/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- MagickMin
- DecodeImage
- EncodeImage
- IsDIB
- MagickAbsoluteValue
- MagickMax
- ReadDIBImage
- RegisterDIBImage
- UnregisterDIBImage
- WriteDIBImage
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% DDDD IIIII BBBB %
% D D I B B %
% D D I BBBB %
% D D I B B %
% DDDD IIIII BBBB %
% %
% %
% Read/Write Windows DIB Image Format %
% %
% Software Design %
% John Cristy %
% July 1992 %
% %
% %
% Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/blob.h"
#include "magick/blob-private.h"
#include "magick/cache.h"
#include "magick/color.h"
#include "magick/color-private.h"
#include "magick/colormap.h"
#include "magick/colormap-private.h"
#include "magick/colorspace.h"
#include "magick/draw.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/geometry.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/list.h"
#include "magick/log.h"
#include "magick/magick.h"
#include "magick/memory_.h"
#include "magick/monitor.h"
#include "magick/monitor-private.h"
#include "magick/quantum-private.h"
#include "magick/static.h"
#include "magick/string_.h"
#include "magick/module.h"
#include "magick/transform.h"
/*
Typedef declarations.
*/
typedef struct _DIBInfo
{
size_t
size;
ssize_t
width,
height;
unsigned short
planes,
bits_per_pixel;
size_t
compression,
image_size,
x_pixels,
y_pixels,
number_colors,
red_mask,
green_mask,
blue_mask,
alpha_mask,
colors_important;
ssize_t
colorspace;
PointInfo
red_primary,
green_primary,
blue_primary,
gamma_scale;
} DIBInfo;
/*
Forward declarations.
*/
static MagickBooleanType
WriteDIBImage(const ImageInfo *,Image *);
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% D e c o d e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DecodeImage unpacks the packed image pixels into runlength-encoded
% pixel packets.
%
% The format of the DecodeImage method is:
%
% MagickBooleanType DecodeImage(Image *image,
% const MagickBooleanType compression,unsigned char *pixels)
%
% A description of each parameter follows:
%
% o image: the address of a structure of type Image.
%
% o compression: A value of 1 means the compressed pixels are runlength
% encoded for a 256-color bitmap. A value of 2 means a 16-color bitmap.
%
% o pixels: The address of a byte (8 bits) array of pixel data created by
% the decoding process.
%
*/
static inline size_t MagickMin(const size_t x,const size_t y)
{
if (x < y)
return(x);
return(y);
}
static MagickBooleanType DecodeImage(Image *image,
const MagickBooleanType compression,unsigned char *pixels)
{
#if !defined(MAGICKCORE_WINDOWS_SUPPORT) || defined(__MINGW32__)
#define BI_RGB 0
#define BI_RLE8 1
#define BI_RLE4 2
#define BI_BITFIELDS 3
#endif
int
count;
ssize_t
y;
register ssize_t
i,
x;
register unsigned char
*p,
*q;
unsigned char
byte;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(pixels != (unsigned char *) NULL);
(void) ResetMagickMemory(pixels,0,(size_t) image->columns*image->rows*
sizeof(*pixels));
byte=0;
x=0;
p=pixels;
q=pixels+(size_t) image->columns*image->rows;
for (y=0; y < (ssize_t) image->rows; )
{
if ((p < pixels) || (p >= q))
break;
count=ReadBlobByte(image);
if (count == EOF)
break;
if (count != 0)
{
count=(int) MagickMin((size_t) count,(size_t) (q-p));
/*
Encoded mode.
*/
byte=(unsigned char) ReadBlobByte(image);
if (compression == BI_RLE8)
{
for (i=0; i < count; i++)
*p++=(unsigned char) byte;
}
else
{
for (i=0; i < count; i++)
*p++=(unsigned char)
((i & 0x01) != 0 ? (byte & 0x0f) : ((byte >> 4) & 0x0f));
}
x+=count;
}
else
{
/*
Escape mode.
*/
count=ReadBlobByte(image);
if (count == 0x01)
return(MagickTrue);
switch (count)
{
case 0x00:
{
/*
End of line.
*/
x=0;
y++;
p=pixels+y*image->columns;
break;
}
case 0x02:
{
/*
Delta mode.
