/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- classType
- columns
- lineWidth
- lineWidth
- reduceNoise
- rows
// This may look like C code, but it is really -*- C++ -*-
//
// Copyright Bob Friesenhahn, 1999, 2000, 2001, 2002, 2003
// Copyright Dirk Lemstra 2013-2015
//
// Definition of Image, the representation of a single image in Magick++
//
#if !defined(Magick_Image_header)
#define Magick_Image_header
#include "Magick++/Include.h"
#include <string>
#include <list>
#include "Magick++/Blob.h"
#include "Magick++/ChannelMoments.h"
#include "Magick++/Color.h"
#include "Magick++/Drawable.h"
#include "Magick++/Exception.h"
#include "Magick++/Geometry.h"
#include "Magick++/TypeMetric.h"
namespace Magick
{
// Forward declarations
class Options;
class ImageRef;
extern MagickPPExport const char *borderGeometryDefault;
extern MagickPPExport const char *frameGeometryDefault;
extern MagickPPExport const char *raiseGeometryDefault;
// Compare two Image objects regardless of LHS/RHS
// Image sizes and signatures are used as basis of comparison
MagickPPExport int operator ==
(const Magick::Image &left_,const Magick::Image &right_);
MagickPPExport int operator !=
(const Magick::Image &left_,const Magick::Image &right_);
MagickPPExport int operator >
(const Magick::Image &left_,const Magick::Image &right_);
MagickPPExport int operator <
(const Magick::Image &left_,const Magick::Image &right_);
MagickPPExport int operator >=
(const Magick::Image &left_,const Magick::Image &right_);
MagickPPExport int operator <=
(const Magick::Image &left_,const Magick::Image &right_);
//
// Image is the representation of an image. In reality, it actually
// a handle object which contains a pointer to a shared reference
// object (ImageRef). As such, this object is extremely space efficient.
//
class MagickPPExport Image
{
public:
// Obtain image statistics. Statistics are normalized to the range
// of 0.0 to 1.0 and are output to the specified ImageStatistics
// structure.
typedef struct _ImageChannelStatistics
{
/* Minimum value observed */
double maximum;
/* Maximum value observed */
double minimum;
/* Average (mean) value observed */
double mean;
/* Standard deviation, sqrt(variance) */
double standard_deviation;
/* Variance */
double variance;
/* Kurtosis */
double kurtosis;
/* Skewness */
double skewness;
} ImageChannelStatistics;
typedef struct _ImageStatistics
{
ImageChannelStatistics red;
ImageChannelStatistics green;
ImageChannelStatistics blue;
ImageChannelStatistics opacity;
} ImageStatistics;
// Default constructor
Image(void);
// Construct Image from in-memory BLOB
Image(const Blob &blob_);
// Construct Image of specified size from in-memory BLOB
Image(const Blob &blob_,const Geometry &size_);
// Construct Image of specified size and depth from in-memory BLOB
Image(const Blob &blob_,const Geometry &size,const size_t depth);
// Construct Image of specified size, depth, and format from
// in-memory BLOB
Image(const Blob &blob_,const Geometry &size,const size_t depth_,
const std::string &magick_);
// Construct Image of specified size, and format from in-memory BLOB
Image(const Blob &blob_,const Geometry &size,const std::string &magick_);
// Construct a blank image canvas of specified size and color
Image(const Geometry &size_,const Color &color_);
// Copy constructor
Image(const Image &image_);
// Construct an image based on an array of raw pixels, of
// specified type and mapping, in memory
Image(const size_t width_,const size_t height_,const std::string &map_,
const StorageType type_,const void *pixels_);
// Construct from image file or image specification
Image(const std::string &imageSpec_);
// Destructor
virtual ~Image();
// Assignment operator
Image& operator=(const Image &image_);
// Join images into a single multi-image file
void adjoin(const bool flag_);
bool adjoin(void) const;
// Anti-alias Postscript and TrueType fonts (default true)
void antiAlias(const bool flag_);
bool antiAlias(void) const;
// Time in 1/100ths of a second which must expire before
// displaying the next image in an animated sequence.
void animationDelay(const size_t delay_);
size_t animationDelay(void) const;
// Number of iterations to loop an animation (e.g. Netscape loop
// extension) for.
void animationIterations(const size_t iterations_);
size_t animationIterations(void) const;
// Lessen (or intensify) when adding noise to an image.
void attenuate(const double attenuate_);
// Image background color
void backgroundColor(const Color &color_);
Color backgroundColor(void) const;
// Name of texture image to tile onto the image background
void backgroundTexture(const std::string &backgroundTexture_);
std::string backgroundTexture(void) const;
// Base image width (before transformations)
size_t baseColumns(void) const;
// Base image filename (before transformations)
std::string baseFilename(void) const;
// Base image height (before transformations)
size_t baseRows(void) const;
// Use black point compensation.
void blackPointCompensation(const bool flag_);
bool blackPointCompensation(void) const;
// Image border color
void borderColor(const Color &color_);
Color borderColor(void) const;
// Return smallest bounding box enclosing non-border pixels. The
// current fuzz value is used when discriminating between pixels.
// This is the crop bounding box used by crop(Geometry(0,0));
Geometry boundingBox(void) const;
// Text bounding-box base color (default none)
void boxColor(const Color &boxColor_);
Color boxColor(void) const;
// This method is now deprecated. Please use ResourceLimits instead.
static void cacheThreshold(const size_t threshold_);
// Image class (DirectClass or PseudoClass)
// NOTE: setting a DirectClass image to PseudoClass will result in
// the loss of color information if the number of colors in the
// image is greater than the maximum palette size (either 256 or
// 65536 entries depending on the value of MAGICKCORE_QUANTUM_DEPTH when
// ImageMagick was built).
void classType(const ClassType class_);
ClassType classType(void) const;
// Associate a clip mask with the image. The clip mask must be the
// same dimensions as the image. Pass an invalid image to unset an
// existing clip mask.
void clipMask(const Image &clipMask_);
Image clipMask(void) const;
// Colors within this distance are considered equal
void colorFuzz(const double fuzz_);
double colorFuzz(void) const;
// Colormap size (number of colormap entries)
void colorMapSize(const size_t entries_);
size_t colorMapSize(void) const;
// Image Color Space
void colorSpace(const ColorspaceType colorSpace_);
ColorspaceType colorSpace(void) const;
void colorspaceType(const ColorspaceType colorSpace_);
ColorspaceType colorspaceType(void) const;
// Image width
size_t columns(void) const;
// Comment image (add comment string to image)
void comment(const std::string &comment_);
std::string comment(void) const;
// Composition operator to be used when composition is implicitly
// used (such as for image flattening).
