
                                action = LZMA_FINISH;
                }

                // Let liblzma do the actual work.
                ret = lzma_code(&strm, action);

                // Write out if the output buffer became full.
                if (strm.avail_out == 0) {
                        if (opt_mode != MODE_TEST && io_write(pair, &out_buf,
                                        IO_BUFFER_SIZE - strm.avail_out))
                                break;

                        strm.next_out = out_buf.u8;
                        strm.avail_out = IO_BUFFER_SIZE;
                }

                if (ret != LZMA_OK) {
                        // Determine if the return value indicates that we
                        // won't continue coding.
                        const bool stop = ret != LZMA_NO_CHECK
                                        && ret != LZMA_UNSUPPORTED_CHECK;

                        if (stop) {
                                // Write the remaining bytes even if something
                                // went wrong, because that way the user gets
                                // as much data as possible, which can be good
                                // when trying to get at least some useful
                                // data out of damaged files.
                                if (opt_mode != MODE_TEST && io_write(pair,
                                                &out_buf, IO_BUFFER_SIZE
                                                        - strm.avail_out))
                                        break;
                        }

                        if (ret == LZMA_STREAM_END) {
                                // Check that there is no trailing garbage.
                                // This is needed for LZMA_Alone and raw
                                // streams.
                                if (strm.avail_in == 0 && !pair->src_eof) {
                                        // Try reading one more byte.
                                        // Hopefully we don't get any more
                                        // input, and thus pair->src_eof
                                        // becomes true.
                                        strm.avail_in = io_read(
                                                        pair, &in_buf, 1);
                                        if (strm.avail_in == SIZE_MAX)
                                                break;

                                        assert(strm.avail_in == 0
                                                        || strm.avail_in == 1);
                                }

                                if (strm.avail_in == 0) {
                                        assert(pair->src_eof);
                                        success = true;
                                        break;
                                }

                                // We hadn't reached the end of the file.
                                ret = LZMA_DATA_ERROR;
                                assert(stop);
                        }

                        // If we get here and stop is true, something went
                        // wrong and we print an error. Otherwise it's just
                        // a warning and coding can continue.
                        if (stop) {
                                message_error("%s: %s", pair->src_name,
                                                message_strm(ret));
                        } else {
                                message_warning("%s: %s", pair->src_name,
                                                message_strm(ret));

                                // When compressing, all possible errors set
                                // stop to true.
                                assert(opt_mode != MODE_COMPRESS);
                        }

                        if (ret == LZMA_MEMLIMIT_ERROR) {
                                // Display how much memory it would have
                                // actually needed.
                                message_mem_needed(V_ERROR,
                                                lzma_memusage(&strm));
                        }

                        if (stop)
                                break;
                }

                // Show progress information under certain conditions.
                message_progress_update();
        }

        return success;
}


/// Copy from input file to output file without processing the data in any
/// way. This is used only when trying to decompress unrecognized files
/// with --decompress --stdout --force, so the output is always stdout.
static bool
coder_passthru(file_pair *pair)
{
        while (strm.avail_in != 0) {
                if (user_abort)
                        return false;

                if (io_write(pair, &in_buf, strm.avail_in))
                        return false;

                strm.total_in += strm.avail_in;
                strm.total_out = strm.total_in;
                message_progress_update();

                strm.avail_in = io_read(pair, &in_buf, IO_BUFFER_SIZE);
                if (strm.avail_in == SIZE_MAX)
                        return false;
        }

        return true;
}


extern void
coder_run(const char *filename)
{
        // Set and possibly print the filename for the progress message.
        message_filename(filename);

        // Try to open the input file.
        file_pair *pair = io_open_src(filename);
        if (pair == NULL)
                return;

        // Assume that something goes wrong.
        bool success = false;

        // Read the first chunk of input data. This is needed to detect
        // the input file type (for now, only for decompression).
        strm.next_in = in_buf.u8;
        strm.avail_in = io_read(pair, &in_buf, IO_BUFFER_SIZE);

        if (strm.avail_in != SIZE_MAX) {
                // Initialize the coder. This will detect the file format
                // and, in decompression or testing mode, check the memory
                // usage of the first Block too. This way we don't try to
                // open the destination file if we see that coding wouldn't
                // work at all anyway. This also avoids deleting the old
                // "target" file if --force was used.
                const enum coder_init_ret init_ret = coder_init(pair);

                if (init_ret != CODER_INIT_ERROR && !user_abort) {
                        // Don't open the destination file when --test
                        // is used.
                        if (opt_mode == MODE_TEST || !io_open_dest(pair)) {
                                // Initialize the progress indicator.
                                const uint64_t in_size
                                                = pair->src_st.st_size <= 0
                                                ? 0 : pair->src_st.st_size;
                                message_progress_start(&strm, in_size);

                                // Do the actual coding or passthru.
                                if (init_ret == CODER_INIT_NORMAL)
                                        success = coder_normal(pair);
                                else
                                        success = coder_passthru(pair);

                                message_progress_end(success);
                        }
                }
        }

        // Close the file pair. It needs to know if coding was successful to
        // know if the source or target file should be unlinked.
        io_close(pair, success);

        return;
}

/* [<][>][^][v][top][bottom][index][help] */