*/
x+=ReadBlobByte(image);
y+=ReadBlobByte(image);
p=pixels+y*image->columns+x;
break;
}
default:
{
/*
Absolute mode.
*/
count=(int) MagickMin((size_t) count,(size_t) (q-p));
if (compression == BI_RLE8)
for (i=0; i < count; i++)
*p++=(unsigned char) ReadBlobByte(image);
else
for (i=0; i < count; i++)
{
if ((i & 0x01) == 0)
byte=(unsigned char) ReadBlobByte(image);
*p++=(unsigned char)
((i & 0x01) != 0 ? (byte & 0x0f) : ((byte >> 4) & 0x0f));
}
x+=count;
/*
Read pad byte.
*/
if (compression == BI_RLE8)
{
if ((count & 0x01) != 0)
(void) ReadBlobByte(image);
}
else
if (((count & 0x03) == 1) || ((count & 0x03) == 2))
(void) ReadBlobByte(image);
break;
}
}
}
if (SetImageProgress(image,LoadImageTag,y,image->rows) == MagickFalse)
break;
}
(void) ReadBlobByte(image); /* end of line */
(void) ReadBlobByte(image);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% E n c o d e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EncodeImage compresses pixels using a runlength encoded format.
%
% The format of the EncodeImage method is:
%
% static MagickBooleanType EncodeImage(Image *image,
% const size_t bytes_per_line,const unsigned char *pixels,
% unsigned char *compressed_pixels)
%
% A description of each parameter follows:
%
% o image: The image.
%
% o bytes_per_line: the number of bytes in a scanline of compressed pixels
%
% o pixels: The address of a byte (8 bits) array of pixel data created by
% the compression process.
%
% o compressed_pixels: The address of a byte (8 bits) array of compressed
% pixel data.
%
*/
static size_t EncodeImage(Image *image,const size_t bytes_per_line,
const unsigned char *pixels,unsigned char *compressed_pixels)
{
ssize_t
y;
register const unsigned char
*p;
register ssize_t
i,
x;
register unsigned char
*q;
/*
Runlength encode pixels.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(pixels != (const unsigned char *) NULL);
assert(compressed_pixels != (unsigned char *) NULL);
p=pixels;
q=compressed_pixels;
i=0;
for (y=0; y < (ssize_t) image->rows; y++)
{
for (x=0; x < (ssize_t) bytes_per_line; x+=i)
{
/*
Determine runlength.
*/
for (i=1; ((x+i) < (ssize_t) bytes_per_line); i++)
if ((*(p+i) != *p) || (i == 255))
break;
*q++=(unsigned char) i;
*q++=(*p);
p+=i;
}
/*
End of line.
*/
*q++=0x00;
*q++=0x00;
if (SetImageProgress(image,LoadImageTag,y,image->rows) == MagickFalse)
break;
}
/*
End of bitmap.
*/
*q++=0;
*q++=0x01;
return((size_t) (q-compressed_pixels));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I s D I B %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% IsDIB() returns MagickTrue if the image format type, identified by the
% magick string, is DIB.
%
% The format of the IsDIB method is:
%
% MagickBooleanType IsDIB(const unsigned char *magick,const size_t length)
%
% A description of each parameter follows:
%
% o magick: compare image format pattern against these bytes.
%
% o length: Specifies the length of the magick string.
%
*/
static MagickBooleanType IsDIB(const unsigned char *magick,const size_t length)
{
if (length < 2)
return(MagickFalse);
if (memcmp(magick,"\050\000",2) == 0)
return(MagickTrue);
return(MagickFalse);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e a d D I B I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ReadDIBImage() reads a Microsoft Windows bitmap image file and
% returns it. It allocates the memory necessary for the new Image structure
% and returns a pointer to the new image.