void compose(const CompositeOperator compose_);
CompositeOperator compose(void) const;
// Compression type
void compressType(const CompressionType compressType_);
CompressionType compressType(void) const;
// Enable printing of debug messages from ImageMagick
void debug(const bool flag_);
bool debug(void) const;
// Vertical and horizontal resolution in pixels of the image
void density(const Geometry &geomery_);
Geometry density(void) const;
// Image depth (bits allocated to red/green/blue components)
void depth(const size_t depth_);
size_t depth(void) const;
// Tile names from within an image montage
std::string directory(void) const;
// Endianness (little like Intel or big like SPARC) for image
// formats which support endian-specific options.
void endian(const EndianType endian_);
EndianType endian(void) const;
// Exif profile (BLOB)
void exifProfile(const Blob &exifProfile_);
Blob exifProfile(void) const;
// Image file name
void fileName(const std::string &fileName_);
std::string fileName(void) const;
// Number of bytes of the image on disk
off_t fileSize(void) const;
// Color to use when filling drawn objects
void fillColor(const Color &fillColor_);
Color fillColor(void) const;
// Rule to use when filling drawn objects
void fillRule(const FillRule &fillRule_);
FillRule fillRule(void) const;
// Pattern to use while filling drawn objects.
void fillPattern(const Image &fillPattern_);
Image fillPattern(void) const;
// Filter to use when resizing image
void filterType(const FilterTypes filterType_);
FilterTypes filterType(void) const;
// Text rendering font
void font(const std::string &font_);
std::string font(void) const;
// Font point size
void fontPointsize(const double pointSize_);
double fontPointsize(void) const;
// Long image format description
std::string format(void) const;
// Formats the specified expression
// More info here: http://www.imagemagick.org/script/escape.php
std::string formatExpression(const std::string expression);
// Gamma level of the image
double gamma(void) const;
// Preferred size of the image when encoding
Geometry geometry(void) const;
// GIF disposal method
void gifDisposeMethod(const size_t disposeMethod_);
size_t gifDisposeMethod(void) const;
// When comparing images, emphasize pixel differences with this color.
void highlightColor(const Color color_);
// ICC color profile (BLOB)
void iccColorProfile(const Blob &colorProfile_);
Blob iccColorProfile(void) const;
// Type of interlacing to use
void interlaceType(const InterlaceType interlace_);
InterlaceType interlaceType(void) const;
// Pixel color interpolation method to use
void interpolate(const InterpolatePixelMethod interpolate_);
InterpolatePixelMethod interpolate(void) const;
// IPTC profile (BLOB)
void iptcProfile(const Blob &iptcProfile_);
Blob iptcProfile(void) const;
// Returns true if none of the pixels in the image have an alpha value
// other than OpaqueAlpha (QuantumRange).
bool isOpaque(void) const;
// Does object contain valid image?
void isValid(const bool isValid_);
bool isValid(void) const;
// Image label
void label(const std::string &label_);
std::string label(void) const;
// Stroke width for drawing vector objects (default one)
// This method is now deprecated. Please use strokeWidth instead.
void lineWidth(const double lineWidth_);
double lineWidth(void) const;
// When comparing images, de-emphasize pixel differences with this color.
void lowlightColor(const Color color_);
// File type magick identifier (.e.g "GIF")
void magick(const std::string &magick_);
std::string magick(void) const;
// Associate a mask with the image. The mask must be the same dimensions
// as the image. Pass an invalid image to unset an existing clip mask.
void mask(const Image &mask_);
Image mask(void) const;
// Image supports transparency (matte channel)
void matte(const bool matteFlag_);
bool matte(void) const;
// Transparent color
void matteColor(const Color &matteColor_);
Color matteColor(void) const;
// The mean error per pixel computed when an image is color reduced
double meanErrorPerPixel(void) const;
// Image modulus depth (minimum number of bits required to support
// red/green/blue components without loss of accuracy)
void modulusDepth(const size_t modulusDepth_);
size_t modulusDepth(void) const;
// Transform image to black and white
void monochrome(const bool monochromeFlag_);
bool monochrome(void) const;
// Tile size and offset within an image montage
Geometry montageGeometry(void) const;
// The normalized max error per pixel computed when an image is
// color reduced.
double normalizedMaxError(void) const;
// The normalized mean error per pixel computed when an image is
// color reduced.
double normalizedMeanError(void) const;
// Image orientation
void orientation(const OrientationType orientation_);
OrientationType orientation(void) const;
// Preferred size and location of an image canvas.
void page(const Geometry &pageSize_);
Geometry page(void) const;
// Pen color (deprecated, don't use any more)
void penColor(const Color &penColor_);
Color penColor(void) const;
// Pen texture image (deprecated, don't use any more)
void penTexture(const Image &penTexture_);
Image penTexture(void) const;
// JPEG/MIFF/PNG compression level (default 75).
void quality(const size_t quality_);
size_t quality(void) const;
// Maximum number of colors to quantize to
void quantizeColors(const size_t colors_);
size_t quantizeColors(void) const;
// Colorspace to quantize in.
void quantizeColorSpace(const ColorspaceType colorSpace_);
ColorspaceType quantizeColorSpace(void) const;
// Dither image during quantization (default true).
void quantizeDither(const bool ditherFlag_);
bool quantizeDither(void) const;
// Dither method
void quantizeDitherMethod(const DitherMethod ditherMethod_);
DitherMethod quantizeDitherMethod(void) const;
// Quantization tree-depth
void quantizeTreeDepth(const size_t treeDepth_);
size_t quantizeTreeDepth(void) const;
// Suppress all warning messages. Error messages are still reported.
void quiet(const bool quiet_);
bool quiet(void) const;
// The type of rendering intent
void renderingIntent(const RenderingIntent renderingIntent_);
RenderingIntent renderingIntent(void) const;
// Units of image resolution
void resolutionUnits(const ResolutionType resolutionUnits_);
ResolutionType resolutionUnits(void) const;
// The number of pixel rows in the image
size_t rows(void) const;
// Image scene number
void scene(const size_t scene_);
size_t scene(void) const;
// Width and height of a raw image
void size(const Geometry &geometry_);
Geometry size(void) const;
// enabled/disable stroke anti-aliasing
void strokeAntiAlias(const bool flag_);
bool strokeAntiAlias(void) const;
// Color to use when drawing object outlines
void strokeColor(const Color &strokeColor_);
Color strokeColor(void) const;
// Specify the pattern of dashes and gaps used to stroke
// paths. The strokeDashArray represents a zero-terminated array
// of numbers that specify the lengths of alternating dashes and
// gaps in pixels. If an odd number of values is provided, then
// the list of values is repeated to yield an even number of
// values. A typical strokeDashArray_ array might contain the
// members 5 3 2 0, where the zero value indicates the end of the
// pattern array.
void strokeDashArray(const double *strokeDashArray_);
const double *strokeDashArray(void) const;
// While drawing using a dash pattern, specify distance into the
// dash pattern to start the dash (default 0).
void strokeDashOffset(const double strokeDashOffset_);
double strokeDashOffset(void) const;
// Specify the shape to be used at the end of open subpaths when
// they are stroked. Values of LineCap are UndefinedCap, ButtCap,
// RoundCap, and SquareCap.
