root/Source/platform/audio/Biquad.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. process
  2. processFast
  3. processSliceFast
  4. reset
  5. setLowpassParams
  6. setHighpassParams
  7. setNormalizedCoefficients
  8. setLowShelfParams
  9. setHighShelfParams
  10. setPeakingParams
  11. setAllpassParams
  12. setNotchParams
  13. setBandpassParams
  14. setZeroPolePairs
  15. setAllpassPole
  16. getFrequencyResponse

/*
 * Copyright (C) 2010 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"

#if ENABLE(WEB_AUDIO)

#include "platform/audio/Biquad.h"

#include <stdio.h>
#include <algorithm>
#include "platform/audio/DenormalDisabler.h"
#include "wtf/MathExtras.h"

#if OS(MACOSX)
#include <Accelerate/Accelerate.h>
#endif

namespace WebCore {

#if OS(MACOSX)
const int kBufferSize = 1024;
#endif

Biquad::Biquad()
{
#if OS(MACOSX)
    // Allocate two samples more for filter history
    m_inputBuffer.allocate(kBufferSize + 2);
    m_outputBuffer.allocate(kBufferSize + 2);
#endif

#if USE(WEBAUDIO_IPP)
    int bufferSize;
    ippsIIRGetStateSize64f_BiQuad_32f(1, &bufferSize);
    m_ippInternalBuffer = ippsMalloc_8u(bufferSize);
#endif // USE(WEBAUDIO_IPP)

    // Initialize as pass-thru (straight-wire, no filter effect)
    setNormalizedCoefficients(1, 0, 0, 1, 0, 0);

    reset(); // clear filter memory
}

Biquad::~Biquad()
{
#if USE(WEBAUDIO_IPP)
    ippsFree(m_ippInternalBuffer);
#endif // USE(WEBAUDIO_IPP)
}

void Biquad::process(const float* sourceP, float* destP, size_t framesToProcess)
{
#if OS(MACOSX)
    // Use vecLib if available
    processFast(sourceP, destP, framesToProcess);

#elif USE(WEBAUDIO_IPP)
    ippsIIR64f_32f(sourceP, destP, static_cast<int>(framesToProcess), m_biquadState);
#else // USE(WEBAUDIO_IPP)

    int n = framesToProcess;

    // Create local copies of member variables
    double x1 = m_x1;
    double x2 = m_x2;
    double y1 = m_y1;
    double y2 = m_y2;

    double b0 = m_b0;
    double b1 = m_b1;
    double b2 = m_b2;
    double a1 = m_a1;
    double a2 = m_a2;

    while (n--) {
        // FIXME: this can be optimized by pipelining the multiply adds...
        float x = *sourceP++;
        float y = b0*x + b1*x1 + b2*x2 - a1*y1 - a2*y2;

        *destP++ = y;

        // Update state variables
        x2 = x1;
        x1 = x;
        y2 = y1;
        y1 = y;
    }

    // Local variables back to member. Flush denormals here so we
    // don't slow down the inner loop above.
    m_x1 = DenormalDisabler::flushDenormalFloatToZero(x1);
    m_x2 = DenormalDisabler::flushDenormalFloatToZero(x2);
    m_y1 = DenormalDisabler::flushDenormalFloatToZero(y1);
    m_y2 = DenormalDisabler::flushDenormalFloatToZero(y2);

    m_b0 = b0;
    m_b1 = b1;
    m_b2 = b2;
    m_a1 = a1;
    m_a2 = a2;
#endif
}

#if OS(MACOSX)

// Here we have optimized version using Accelerate.framework

void Biquad::processFast(const float* sourceP, float* destP, size_t framesToProcess)
{
    double filterCoefficients[5];
    filterCoefficients[0] = m_b0;
    filterCoefficients[1] = m_b1;
    filterCoefficients[2] = m_b2;
    filterCoefficients[3] = m_a1;
    filterCoefficients[4] = m_a2;

    double* inputP = m_inputBuffer.data();
    double* outputP = m_outputBuffer.data();

    double* input2P = inputP + 2;
    double* output2P = outputP + 2;