%
% The format of the ReadDIBImage method is:
%
% image=ReadDIBImage(image_info)
%
% A description of each parameter follows:
%
% o image_info: the image info.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline ssize_t MagickAbsoluteValue(const ssize_t x)
{
if (x < 0)
return(-x);
return(x);
}
static inline size_t MagickMax(const size_t x,const size_t y)
{
if (x > y)
return(x);
return(y);
}
static Image *ReadDIBImage(const ImageInfo *image_info,ExceptionInfo *exception)
{
DIBInfo
dib_info;
Image
*image;
IndexPacket
index;
ssize_t
bit,
y;
MagickBooleanType
status;
register IndexPacket
*indexes;
register ssize_t
x;
register PixelPacket
*q;
register ssize_t
i;
register unsigned char
*p;
size_t
length;
ssize_t
count;
unsigned char
*pixels;
size_t
bytes_per_line;
/*
Open image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickSignature);
if (image_info->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
image_info->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickSignature);
image=AcquireImage(image_info);
status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
if (status == MagickFalse)
{
image=DestroyImageList(image);
return((Image *) NULL);
}
/*
Determine if this a DIB file.
*/
(void) ResetMagickMemory(&dib_info,0,sizeof(dib_info));
dib_info.size=ReadBlobLSBLong(image);
if (dib_info.size!=40)
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
/*
Microsoft Windows 3.X DIB image file.
*/
dib_info.width=(short) ReadBlobLSBLong(image);
dib_info.height=(short) ReadBlobLSBLong(image);
dib_info.planes=ReadBlobLSBShort(image);
dib_info.bits_per_pixel=ReadBlobLSBShort(image);
dib_info.compression=ReadBlobLSBLong(image);
dib_info.image_size=ReadBlobLSBLong(image);
dib_info.x_pixels=ReadBlobLSBLong(image);
dib_info.y_pixels=ReadBlobLSBLong(image);
dib_info.number_colors=ReadBlobLSBLong(image);
dib_info.colors_important=ReadBlobLSBLong(image);
if ((dib_info.compression == BI_BITFIELDS) &&
((dib_info.bits_per_pixel == 16) || (dib_info.bits_per_pixel == 32)))
{
dib_info.red_mask=ReadBlobLSBLong(image);
dib_info.green_mask=ReadBlobLSBLong(image);
dib_info.blue_mask=ReadBlobLSBLong(image);
}
image->matte=dib_info.bits_per_pixel == 32 ? MagickTrue : MagickFalse;
image->columns=(size_t) MagickAbsoluteValue(dib_info.width);
image->rows=(size_t) MagickAbsoluteValue(dib_info.height);
image->depth=8;
if ((dib_info.number_colors != 0) || (dib_info.bits_per_pixel < 16))
{
size_t
one;
image->storage_class=PseudoClass;
image->colors=dib_info.number_colors;
one=1;
if (image->colors == 0)
image->colors=one << dib_info.bits_per_pixel;
}
if (image_info->size)
{
RectangleInfo
geometry;
MagickStatusType
flags;
flags=ParseAbsoluteGeometry(image_info->size,&geometry);
if (flags & WidthValue)
if ((geometry.width != 0) && (geometry.width < image->columns))
image->columns=geometry.width;
if (flags & HeightValue)
if ((geometry.height != 0) && (geometry.height < image->rows))
image->rows=geometry.height;
}
if (image->storage_class == PseudoClass)
{
size_t
length,
packet_size;
unsigned char
*dib_colormap;
/*
Read DIB raster colormap.
*/
if (AcquireImageColormap(image,image->colors) == MagickFalse)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
length=(size_t) image->colors;
dib_colormap=(unsigned char *) AcquireQuantumMemory(length,
4*sizeof(*dib_colormap));
if (dib_colormap == (unsigned char *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
packet_size=4;
count=ReadBlob(image,packet_size*image->colors,dib_colormap);
if (count != (ssize_t) (packet_size*image->colors))
ThrowReaderException(CorruptImageError,"InsufficientImageDataInFile");
p=dib_colormap;
for (i=0; i < (ssize_t) image->colors; i++)
{
image->colormap[i].blue=ScaleCharToQuantum(*p++);
image->colormap[i].green=ScaleCharToQuantum(*p++);
image->colormap[i].red=ScaleCharToQuantum(*p++);
if (packet_size == 4)
p++;
}
dib_colormap=(unsigned char *) RelinquishMagickMemory(dib_colormap);
}
/*
Read image data.
