This source file includes following definitions.
- lazyInitializeOversampling
 
- process
 
- processCurve
 
- processCurve2x
 
- processCurve4x
 
- reset
 
- latencyTime
 
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "modules/webaudio/WaveShaperDSPKernel.h"
#include "wtf/MainThread.h"
#include "wtf/Threading.h"
#include <algorithm>
const unsigned RenderingQuantum = 128;
using namespace std;
namespace WebCore {
WaveShaperDSPKernel::WaveShaperDSPKernel(WaveShaperProcessor* processor)
    : AudioDSPKernel(processor)
{
    if (processor->oversample() != WaveShaperProcessor::OverSampleNone)
        lazyInitializeOversampling();
}
void WaveShaperDSPKernel::lazyInitializeOversampling()
{
    if (!m_tempBuffer) {
        m_tempBuffer = adoptPtr(new AudioFloatArray(RenderingQuantum * 2));
        m_tempBuffer2 = adoptPtr(new AudioFloatArray(RenderingQuantum * 4));
        m_upSampler = adoptPtr(new UpSampler(RenderingQuantum));
        m_downSampler = adoptPtr(new DownSampler(RenderingQuantum * 2));
        m_upSampler2 = adoptPtr(new UpSampler(RenderingQuantum * 2));
        m_downSampler2 = adoptPtr(new DownSampler(RenderingQuantum * 4));
    }
}
void WaveShaperDSPKernel::process(const float* source, float* destination, size_t framesToProcess)
{
    switch (waveShaperProcessor()->oversample()) {
    case WaveShaperProcessor::OverSampleNone:
        processCurve(source, destination, framesToProcess);
        break;
    case WaveShaperProcessor::OverSample2x:
        processCurve2x(source, destination, framesToProcess);
        break;
    case WaveShaperProcessor::OverSample4x:
        processCurve4x(source, destination, framesToProcess);
        break;
    default:
        ASSERT_NOT_REACHED();
    }
}
void WaveShaperDSPKernel::processCurve(const float* source, float* destination, size_t framesToProcess)
{
    ASSERT(source && destination && waveShaperProcessor());
    Float32Array* curve = waveShaperProcessor()->curve();
    if (!curve) {
        
        memcpy(destination, source, sizeof(float) * framesToProcess);
        return;
    }
    float* curveData = curve->data();
    int curveLength = curve->length();
    ASSERT(curveData);
    if (!curveData || !curveLength) {
        memcpy(destination, source, sizeof(float) * framesToProcess);
        return;
    }
    
    for (unsigned i = 0; i < framesToProcess; ++i) {
        const float input = source[i];
        
        
        double virtualIndex = 0.5 * (input + 1) * curveLength;
        int index1 = static_cast<int>(virtualIndex);
        int index2 = index1 + 1;
        double interpolationFactor = virtualIndex - index1;
        
        
        index1 = max(index1, 0);
        index1 = min(index1, curveLength - 1);
        index2 = max(index2, 0);
        index2 = min(index2, curveLength - 1);
        double value1 = curveData[index1];
        double value2 = curveData[index2];
        double output = (1.0 - interpolationFactor) * value1 + interpolationFactor * value2;
        destination[i] = output;
    }
}
void WaveShaperDSPKernel::processCurve2x(const float* source, float* destination, size_t framesToProcess)
{
    bool isSafe = framesToProcess == RenderingQuantum;
    ASSERT(isSafe);
    if (!isSafe)
        return;
    float* tempP = m_tempBuffer->data();
    m_upSampler->process(source, tempP, framesToProcess);
    
    processCurve(tempP, tempP, framesToProcess * 2);
    m_downSampler->process(tempP, destination, framesToProcess * 2);
}
void WaveShaperDSPKernel::processCurve4x(const float* source, float* destination, size_t framesToProcess)
{
    bool isSafe = framesToProcess == RenderingQuantum;
    ASSERT(isSafe);
    if (!isSafe)
        return;
    float* tempP = m_tempBuffer->data();
    float* tempP2 = m_tempBuffer2->data();
    m_upSampler->process(source, tempP, framesToProcess);
    m_upSampler2->process(tempP, tempP2, framesToProcess * 2);
    
    processCurve(tempP2, tempP2, framesToProcess * 4);
    m_downSampler2->process(tempP2, tempP, framesToProcess * 4);
    m_downSampler->process(tempP, destination, framesToProcess * 2);
}
void WaveShaperDSPKernel::reset()
{
    if (m_upSampler) {
        m_upSampler->reset();
        m_downSampler->reset();
        m_upSampler2->reset();
        m_downSampler2->reset();
    }
}
double WaveShaperDSPKernel::latencyTime() const
{
    size_t latencyFrames = 0;
    WaveShaperDSPKernel* kernel = const_cast<WaveShaperDSPKernel*>(this);
    switch (kernel->waveShaperProcessor()->oversample()) {
    case WaveShaperProcessor::OverSampleNone:
        break;
    case WaveShaperProcessor::OverSample2x:
        latencyFrames += m_upSampler->latencyFrames();
        latencyFrames += m_downSampler->latencyFrames();
        break;
    case WaveShaperProcessor::OverSample4x:
        {
            
            latencyFrames += m_upSampler->latencyFrames();
            latencyFrames += m_downSampler->latencyFrames();
            
            
            size_t latencyFrames2 = (m_upSampler2->latencyFrames() + m_downSampler2->latencyFrames()) / 2;
            latencyFrames += latencyFrames2;
            break;
        }
    default:
        ASSERT_NOT_REACHED();
    }
    return static_cast<double>(latencyFrames) / sampleRate();
}
} 
#endif