void strokeLineCap(const LineCap lineCap_);
LineCap strokeLineCap(void) const;
// Specify the shape to be used at the corners of paths (or other
// vector shapes) when they are stroked. Values of LineJoin are
// UndefinedJoin, MiterJoin, RoundJoin, and BevelJoin.
void strokeLineJoin(const LineJoin lineJoin_);
LineJoin strokeLineJoin(void) const;
// Specify miter limit. When two line segments meet at a sharp
// angle and miter joins have been specified for 'lineJoin', it is
// possible for the miter to extend far beyond the thickness of
// the line stroking the path. The miterLimit' imposes a limit on
// the ratio of the miter length to the 'lineWidth'. The default
// value of this parameter is 4.
void strokeMiterLimit(const size_t miterLimit_);
size_t strokeMiterLimit(void) const;
// Pattern image to use while stroking object outlines.
void strokePattern(const Image &strokePattern_);
Image strokePattern(void) const;
// Stroke width for drawing vector objects (default one)
void strokeWidth(const double strokeWidth_);
double strokeWidth(void) const;
// Subimage of an image sequence
void subImage(const size_t subImage_);
size_t subImage(void) const;
// Number of images relative to the base image
void subRange(const size_t subRange_);
size_t subRange(void) const;
// Render text right-to-left or left-to-right.
void textDirection(DirectionType direction_);
DirectionType textDirection() const;
// Annotation text encoding (e.g. "UTF-16")
void textEncoding(const std::string &encoding_);
std::string textEncoding(void) const;
// Text gravity.
void textGravity(GravityType gravity_);
GravityType textGravity() const;
// Text inter-line spacing
void textInterlineSpacing(double spacing_);
double textInterlineSpacing(void) const;
// Text inter-word spacing
void textInterwordSpacing(double spacing_);
double textInterwordSpacing(void) const;
// Text inter-character kerning
void textKerning(double kerning_);
double textKerning(void) const;
// Tile name
void tileName(const std::string &tileName_);
std::string tileName(void) const;
// Number of colors in the image
size_t totalColors(void) const;
// Rotation to use when annotating with text or drawing
void transformRotation(const double angle_);
// Skew to use in X axis when annotating with text or drawing
void transformSkewX(const double skewx_);
// Skew to use in Y axis when annotating with text or drawing
void transformSkewY(const double skewy_);
// Image representation type (also see type operation)
// Available types:
// Bilevel Grayscale GrayscaleMatte
// Palette PaletteMatte TrueColor
// TrueColorMatte ColorSeparation ColorSeparationMatte
void type(const ImageType type_);
ImageType type(void) const;
// Print detailed information about the image
void verbose(const bool verboseFlag_);
bool verbose(void) const;
// FlashPix viewing parameters
void view(const std::string &view_);
std::string view(void) const;
// Virtual pixel method
void virtualPixelMethod(const VirtualPixelMethod virtual_pixel_method_);
VirtualPixelMethod virtualPixelMethod(void) const;
// X11 display to display to, obtain fonts from, or to capture
// image from
void x11Display(const std::string &display_);
std::string x11Display(void) const;
// x resolution of the image
double xResolution(void) const;
// y resolution of the image
double yResolution(void) const;
// Adaptive-blur image with specified blur factor
// The radius_ parameter specifies the radius of the Gaussian, in
// pixels, not counting the center pixel. The sigma_ parameter
// specifies the standard deviation of the Laplacian, in pixels.
void adaptiveBlur(const double radius_=0.0,const double sigma_=1.0);
// This is shortcut function for a fast interpolative resize using mesh
// interpolation. It works well for small resizes of less than +/- 50%
// of the original image size. For larger resizing on images a full
// filtered and slower resize function should be used instead.
void adaptiveResize(const Geometry &geometry_);
// Adaptively sharpens the image by sharpening more intensely near image
// edges and less intensely far from edges. We sharpen the image with a
// Gaussian operator of the given radius and standard deviation (sigma).
// For reasonable results, radius should be larger than sigma.
void adaptiveSharpen(const double radius_=0.0,const double sigma_=1.0);
void adaptiveSharpenChannel(const ChannelType channel_,
const double radius_=0.0,const double sigma_=1.0);
// Local adaptive threshold image
// http://www.dai.ed.ac.uk/HIPR2/adpthrsh.htm
// Width x height define the size of the pixel neighborhood
// offset = constant to subtract from pixel neighborhood mean
void adaptiveThreshold(const size_t width,const size_t height,
const ::ssize_t offset=0);
// Add noise to image with specified noise type
void addNoise(const NoiseType noiseType_);
void addNoiseChannel(const ChannelType channel_,
const NoiseType noiseType_);
// Transform image by specified affine (or free transform) matrix.
void affineTransform(const DrawableAffine &affine);
// Activates, deactivates, resets, or sets the alpha channel.
void alphaChannel(AlphaChannelType alphaType_);
//
// Annotate image (draw text on image)
//
// Gravity effects text placement in bounding area according to rules:
// NorthWestGravity text bottom-left corner placed at top-left
// NorthGravity text bottom-center placed at top-center
// NorthEastGravity text bottom-right corner placed at top-right
// WestGravity text left-center placed at left-center
// CenterGravity text center placed at center
// EastGravity text right-center placed at right-center
// SouthWestGravity text top-left placed at bottom-left
// SouthGravity text top-center placed at bottom-center
// SouthEastGravity text top-right placed at bottom-right
// Annotate using specified text, and placement location
void annotate(const std::string &text_,const Geometry &location_);
// Annotate using specified text, bounding area, and placement
// gravity
void annotate(const std::string &text_,const Geometry &boundingArea_,
const GravityType gravity_);
// Annotate with text using specified text, bounding area,
// placement gravity, and rotation.
void annotate(const std::string &text_,const Geometry &boundingArea_,
const GravityType gravity_,const double degrees_);
// Annotate with text (bounding area is entire image) and placement
// gravity.
void annotate(const std::string &text_,const GravityType gravity_);
// Inserts the artifact with the specified name and value into
// the artifact tree of the image.
void artifact(const std::string &name_,const std::string &value_);
// Returns the value of the artifact with the specified name.
std::string artifact(const std::string &name_) const;
// Access/Update a named image attribute
void attribute(const std::string name_,const std::string value_);
std::string attribute(const std::string name_ ) const;
// Extracts the 'mean' from the image and adjust the image to try
// make set its gamma appropriatally.
void autoGamma(void);
void autoGammaChannel(const ChannelType channel_);
// Adjusts the levels of a particular image channel by scaling the
// minimum and maximum values to the full quantum range.
void autoLevel(void);
void autoLevelChannel(const ChannelType channel_);
// Adjusts an image so that its orientation is suitable for viewing.