*/
if (dib_info.compression == BI_RLE4)
dib_info.bits_per_pixel<<=1;
bytes_per_line=4*((image->columns*dib_info.bits_per_pixel+31)/32);
length=bytes_per_line*image->rows;
pixels=(unsigned char *) AcquireQuantumMemory((size_t) image->rows,
MagickMax(bytes_per_line,image->columns+256UL)*sizeof(*pixels));
if (pixels == (unsigned char *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
if ((dib_info.compression == BI_RGB) ||
(dib_info.compression == BI_BITFIELDS))
{
count=ReadBlob(image,length,pixels);
if (count != (ssize_t) (length))
ThrowReaderException(CorruptImageError,"InsufficientImageDataInFile");
}
else
{
/*
Convert run-length encoded raster pixels.
*/
status=DecodeImage(image,dib_info.compression ? MagickTrue : MagickFalse,
pixels);
if (status == MagickFalse)
ThrowReaderException(CorruptImageError,"UnableToRunlengthDecodeImage");
}
/*
Initialize image structure.
*/
image->units=PixelsPerCentimeterResolution;
image->x_resolution=(double) dib_info.x_pixels/100.0;
image->y_resolution=(double) dib_info.y_pixels/100.0;
/*
Convert DIB raster image to pixel packets.
*/
switch (dib_info.bits_per_pixel)
{
case 1:
{
/*
Convert bitmap scanline.
*/
for (y=(ssize_t) image->rows-1; y >= 0; y--)
{
p=pixels+(image->rows-y-1)*bytes_per_line;
q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
break;
indexes=GetAuthenticIndexQueue(image);
for (x=0; x < ((ssize_t) image->columns-7); x+=8)
{
for (bit=0; bit < 8; bit++)
{
index=(IndexPacket) ((*p) & (0x80 >> bit) ? 0x01 : 0x00);
indexes[x+bit]=index;
*q++=image->colormap[(ssize_t) index];
}
p++;
}
if ((image->columns % 8) != 0)
{
for (bit=0; bit < (ssize_t) (image->columns % 8); bit++)
{
index=(IndexPacket) ((*p) & (0x80 >> bit) ? 0x01 : 0x00);
indexes[x+bit]=index;
*q++=image->colormap[(ssize_t) index];
}
p++;
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,LoadImageTag,image->rows-y-1,
image->rows);
if (status == MagickFalse)
break;
}
}
break;
}
case 4:
{
/*
Convert PseudoColor scanline.
*/
for (y=(ssize_t) image->rows-1; y >= 0; y--)
{
p=pixels+(image->rows-y-1)*bytes_per_line;
q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
break;
indexes=GetAuthenticIndexQueue(image);
for (x=0; x < ((ssize_t) image->columns-1); x+=2)
{
index=ConstrainColormapIndex(image,(*p >> 4) & 0xf);
indexes[x]=index;
*q++=image->colormap[(ssize_t) index];
index=ConstrainColormapIndex(image,*p & 0xf);
indexes[x+1]=index;
*q++=image->colormap[(ssize_t) index];
p++;
}
if ((image->columns % 2) != 0)
{
index=ConstrainColormapIndex(image,(*p >> 4) & 0xf);
indexes[x]=index;
*q++=image->colormap[(ssize_t) index];
p++;
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,LoadImageTag,image->rows-y-1,
image->rows);
if (status == MagickFalse)
break;
}
}
break;
}
case 8:
{
/*
Convert PseudoColor scanline.
*/
if ((dib_info.compression == BI_RLE8) ||
(dib_info.compression == BI_RLE4))
bytes_per_line=image->columns;
for (y=(ssize_t) image->rows-1; y >= 0; y--)
{
p=pixels+(image->rows-y-1)*bytes_per_line;
q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
break;
indexes=GetAuthenticIndexQueue(image);
for (x=0; x < (ssize_t) image->columns; x++)
{
index=ConstrainColormapIndex(image,*p);
indexes[x]=index;
*q=image->colormap[(ssize_t) index];
p++;
q++;
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,LoadImageTag,image->rows-y-1,
image->rows);
if (status == MagickFalse)
break;
}
}
break;
}
case 16:
{
unsigned short
word;
/*
Convert PseudoColor scanline.