    // Break up processing into smaller slices (kBufferSize) if necessary.

    int n = framesToProcess;

    while (n > 0) {
        int framesThisTime = n < kBufferSize ? n : kBufferSize;

        // Copy input to input buffer
        for (int i = 0; i < framesThisTime; ++i)
            input2P[i] = *sourceP++;

        processSliceFast(inputP, outputP, filterCoefficients, framesThisTime);

        // Copy output buffer to output (converts float -> double).
        for (int i = 0; i < framesThisTime; ++i)
            *destP++ = static_cast<float>(output2P[i]);

        n -= framesThisTime;
    }
}

void Biquad::processSliceFast(double* sourceP, double* destP, double* coefficientsP, size_t framesToProcess)
{
    // Use double-precision for filter stability
    vDSP_deq22D(sourceP, 1, coefficientsP, destP, 1, framesToProcess);

    // Save history.  Note that sourceP and destP reference m_inputBuffer and m_outputBuffer respectively.
    // These buffers are allocated (in the constructor) with space for two extra samples so it's OK to access
    // array values two beyond framesToProcess.
    sourceP[0] = sourceP[framesToProcess - 2 + 2];
    sourceP[1] = sourceP[framesToProcess - 1 + 2];
    destP[0] = destP[framesToProcess - 2 + 2];
    destP[1] = destP[framesToProcess - 1 + 2];
}

#endif // OS(MACOSX)


void Biquad::reset()
{
#if OS(MACOSX)
    // Two extra samples for filter history
    double* inputP = m_inputBuffer.data();
    inputP[0] = 0;
    inputP[1] = 0;

    double* outputP = m_outputBuffer.data();
    outputP[0] = 0;
    outputP[1] = 0;

#elif USE(WEBAUDIO_IPP)
    int bufferSize;
    ippsIIRGetStateSize64f_BiQuad_32f(1, &bufferSize);
    ippsZero_8u(m_ippInternalBuffer, bufferSize);

#else
    m_x1 = m_x2 = m_y1 = m_y2 = 0;
#endif
}

void Biquad::setLowpassParams(double cutoff, double resonance)
{
    // Limit cutoff to 0 to 1.
    cutoff = std::max(0.0, std::min(cutoff, 1.0));

    if (cutoff == 1) {
        // When cutoff is 1, the z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    } else if (cutoff > 0) {
        // Compute biquad coefficients for lowpass filter
        resonance = std::max(0.0, resonance); // can't go negative
        double g = pow(10.0, 0.05 * resonance);
        double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);

        double theta = piDouble * cutoff;
        double sn = 0.5 * d * sin(theta);
        double beta = 0.5 * (1 - sn) / (1 + sn);
        double gamma = (0.5 + beta) * cos(theta);
        double alpha = 0.25 * (0.5 + beta - gamma);

        double b0 = 2 * alpha;
        double b1 = 2 * 2 * alpha;
        double b2 = 2 * alpha;
        double a1 = 2 * -gamma;
        double a2 = 2 * beta;

        setNormalizedCoefficients(b0, b1, b2, 1, a1, a2);
    } else {
        // When cutoff is zero, nothing gets through the filter, so set
        // coefficients up correctly.
        setNormalizedCoefficients(0, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setHighpassParams(double cutoff, double resonance)
{
    // Limit cutoff to 0 to 1.
    cutoff = std::max(0.0, std::min(cutoff, 1.0));

    if (cutoff == 1) {
        // The z-transform is 0.
        setNormalizedCoefficients(0, 0, 0,
                                  1, 0, 0);
    } else if (cutoff > 0) {
        // Compute biquad coefficients for highpass filter
        resonance = std::max(0.0, resonance); // can't go negative
        double g = pow(10.0, 0.05 * resonance);
        double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);