void autoOrient(void);
// Forces all pixels below the threshold into black while leaving all
// pixels at or above the threshold unchanged.
void blackThreshold(const std::string &threshold_);
void blackThresholdChannel(const ChannelType channel_,
const std::string &threshold_);
// Simulate a scene at nighttime in the moonlight.
void blueShift(const double factor_=1.5);
// Blur image with specified blur factor
// The radius_ parameter specifies the radius of the Gaussian, in
// pixels, not counting the center pixel. The sigma_ parameter
// specifies the standard deviation of the Laplacian, in pixels.
void blur(const double radius_=0.0,const double sigma_=1.0);
void blurChannel(const ChannelType channel_,const double radius_=0.0,
const double sigma_=1.0);
// Border image (add border to image)
void border(const Geometry &geometry_=borderGeometryDefault);
// Changes the brightness and/or contrast of an image. It converts the
// brightness and contrast parameters into slope and intercept and calls
// a polynomical function to apply to the image.
void brightnessContrast(const double brightness_=0.0,
const double contrast_=0.0);
void brightnessContrastChannel(const ChannelType channel_,
const double brightness_=0.0,const double contrast_=0.0);
// Uses a multi-stage algorithm to detect a wide range of edges in images.
void cannyEdge(const double radius_=0.0,const double sigma_=1.0,
const double lowerPercent_=0.1,const double upperPercent_=0.3);
// Accepts a lightweight Color Correction Collection
// (CCC) file which solely contains one or more color corrections and
// applies the correction to the image.
void cdl(const std::string &cdl_);
// Extract channel from image
void channel(const ChannelType channel_);
// Set or obtain modulus channel depth
void channelDepth(const ChannelType channel_,const size_t depth_);
size_t channelDepth(const ChannelType channel_);
// Charcoal effect image (looks like charcoal sketch)
// The radius_ parameter specifies the radius of the Gaussian, in
// pixels, not counting the center pixel. The sigma_ parameter
// specifies the standard deviation of the Laplacian, in pixels.
void charcoal(const double radius_=0.0,const double sigma_=1.0);
// Chop image (remove vertical or horizontal subregion of image)
// FIXME: describe how geometry argument is used to select either
// horizontal or vertical subregion of image.
void chop(const Geometry &geometry_);
// Chromaticity blue primary point (e.g. x=0.15, y=0.06)
void chromaBluePrimary(const double x_,const double y_);
void chromaBluePrimary(double *x_, double *y_) const;
// Chromaticity green primary point (e.g. x=0.3, y=0.6)
void chromaGreenPrimary(const double x_,const double y_);
void chromaGreenPrimary(double *x_,double *y_) const;
// Chromaticity red primary point (e.g. x=0.64, y=0.33)
void chromaRedPrimary(const double x_,const double y_);
void chromaRedPrimary(double *x_,double *y_) const;
// Chromaticity white point (e.g. x=0.3127, y=0.329)
void chromaWhitePoint(const double x_,const double y_);
void chromaWhitePoint(double *x_,double *y_) const;
// Set each pixel whose value is below zero to zero and any the
// pixel whose value is above the quantum range to the quantum range (e.g.
// 65535) otherwise the pixel value remains unchanged.
void clamp(void);
void clampChannel(const ChannelType channel_);
// Sets the image clip mask based on any clipping path information
// if it exists.
void clip(void);
void clipPath(const std::string pathname_,const bool inside_);
// Apply a color lookup table (CLUT) to the image.
void clut(const Image &clutImage_);
void clutChannel(const ChannelType channel_,const Image &clutImage_);
// Colorize image with pen color, using specified percent opacity.
void colorize(const unsigned int opacity_,const Color &penColor_);
// Colorize image with pen color, using specified percent opacity
// for red, green, and blue quantums
void colorize(const unsigned int opacityRed_,
const unsigned int opacityGreen_,const unsigned int opacityBlue_,
const Color &penColor_);
// Color at colormap position index_
void colorMap(const size_t index_,const Color &color_);
Color colorMap(const size_t index_) const;
// Apply a color matrix to the image channels. The user supplied
// matrix may be of order 1 to 5 (1x1 through 5x5).
void colorMatrix(const size_t order_,const double *color_matrix_);
// Compare current image with another image
// Sets meanErrorPerPixel, normalizedMaxError, and normalizedMeanError
// in the current image. False is returned if the images are identical.
bool compare(const Image &reference_);
// Compare current image with another image
// Returns the distortion based on the specified metric.
double compare(const Image &reference_,const MetricType metric_);
double compareChannel(const ChannelType channel_,const Image &reference_,
const MetricType metric_);
// Compare current image with another image
// Sets the distortion and returns the difference image.
Image compare(const Image &reference_,const MetricType metric_,
double *distortion);
Image compareChannel(const ChannelType channel_,const Image &reference_,
const MetricType metric_,double *distortion );
// Compose an image onto another at specified offset and using
// specified algorithm
void composite(const Image &compositeImage_,const Geometry &offset_,
const CompositeOperator compose_=InCompositeOp);
void composite(const Image &compositeImage_,const GravityType gravity_,
const CompositeOperator compose_=InCompositeOp);
void composite(const Image &compositeImage_,const ::ssize_t xOffset_,
const ::ssize_t yOffset_,const CompositeOperator compose_=InCompositeOp);
// Determines the connected-components of the image
void connectedComponents(const size_t connectivity_);
// Contrast image (enhance intensity differences in image)
void contrast(const size_t sharpen_);
// A simple image enhancement technique that attempts to improve the
// contrast in an image by 'stretching' the range of intensity values
// it contains to span a desired range of values. It differs from the
// more sophisticated histogram equalization in that it can only apply a
// linear scaling function to the image pixel values. As a result the
// 'enhancement' is less harsh.
void contrastStretch(const double black_point_,const double white_point_);
void contrastStretchChannel(const ChannelType channel_,
const double black_point_,const double white_point_);
// Convolve image. Applies a user-specified convolution to the image.
// order_ represents the number of columns and rows in the filter kernel.
// kernel_ is an array of doubles representing the convolution kernel.
void convolve(const size_t order_,const double *kernel_);
// Copies pixels from the source image as defined by the geometry the
// destination image at the specified offset.
void copyPixels(const Image &source_,const Geometry &geometry_,
const Offset &offset_);
// Crop image (subregion of original image)
void crop(const Geometry &geometry_);
// Cycle image colormap
void cycleColormap(const ::ssize_t amount_);
// Converts cipher pixels to plain pixels.
void decipher(const std::string &passphrase_);
// Tagged image format define. Similar to the defineValue() method
// except that passing the flag_ value 'true' creates a value-less
// define with that format and key. Passing the flag_ value 'false'
// removes any existing matching definition. The method returns 'true'
// if a matching key exists, and 'false' if no matching key exists.
void defineSet(const std::string &magick_,const std::string &key_,
bool flag_);
bool defineSet(const std::string &magick_,const std::string &key_) const;
// Tagged image format define (set/access coder-specific option) The
// magick_ option specifies the coder the define applies to. The key_
// option provides the key specific to that coder. The value_ option
// provides the value to set (if any). See the defineSet() method if the
// key must be removed entirely.
void defineValue(const std::string &magick_,const std::string &key_,
const std::string &value_);
std::string defineValue(const std::string &magick_,
const std::string &key_) const;
// Removes skew from the image. Skew is an artifact that occurs in scanned
// images because of the camera being misaligned, imperfections in the
// scanning or surface, or simply because the paper was not placed
// completely flat when scanned. The value of threshold_ ranges from 0
// to QuantumRange.
void deskew(const double threshold_);
// Despeckle image (reduce speckle noise)
void despeckle(void);
// Determines the color type of the image. This method can be used to
// automaticly make the type GrayScale.