*/
image->storage_class=DirectClass;
if (dib_info.compression == BI_RLE8)
bytes_per_line=2*image->columns;
for (y=(ssize_t) image->rows-1; y >= 0; y--)
{
p=pixels+(image->rows-y-1)*bytes_per_line;
q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
word=(*p++);
word|=(*p++ << 8);
if (dib_info.red_mask == 0)
{
q->red=ScaleCharToQuantum(ScaleColor5to8((unsigned char)
((word >> 10) & 0x1f)));
q->green=ScaleCharToQuantum(ScaleColor5to8((unsigned char)
((word >> 5) & 0x1f)));
q->blue=ScaleCharToQuantum(ScaleColor5to8((unsigned char)
(word & 0x1f)));
}
else
{
q->red=ScaleCharToQuantum(ScaleColor5to8((unsigned char)
((word >> 11) & 0x1f)));
q->green=ScaleCharToQuantum(ScaleColor6to8((unsigned char)
((word >> 5) & 0x3f)));
q->blue=ScaleCharToQuantum(ScaleColor5to8((unsigned char)
(word & 0x1f)));
}
q++;
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,LoadImageTag,image->rows-y-1,
image->rows);
if (status == MagickFalse)
break;
}
}
break;
}
case 24:
case 32:
{
/*
Convert DirectColor scanline.
*/
for (y=(ssize_t) image->rows-1; y >= 0; y--)
{
p=pixels+(image->rows-y-1)*bytes_per_line;
q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) image->columns; x++)
{
q->blue=ScaleCharToQuantum(*p++);
q->green=ScaleCharToQuantum(*p++);
q->red=ScaleCharToQuantum(*p++);
if (image->matte != MagickFalse)
q->opacity=ScaleCharToQuantum(*p++);
q++;
}
if (SyncAuthenticPixels(image,exception) == MagickFalse)
break;
if (image->previous == (Image *) NULL)
{
status=SetImageProgress(image,LoadImageTag,image->rows-y-1,
image->rows);
if (status == MagickFalse)
break;
}
}
break;
}
default:
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
}
pixels=(unsigned char *) RelinquishMagickMemory(pixels);
if (EOFBlob(image) != MagickFalse)
ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile",
image->filename);
if (dib_info.height < 0)
{
Image
*flipped_image;
/*
Correct image orientation.
*/
flipped_image=FlipImage(image,exception);
if (flipped_image != (Image *) NULL)
{
DuplicateBlob(flipped_image,image);
image=DestroyImage(image);
image=flipped_image;
}
}
(void) CloseBlob(image);
return(GetFirstImageInList(image));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% R e g i s t e r D I B I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% RegisterDIBImage() adds attributes for the DIB image format to
% the list of supported formats. The attributes include the image format
% tag, a method to read and/or write the format, whether the format
% supports the saving of more than one frame to the same file or blob,
% whether the format supports native in-memory I/O, and a brief
% description of the format.
%
% The format of the RegisterDIBImage method is:
%
% size_t RegisterDIBImage(void)
%
*/
ModuleExport size_t RegisterDIBImage(void)
{
MagickInfo
*entry;
entry=SetMagickInfo("DIB");
entry->decoder=(DecodeImageHandler *) ReadDIBImage;
entry->encoder=(EncodeImageHandler *) WriteDIBImage;
entry->magick=(IsImageFormatHandler *) IsDIB;
entry->adjoin=MagickFalse;
entry->stealth=MagickTrue;
entry->description=ConstantString(
"Microsoft Windows 3.X Packed Device-Independent Bitmap");
entry->module=ConstantString("DIB");
(void) RegisterMagickInfo(entry);
return(MagickImageCoderSignature);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% U n r e g i s t e r D I B I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% UnregisterDIBImage() removes format registrations made by the
% DIB module from the list of supported formats.
%
% The format of the UnregisterDIBImage method is:
%
% UnregisterDIBImage(void)
%
*/
ModuleExport void UnregisterDIBImage(void)
{
(void) UnregisterMagickInfo("DIB");
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% W r i t e D I B I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% WriteDIBImage() writes an image in Microsoft Windows bitmap encoded
% image format.
%
% The format of the WriteDIBImage method is:
%
% MagickBooleanType WriteDIBImage(const ImageInfo *image_info,Image *image)
%
% A description of each parameter follows.
%
% o image_info: the image info.
%
% o image: The image.
%
*/
static MagickBooleanType WriteDIBImage(const ImageInfo *image_info,Image *image)
{
DIBInfo
dib_info;
ssize_t
y;
MagickBooleanType
status;
register const IndexPacket
*indexes;
register const PixelPacket
*p;
register ssize_t
i,
x;
register unsigned char
*q;
unsigned char
*dib_data,
*pixels;
size_t
bytes_per_line;
/*
Open output image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickSignature);
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
status=OpenBlob(image_info,image,WriteBinaryBlobMode,&image->exception);
if (status == MagickFalse)
return(status);
/*
Initialize DIB raster file header.
*/
if (image->colorspace != RGBColorspace)
(void) TransformImageColorspace(image,RGBColorspace);
if (image->storage_class == DirectClass)
{
/*
Full color DIB raster.
*/
dib_info.number_colors=0;
dib_info.bits_per_pixel=(unsigned short) (image->matte ? 32 : 24);
}
else
{
/*
Colormapped DIB raster.
*/
dib_info.bits_per_pixel=8;
if (image_info->depth > 8)
dib_info.bits_per_pixel=16;
if (IsMonochromeImage(image,&image->exception) != MagickFalse)
dib_info.bits_per_pixel=1;
dib_info.number_colors=(dib_info.bits_per_pixel == 16) ? 0 :
(1UL << dib_info.bits_per_pixel);
}
bytes_per_line=4*((image->columns*dib_info.bits_per_pixel+31)/32);
dib_info.size=40;
dib_info.width=(ssize_t) image->columns;
dib_info.height=(ssize_t) image->rows;
dib_info.planes=1;
dib_info.compression=(size_t) (dib_info.bits_per_pixel == 16 ?
BI_BITFIELDS : BI_RGB);
dib_info.image_size=bytes_per_line*image->rows;
dib_info.x_pixels=75*39;
dib_info.y_pixels=75*39;
switch (image->units)
{
case UndefinedResolution:
case PixelsPerInchResolution:
{
dib_info.x_pixels=(size_t) (100.0*image->x_resolution/2.54);
dib_info.y_pixels=(size_t) (100.0*image->y_resolution/2.54);
break;
}
case PixelsPerCentimeterResolution:
{
dib_info.x_pixels=(size_t) (100.0*image->x_resolution);
dib_info.y_pixels=(size_t) (100.0*image->y_resolution);
break;
}
}
dib_info.colors_important=dib_info.number_colors;
/*
Convert MIFF to DIB raster pixels.
*/
pixels=(unsigned char *) AcquireQuantumMemory(dib_info.image_size,
sizeof(*pixels));
if (pixels == (unsigned char *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
(void) ResetMagickMemory(pixels,0,dib_info.image_size);
switch (dib_info.bits_per_pixel)
{
case 1:
{
register unsigned char
bit,
byte;
/*
Convert PseudoClass image to a DIB monochrome image.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetVirtualIndexQueue(image);
q=pixels+(image->rows-y-1)*bytes_per_line;
bit=0;
byte=0;
for (x=0; x < (ssize_t) image->columns; x++)
{
byte<<=1;
byte|=indexes[x] != 0 ? 0x01 : 0x00;
bit++;
if (bit == 8)
{
*q++=byte;
bit=0;
byte=0;
}
p++;
}
if (bit != 0)
{
*q++=(unsigned char) (byte << (8-bit));
x++;
}
for (x=(ssize_t) (image->columns+7)/8; x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
break;
}
case 8:
{
/*
Convert PseudoClass packet to DIB pixel.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetVirtualIndexQueue(image);
q=pixels+(image->rows-y-1)*bytes_per_line;
for (x=0; x < (ssize_t) image->columns; x++)
*q++=(unsigned char) indexes[x];
for ( ; x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
break;
}
case 16:
{
unsigned short
word;
/*
Convert PseudoClass packet to DIB pixel.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
q=pixels+(image->rows-y-1)*bytes_per_line;
for (x=0; x < (ssize_t) image->columns; x++)
{
word=(unsigned short) ((ScaleColor8to5((unsigned char)
ScaleQuantumToChar(GetRedPixelComponent(p))) << 11) | (ScaleColor8to6((unsigned char)
ScaleQuantumToChar(GetGreenPixelComponent(p))) << 5) | (ScaleColor8to5(
(unsigned char) ScaleQuantumToChar((unsigned char) GetBluePixelComponent(p)) << 0)));
*q++=(unsigned char)(word & 0xff);
*q++=(unsigned char)(word >> 8);
p++;
}
for (x=(ssize_t) (2*image->columns); x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
break;
}
case 24:
case 32:
{
/*
Convert DirectClass packet to DIB RGB pixel.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
q=pixels+(image->rows-y-1)*bytes_per_line;
for (x=0; x < (ssize_t) image->columns; x++)
{
*q++=ScaleQuantumToChar(GetBluePixelComponent(p));
*q++=ScaleQuantumToChar(GetGreenPixelComponent(p));
*q++=ScaleQuantumToChar(GetRedPixelComponent(p));
if (image->matte != MagickFalse)
*q++=ScaleQuantumToChar(GetOpacityPixelComponent(p));
p++;
}
if (dib_info.bits_per_pixel == 24)
for (x=(ssize_t) (3*image->columns); x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
break;
}
}
if (dib_info.bits_per_pixel == 8)
if (image_info->compression != NoCompression)
{
size_t
length;
/*
Convert run-length encoded raster pixels.