ImageType determineType(void) const;
// Display image on screen
void display(void);
// Distort image. distorts an image using various distortion methods, by
// mapping color lookups of the source image to a new destination image
// usally of the same size as the source image, unless 'bestfit' is set to
// true.
void distort(const DistortImageMethod method_,
const size_t number_arguments_,const double *arguments_,
const bool bestfit_=false);
// Draw on image using a single drawable
void draw(const Drawable &drawable_);
// Draw on image using a drawable list
void draw(const std::list<Magick::Drawable> &drawable_);
// Edge image (hilight edges in image)
void edge(const double radius_=0.0);
// Emboss image (hilight edges with 3D effect)
// The radius_ parameter specifies the radius of the Gaussian, in
// pixels, not counting the center pixel. The sigma_ parameter
// specifies the standard deviation of the Laplacian, in pixels.
void emboss(const double radius_=0.0,const double sigma_=1.0);
// Converts pixels to cipher-pixels.
void encipher(const std::string &passphrase_);
// Enhance image (minimize noise)
void enhance(void);
// Equalize image (histogram equalization)
void equalize(void);
// Erase image to current "background color"
void erase(void);
// Extend the image as defined by the geometry.
void extent(const Geometry &geometry_);
void extent(const Geometry &geometry_,const Color &backgroundColor);
void extent(const Geometry &geometry_,const Color &backgroundColor,
const GravityType gravity_ );
void extent(const Geometry &geometry_,const GravityType gravity_);
// Flip image (reflect each scanline in the vertical direction)
void flip(void);
// Flood-fill color across pixels that match the color of the
// target pixel and are neighbors of the target pixel.
// Uses current fuzz setting when determining color match.
void floodFillColor(const Geometry &point_,const Color &fillColor_);
void floodFillColor(const Geometry &point_,const Color &fillColor_,
const bool invert_);
void floodFillColor(const ::ssize_t x_,const ::ssize_t y_,
const Color &fillColor_);
void floodFillColor(const ::ssize_t x_,const ::ssize_t y_,
const Color &fillColor_,const bool invert_);
// Flood-fill color across pixels starting at target-pixel and
// stopping at pixels matching specified border color.
// Uses current fuzz setting when determining color match.
void floodFillColor(const Geometry &point_,const Color &fillColor_,
const Color &borderColor_);
void floodFillColor(const Geometry &point_,const Color &fillColor_,
const Color &borderColor_,const bool invert_);
void floodFillColor(const ::ssize_t x_,const ::ssize_t y_,
const Color &fillColor_,const Color &borderColor_);
void floodFillColor(const ::ssize_t x_,const ::ssize_t y_,
const Color &fillColor_,const Color &borderColor_,const bool invert_);
// Floodfill pixels matching color (within fuzz factor) of target
// pixel(x,y) with replacement opacity value using method.
void floodFillOpacity(const ::ssize_t x_,const ::ssize_t y_,
const unsigned int opacity_,const bool invert_=false);
void floodFillOpacity(const ::ssize_t x_,const ::ssize_t y_,
const unsigned int opacity_,const PaintMethod method_);
void floodFillOpacity(const ::ssize_t x_,const ::ssize_t y_,
const unsigned int opacity_,const Color &target_,
const bool invert_=false);
// Flood-fill texture across pixels that match the color of the
// target pixel and are neighbors of the target pixel.
// Uses current fuzz setting when determining color match.
void floodFillTexture(const Geometry &point_,const Image &texture_);
void floodFillTexture(const Geometry &point_,const Image &texture_,
const bool invert_);
void floodFillTexture(const ::ssize_t x_,const ::ssize_t y_,
const Image &texture_);
void floodFillTexture(const ::ssize_t x_,const ::ssize_t y_,
const Image &texture_,const bool invert_);
// Flood-fill texture across pixels starting at target-pixel and
// stopping at pixels matching specified border color.
// Uses current fuzz setting when determining color match.
void floodFillTexture(const Geometry &point_,const Image &texture_,
const Color &borderColor_);
void floodFillTexture(const Geometry &point_,const Image &texture_,
const Color &borderColor_,const bool invert_);
void floodFillTexture(const ::ssize_t x_,const ::ssize_t y_,
const Image &texture_,const Color &borderColor_);
void floodFillTexture(const ::ssize_t x_,const ::ssize_t y_,
const Image &texture_,const Color &borderColor_,const bool invert_);
// Flop image (reflect each scanline in the horizontal direction)
void flop(void);
// Obtain font metrics for text string given current font,
// pointsize, and density settings.
void fontTypeMetrics(const std::string &text_,TypeMetric *metrics);
// Obtain multi line font metrics for text string given current font,
// pointsize, and density settings.
void fontTypeMetricsMultiline(const std::string &text_,
TypeMetric *metrics);
// Frame image
void frame(const Geometry &geometry_=frameGeometryDefault);
void frame(const size_t width_,const size_t height_,
const ::ssize_t innerBevel_=6, const ::ssize_t outerBevel_=6);
// Applies a mathematical expression to the image.
void fx(const std::string expression);
void fx(const std::string expression,const Magick::ChannelType channel);
// Gamma correct image
void gamma(const double gamma_);
void gamma(const double gammaRed_,const double gammaGreen_,
const double gammaBlue_);
// Gaussian blur image
// The number of neighbor pixels to be included in the convolution
// mask is specified by 'width_'. The standard deviation of the
// gaussian bell curve is specified by 'sigma_'.
void gaussianBlur(const double width_,const double sigma_);
void gaussianBlurChannel(const ChannelType channel_,const double width_,
const double sigma_);
// Obtain immutable image pixel indexes (valid for PseudoClass images)
const IndexPacket *getConstIndexes(void) const;
// Transfers read-only pixels from the image to the pixel cache as
// defined by the specified region
const PixelPacket *getConstPixels(const ::ssize_t x_,const ::ssize_t y_,
const size_t columns_,const size_t rows_) const;
// Obtain mutable image pixel indexes (valid for PseudoClass images)
IndexPacket *getIndexes(void);
// Transfers pixels from the image to the pixel cache as defined
// by the specified region. Modified pixels may be subsequently
// transferred back to the image via syncPixels. This method is
// valid for DirectClass images.
PixelPacket *getPixels(const ::ssize_t x_,const ::ssize_t y_,
const size_t columns_,const size_t rows_);
// Converts the colors in the image to gray.
void grayscale(const PixelIntensityMethod method_);
// Apply a color lookup table (Hald CLUT) to the image.
void haldClut(const Image &clutImage_);
// Identifies lines in the image.
void houghLine(const size_t width_,const size_t height_,
const size_t threshold_=40);
// Implode image (special effect)
void implode(const double factor_);
// Implements the inverse discrete Fourier transform (DFT) of the image
// either as a magnitude / phase or real / imaginary image pair.
void inverseFourierTransform(const Image &phase_);
void inverseFourierTransform(const Image &phase_,const bool magnitude_);
// An edge preserving noise reduction filter.
void kuwahara(const double radius_=0.0,const double sigma_=1.0);
void kuwaharaChannel(const ChannelType channel_,const double radius_=0.0,
const double sigma_=1.0);
// Level image. Adjust the levels of the image by scaling the
// colors falling between specified white and black points to the
// full available quantum range. The parameters provided represent
// the black, mid (gamma), and white points. The black point
// specifies the darkest color in the image. Colors darker than
// the black point are set to zero. Mid point (gamma) specifies a
// gamma correction to apply to the image. White point specifies
// the lightest color in the image. Colors brighter than the
// white point are set to the maximum quantum value. The black and
// white point have the valid range 0 to QuantumRange while mid (gamma)
// has a useful range of 0 to ten.
void level(const double black_point,const double white_point,
const double mid_point=1.0);
void levelChannel(const ChannelType channel,const double black_point,
const double white_point,const double mid_point=1.0);
// Maps the given color to "black" and "white" values, linearly spreading
// out the colors, and level values on a channel by channel bases, as
// per level(). The given colors allows you to specify different level
// ranges for each of the color channels separately.
void levelColors(const Color &blackColor_,const Color &whiteColor_,
const bool invert_=true);
void levelColorsChannel(const ChannelType channel_,
const Color &blackColor_,const Color &whiteColor_,
const bool invert_=true);
// Discards any pixels below the black point and above the white point and
// levels the remaining pixels.
void linearStretch(const double blackPoint_,const double whitePoint_);
// Rescales image with seam carving.
void liquidRescale(const Geometry &geometry_);
// Magnify image by integral size
void magnify(void);
// Remap image colors with closest color from reference image
void map(const Image &mapImage_,const bool dither_=false);
// Floodfill designated area with replacement opacity value
void matteFloodfill(const Color &target_,const unsigned int opacity_,
const ::ssize_t x_,const ::ssize_t y_,const PaintMethod method_);
// Filter image by replacing each pixel component with the median
// color in a circular neighborhood
void medianFilter(const double radius_=0.0);
// Merge image layers (deprecated, don't use any more)
void mergeLayers(const ImageLayerMethod layerType_);
// Reduce image by integral size
void minify(void);
// Modulate percent hue, saturation, and brightness of an image
void modulate(const double brightness_,const double saturation_,
const double hue_);
// Returns the normalized moments of one or more image channels.
ImageMoments moments(void) const;
// Applies a kernel to the image according to the given mophology method.
void morphology(const MorphologyMethod method_,const std::string kernel_,
const ssize_t iterations_=1);
void morphology(const MorphologyMethod method_,
const KernelInfoType kernel_,const std::string arguments_,
const ssize_t iterations_=1);
void morphologyChannel(const ChannelType channel_,
const MorphologyMethod method_,const std::string kernel_,
const ssize_t iterations_=1);
void morphologyChannel(const ChannelType channel_,
const MorphologyMethod method_,const KernelInfoType kernel_,
const std::string arguments_,const ssize_t iterations_=1);
// Motion blur image with specified blur factor
// The radius_ parameter specifies the radius of the Gaussian, in
// pixels, not counting the center pixel. The sigma_ parameter
// specifies the standard deviation of the Laplacian, in pixels.
// The angle_ parameter specifies the angle the object appears
// to be comming from (zero degrees is from the right).
void motionBlur(const double radius_,const double sigma_,
const double angle_);
// Negate colors in image. Set grayscale to only negate grayscale
// values in image.
void negate(const bool grayscale_=false);
void negateChannel(const ChannelType channel_,const bool grayscale_=false);
// Normalize image (increase contrast by normalizing the pixel
// values to span the full range of color values)
void normalize(void);
// Oilpaint image (image looks like oil painting)
void oilPaint(const double radius_=3.0);
// Set or attenuate the opacity channel in the image. If the image
// pixels are opaque then they are set to the specified opacity
// value, otherwise they are blended with the supplied opacity
// value. The value of opacity_ ranges from 0 (completely opaque)
// to QuantumRange. The defines OpaqueOpacity and TransparentOpacity are
// available to specify completely opaque or completely
// transparent, respectively.
void opacity(const unsigned int opacity_);
// Change color of opaque pixel to specified pen color.
void opaque(const Color &opaqueColor_,const Color &penColor_,
const bool invert_=MagickFalse);
// Perform a ordered dither based on a number of pre-defined dithering
// threshold maps, but over multiple intensity levels.
void orderedDither(std::string thresholdMap_);
void orderedDitherChannel(const ChannelType channel_,
std::string thresholdMap_);
// Set each pixel whose value is less than epsilon to epsilon or
// -epsilon (whichever is closer) otherwise the pixel value remains
// unchanged.
void perceptible(const double epsilon_);
void perceptibleChannel(const ChannelType channel_,const double epsilon_);
// Ping is similar to read except only enough of the image is read
// to determine the image columns, rows, and filesize. Access the
// columns(), rows(), and fileSize() attributes after invoking
// ping. The image data is not valid after calling ping.
void ping(const Blob &blob_);
// Ping is similar to read except only enough of the image is read
// to determine the image columns, rows, and filesize. Access the
// columns(), rows(), and fileSize() attributes after invoking
// ping. The image data is not valid after calling ping.
void ping(const std::string &imageSpec_);
// Get/set pixel color at location x & y.
void pixelColor(const ::ssize_t x_,const ::ssize_t y_,const Color &color_);
Color pixelColor(const ::ssize_t x_,const ::ssize_t y_ ) const;
// Simulates a Polaroid picture.
void polaroid(const std::string &caption_,const double angle_);
// Reduces the image to a limited number of colors for a "poster" effect.
void posterize(const size_t levels_,const bool dither_=false);
void posterizeChannel(const ChannelType channel_, const size_t levels_,
const bool dither_=false);
// Execute a named process module using an argc/argv syntax similar to
// that accepted by a C 'main' routine. An exception is thrown if the
// requested process module doesn't exist, fails to load, or fails during
// execution.
void process(std::string name_,const ::ssize_t argc_,const char **argv_);
// Add or remove a named profile to/from the image. Remove the
// profile by passing an empty Blob (e.g. Blob()). Valid names are
// "*", "8BIM", "ICM", "IPTC", or a user/format-defined profile name.
void profile(const std::string name_,const Blob &colorProfile_);
// Retrieve a named profile from the image. Valid names are:
// "8BIM", "8BIMTEXT", "APP1", "APP1JPEG", "ICC", "ICM", & "IPTC"
// or an existing user/format-defined profile name.