*/
length=2UL*(bytes_per_line+2UL)+2UL;
dib_data=(unsigned char *) AcquireQuantumMemory(length,
(image->rows+2UL)*sizeof(*dib_data));
if (pixels == (unsigned char *) NULL)
{
pixels=(unsigned char *) RelinquishMagickMemory(pixels);
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
}
dib_info.image_size=(size_t) EncodeImage(image,bytes_per_line,
pixels,dib_data);
pixels=(unsigned char *) RelinquishMagickMemory(pixels);
pixels=dib_data;
dib_info.compression = BI_RLE8;
}
/*
Write DIB header.
*/
(void) WriteBlobLSBLong(image,(unsigned int) dib_info.size);
(void) WriteBlobLSBLong(image,dib_info.width);
(void) WriteBlobLSBLong(image,(unsigned short) dib_info.height);
(void) WriteBlobLSBShort(image,(unsigned short) dib_info.planes);
(void) WriteBlobLSBShort(image,dib_info.bits_per_pixel);
(void) WriteBlobLSBLong(image,(unsigned int) dib_info.compression);
(void) WriteBlobLSBLong(image,(unsigned int) dib_info.image_size);
(void) WriteBlobLSBLong(image,(unsigned int) dib_info.x_pixels);
(void) WriteBlobLSBLong(image,(unsigned int) dib_info.y_pixels);
(void) WriteBlobLSBLong(image,(unsigned int) dib_info.number_colors);
(void) WriteBlobLSBLong(image,(unsigned int) dib_info.colors_important);
if (image->storage_class == PseudoClass)
{
if (dib_info.bits_per_pixel <= 8)
{
unsigned char
*dib_colormap;
/*
Dump colormap to file.
*/
dib_colormap=(unsigned char *) AcquireQuantumMemory((size_t)
(1UL << dib_info.bits_per_pixel),4*sizeof(dib_colormap));
if (dib_colormap == (unsigned char *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
q=dib_colormap;
for (i=0; i < (ssize_t) MagickMin(image->colors,dib_info.number_colors); i++)
{
*q++=ScaleQuantumToChar(image->colormap[i].blue);
*q++=ScaleQuantumToChar(image->colormap[i].green);
*q++=ScaleQuantumToChar(image->colormap[i].red);
*q++=(Quantum) 0x0;
}
for ( ; i < (ssize_t) (1L << dib_info.bits_per_pixel); i++)
{
*q++=(Quantum) 0x0;
*q++=(Quantum) 0x0;
*q++=(Quantum) 0x0;
*q++=(Quantum) 0x0;
}
(void) WriteBlob(image,(size_t) (4*(1 << dib_info.bits_per_pixel)),
dib_colormap);
dib_colormap=(unsigned char *) RelinquishMagickMemory(dib_colormap);
}
else
if ((dib_info.bits_per_pixel == 16) &&
(dib_info.compression == BI_BITFIELDS))
{
(void) WriteBlobLSBLong(image,0xf800);
(void) WriteBlobLSBLong(image,0x07e0);
(void) WriteBlobLSBLong(image,0x001f);
}
}
(void) WriteBlob(image,dib_info.image_size,pixels);
pixels=(unsigned char *) RelinquishMagickMemory(pixels);
(void) CloseBlob(image);
return(MagickTrue);
}