Blob profile(const std::string name_) const;
// Quantize image (reduce number of colors)
void quantize(const bool measureError_=false);
void quantumOperator(const ChannelType channel_,
const MagickEvaluateOperator operator_,double rvalue_);
void quantumOperator(const ::ssize_t x_,const ::ssize_t y_,
const size_t columns_,const size_t rows_,const ChannelType channel_,
const MagickEvaluateOperator operator_,const double rvalue_);
// Raise image (lighten or darken the edges of an image to give a
// 3-D raised or lowered effect)
void raise(const Geometry &geometry_=raiseGeometryDefault,
const bool raisedFlag_=false);
// Random threshold image.
//
// Changes the value of individual pixels based on the intensity
// of each pixel compared to a random threshold. The result is a
// low-contrast, two color image. The thresholds_ argument is a
// geometry containing LOWxHIGH thresholds. If the string
// contains 2x2, 3x3, or 4x4, then an ordered dither of order 2,
// 3, or 4 will be performed instead. If a channel_ argument is
// specified then only the specified channel is altered. This is
// a very fast alternative to 'quantize' based dithering.
void randomThreshold(const Geometry &thresholds_);
void randomThresholdChannel(const Geometry &thresholds_,
const ChannelType channel_);
// Read single image frame from in-memory BLOB
void read(const Blob &blob_);
// Read single image frame of specified size from in-memory BLOB
void read(const Blob &blob_,const Geometry &size_);
// Read single image frame of specified size and depth from
// in-memory BLOB
void read(const Blob &blob_,const Geometry &size_,const size_t depth_);
// Read single image frame of specified size, depth, and format
// from in-memory BLOB
void read(const Blob &blob_,const Geometry &size_,const size_t depth_,
const std::string &magick_);
// Read single image frame of specified size, and format from
// in-memory BLOB
void read(const Blob &blob_,const Geometry &size_,
const std::string &magick_);
// Read single image frame of specified size into current object
void read(const Geometry &size_,const std::string &imageSpec_);
// Read single image frame from an array of raw pixels, with
// specified storage type (ConstituteImage), e.g.
// image.read( 640, 480, "RGB", 0, pixels );
void read(const size_t width_,const size_t height_,const std::string &map_,
const StorageType type_,const void *pixels_);
// Read single image frame into current object
void read(const std::string &imageSpec_);
// Transfers one or more pixel components from a buffer or file
// into the image pixel cache of an image.
// Used to support image decoders.
void readPixels(const QuantumType quantum_,const unsigned char *source_);
// Reduce noise in image using a noise peak elimination filter
void reduceNoise(void);
void reduceNoise(const double order_);
// Resets the image page canvas and position.
void repage();
// Resize image in terms of its pixel size.
void resample(const Geometry &geometry_);
// Resize image to specified size.
void resize(const Geometry &geometry_);
// Roll image (rolls image vertically and horizontally) by specified
// number of columnms and rows)
void roll(const Geometry &roll_);
void roll(const size_t columns_,const size_t rows_);
// Rotate image counter-clockwise by specified number of degrees.
void rotate(const double degrees_);
// Rotational blur image.
void rotationalBlur(const double angle_);
void rotationalBlurChannel(const ChannelType channel_,
const double angle_);
// Resize image by using pixel sampling algorithm
void sample(const Geometry &geometry_);
// Resize image by using simple ratio algorithm
void scale(const Geometry &geometry_);
// Segment (coalesce similar image components) by analyzing the
// histograms of the color components and identifying units that
// are homogeneous with the fuzzy c-means technique. Also uses
// QuantizeColorSpace and Verbose image attributes
void segment(const double clusterThreshold_=1.0,
const double smoothingThreshold_=1.5);
// Selectively blur pixels within a contrast threshold. It is similar to
// the unsharpen mask that sharpens everything with contrast above a
// certain threshold.
void selectiveBlur(const double radius_,const double sigma_,
const double threshold_);
void selectiveBlurChannel(const ChannelType channel_,const double radius_,
const double sigma_,const double threshold_);
// Separates a channel from the image and returns it as a grayscale image.
Image separate(const ChannelType channel_) const;
// Applies a special effect to the image, similar to the effect achieved in
// a photo darkroom by sepia toning. Threshold ranges from 0 to
// QuantumRange and is a measure of the extent of the sepia toning.
// A threshold of 80% is a good starting point for a reasonable tone.
void sepiaTone(const double threshold_);
// Allocates a pixel cache region to store image pixels as defined
// by the region rectangle. This area is subsequently transferred
// from the pixel cache to the image via syncPixels.
PixelPacket *setPixels(const ::ssize_t x_,const ::ssize_t y_,
const size_t columns_,const size_t rows_);
// Shade image using distant light source
void shade(const double azimuth_=30,const double elevation_=30,
const bool colorShading_=false);
// Simulate an image shadow
void shadow(const double percent_opacity_=80.0,const double sigma_=0.5,
const ssize_t x_=5,const ssize_t y_=5);
// Sharpen pixels in image
// The radius_ parameter specifies the radius of the Gaussian, in
// pixels, not counting the center pixel. The sigma_ parameter
// specifies the standard deviation of the Laplacian, in pixels.
void sharpen(const double radius_=0.0,const double sigma_=1.0);
void sharpenChannel(const ChannelType channel_,const double radius_=0.0,
const double sigma_=1.0);
// Shave pixels from image edges.
void shave(const Geometry &geometry_);
// Shear image (create parallelogram by sliding image by X or Y axis)
void shear(const double xShearAngle_,const double yShearAngle_);
// adjust the image contrast with a non-linear sigmoidal contrast algorithm
void sigmoidalContrast(const size_t sharpen_,const double contrast,
const double midpoint=QuantumRange/2.0);
// Image signature. Set force_ to true in order to re-calculate
// the signature regardless of whether the image data has been
// modified.
std::string signature(const bool force_=false) const;
// Simulates a pencil sketch. We convolve the image with a Gaussian
// operator of the given radius and standard deviation (sigma). For
// reasonable results, radius should be larger than sigma. Use a
// radius of 0 and SketchImage() selects a suitable radius for you.
void sketch(const double radius_=0.0,const double sigma_=1.0,
const double angle_=0.0);
// Solarize image (similar to effect seen when exposing a
// photographic film to light during the development process)
void solarize(const double factor_=50.0);
// Sparse color image, given a set of coordinates, interpolates the colors
// found at those coordinates, across the whole image, using various
// methods.
void sparseColor(const ChannelType channel,const SparseColorMethod method,
const size_t number_arguments,const double *arguments);
// Splice the background color into the image.
void splice(const Geometry &geometry_);
void splice(const Geometry &geometry_,const Color &backgroundColor_);
void splice(const Geometry &geometry_,const Color &backgroundColor_,
const GravityType gravity_);
// Spread pixels randomly within image by specified ammount
void spread(const size_t amount_=3);
void statistics(ImageStatistics *statistics) const;
// Add a digital watermark to the image (based on second image)
void stegano(const Image &watermark_);
// Create an image which appears in stereo when viewed with
// red-blue glasses (Red image on left, blue on right)
void stereo(const Image &rightImage_);
// Strip strips an image of all profiles and comments.
void strip(void);
// Search for the specified image at EVERY possible location in this image.
// This is slow! very very slow.. It returns a similarity image such that
// an exact match location is completely white and if none of the pixels
// match, black, otherwise some gray level in-between.
Image subImageSearch(const Image &reference_,const MetricType metric_,
Geometry *offset_,double *similarityMetric_,
const double similarityThreshold=(-1.0));
// Swirl image (image pixels are rotated by degrees)
void swirl(const double degrees_);
// Transfers the image cache pixels to the image.
void syncPixels(void);
// Channel a texture on image background
void texture(const Image &texture_);
// Threshold image
void threshold(const double threshold_);
// Resize image to thumbnail size
void thumbnail(const Geometry &geometry_);
// Applies a color vector to each pixel in the image. The length of the
// vector is 0 for black and white and at its maximum for the midtones.
// The vector weighting function is f(x)=(1-(4.0*((x-0.5)*(x-0.5))))
void tint(const std::string opacity_);
// Transform image based on image and crop geometries
// Crop geometry is optional
void transform(const Geometry &imageGeometry_);
void transform(const Geometry &imageGeometry_,
const Geometry &cropGeometry_);
// Origin of coordinate system to use when annotating with text or drawing
void transformOrigin(const double x_,const double y_);
// Reset transformation parameters to default
void transformReset(void);
// Scale to use when annotating with text or drawing
void transformScale(const double sx_,const double sy_);
// Add matte image to image, setting pixels matching color to
// transparent
void transparent(const Color &color_);
// Add matte image to image, for all the pixels that lies in between
// the given two color
void transparentChroma(const Color &colorLow_,const Color &colorHigh_);
// Creates a horizontal mirror image by reflecting the pixels around the
// central y-axis while rotating them by 90 degrees.
void transpose(void);
// Creates a vertical mirror image by reflecting the pixels around the
// central x-axis while rotating them by 270 degrees.
void transverse(void);
// Trim edges that are the background color from the image
void trim(void);
// Returns the unique colors of an image.
Image uniqueColors(void) const;
// Replace image with a sharpened version of the original image
// using the unsharp mask algorithm.
// radius_
// the radius of the Gaussian, in pixels, not counting the
// center pixel.
// sigma_
// the standard deviation of the Gaussian, in pixels.
// amount_
// the percentage of the difference between the original and
// the blur image that is added back into the original.
// threshold_
// the threshold in pixels needed to apply the diffence amount.
void unsharpmask(const double radius_,const double sigma_,
const double amount_,const double threshold_);
void unsharpmaskChannel(const ChannelType channel_,const double radius_,
const double sigma_,const double amount_,const double threshold_);
// Softens the edges of the image in vignette style.
void vignette(const double radius_=0.0,const double sigma_=1.0,
const ssize_t x_=0,const ssize_t y_=0);
// Map image pixels to a sine wave
void wave(const double amplitude_=25.0,const double wavelength_=150.0);
// Forces all pixels above the threshold into white while leaving all
// pixels at or below the threshold unchanged.
void whiteThreshold(const std::string &threshold_);
void whiteThresholdChannel(const ChannelType channel_,
const std::string &threshold_);
// Write single image frame to in-memory BLOB, with optional
// format and adjoin parameters.
void write(Blob *blob_);
void write(Blob *blob_,const std::string &magick_);
void write(Blob *blob_,const std::string &magick_,const size_t depth_);
// Write single image frame to an array of pixels with storage
// type specified by user (DispatchImage), e.g.
// image.write( 0, 0, 640, 1, "RGB", 0, pixels );
void write(const ::ssize_t x_,const ::ssize_t y_,const size_t columns_,
const size_t rows_,const std::string& map_,const StorageType type_,
void *pixels_);
// Write single image frame to a file
void write(const std::string &imageSpec_);
// Transfers one or more pixel components from the image pixel
// cache to a buffer or file.
// Used to support image encoders.
void writePixels(const QuantumType quantum_,unsigned char *destination_);
// Zoom image to specified size.
void zoom(const Geometry &geometry_);
//////////////////////////////////////////////////////////////////////
//
// No user-serviceable parts beyond this point
//
//////////////////////////////////////////////////////////////////////
// Construct with MagickCore::Image and default options
Image(MagickCore::Image *image_);
// Retrieve Image*
MagickCore::Image *&image(void);
const MagickCore::Image *constImage(void) const;
// Retrieve ImageInfo*
MagickCore::ImageInfo *imageInfo(void);
const MagickCore::ImageInfo *constImageInfo(void) const;
// Retrieve Options*
Options *options(void);
const Options *constOptions(void) const;
// Retrieve QuantizeInfo*
MagickCore::QuantizeInfo *quantizeInfo(void);
const MagickCore::QuantizeInfo *constQuantizeInfo(void) const;
// Prepare to update image (copy if reference > 1)
void modifyImage(void);
// Replace current image (reference counted)
MagickCore::Image *replaceImage(MagickCore::Image *replacement_);
// Test for ImageMagick error and throw exception if error
void throwImageException(void) const;
private:
void read(MagickCore::Image *image,
MagickCore::ExceptionInfo *exceptionInfo);
void floodFill(const ssize_t x_,const ssize_t y_,
const Magick::Image *fillPattern_,const Color &fill_,
const MagickCore::PixelPacket *target,const bool invert_);
ImageRef *_imgRef;
};
} // end of namespace Magick
//
// Inlines
//
inline Magick::ClassType Magick::Image::classType(void) const
{
return static_cast<Magick::ClassType>(constImage()->storage_class);
}
inline size_t Magick::Image::columns(void) const
{
return constImage()->columns;
}
inline void Magick::Image::lineWidth(const double lineWidth_)
{
strokeWidth(lineWidth_);
}
inline double Magick::Image::lineWidth(void) const
{
return strokeWidth();
}
inline void Magick::Image::reduceNoise(void)
{
reduceNoise(3.0);
}
inline size_t Magick::Image::rows(void) const
{
return constImage()->rows;
}
#endif // Magick_Image_header