        double theta = piDouble * cutoff;
        double sn = 0.5 * d * sin(theta);
        double beta = 0.5 * (1 - sn) / (1 + sn);
        double gamma = (0.5 + beta) * cos(theta);
        double alpha = 0.25 * (0.5 + beta + gamma);

        double b0 = 2 * alpha;
        double b1 = 2 * -2 * alpha;
        double b2 = 2 * alpha;
        double a1 = 2 * -gamma;
        double a2 = 2 * beta;

        setNormalizedCoefficients(b0, b1, b2, 1, a1, a2);
    } else {
      // When cutoff is zero, we need to be careful because the above
      // gives a quadratic divided by the same quadratic, with poles
      // and zeros on the unit circle in the same place. When cutoff
      // is zero, the z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setNormalizedCoefficients(double b0, double b1, double b2, double a0, double a1, double a2)
{
    double a0Inverse = 1 / a0;

    m_b0 = b0 * a0Inverse;
    m_b1 = b1 * a0Inverse;
    m_b2 = b2 * a0Inverse;
    m_a1 = a1 * a0Inverse;
    m_a2 = a2 * a0Inverse;

#if USE(WEBAUDIO_IPP)
    Ipp64f taps[6];
    taps[0] = m_b0;
    taps[1] = m_b1;
    taps[2] = m_b2;
    taps[3] = 1;
    taps[4] = m_a1;
    taps[5] = m_a2;
    m_biquadState = 0;

    ippsIIRInit64f_BiQuad_32f(&m_biquadState, taps, 1, 0, m_ippInternalBuffer);
#endif // USE(WEBAUDIO_IPP)
}

void Biquad::setLowShelfParams(double frequency, double dbGain)
{
    // Clip frequencies to between 0 and 1, inclusive.
    frequency = std::max(0.0, std::min(frequency, 1.0));

    double A = pow(10.0, dbGain / 40);

    if (frequency == 1) {
        // The z-transform is a constant gain.
        setNormalizedCoefficients(A * A, 0, 0,
                                  1, 0, 0);
    } else if (frequency > 0) {
        double w0 = piDouble * frequency;
        double S = 1; // filter slope (1 is max value)
        double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2);
        double k = cos(w0);
        double k2 = 2 * sqrt(A) * alpha;
        double aPlusOne = A + 1;
        double aMinusOne = A - 1;

        double b0 = A * (aPlusOne - aMinusOne * k + k2);
        double b1 = 2 * A * (aMinusOne - aPlusOne * k);
        double b2 = A * (aPlusOne - aMinusOne * k - k2);
        double a0 = aPlusOne + aMinusOne * k + k2;
        double a1 = -2 * (aMinusOne + aPlusOne * k);
        double a2 = aPlusOne + aMinusOne * k - k2;

        setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
    } else {
        // When frequency is 0, the z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setHighShelfParams(double frequency, double dbGain)
{
    // Clip frequencies to between 0 and 1, inclusive.
    frequency = std::max(0.0, std::min(frequency, 1.0));

    double A = pow(10.0, dbGain / 40);

    if (frequency == 1) {
        // The z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    } else if (frequency > 0) {
        double w0 = piDouble * frequency;
        double S = 1; // filter slope (1 is max value)
        double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2);
        double k = cos(w0);
        double k2 = 2 * sqrt(A) * alpha;
        double aPlusOne = A + 1;
        double aMinusOne = A - 1;

        double b0 = A * (aPlusOne + aMinusOne * k + k2);
        double b1 = -2 * A * (aMinusOne + aPlusOne * k);
        double b2 = A * (aPlusOne + aMinusOne * k - k2);
        double a0 = aPlusOne - aMinusOne * k + k2;
        double a1 = 2 * (aMinusOne - aPlusOne * k);
        double a2 = aPlusOne - aMinusOne * k - k2;

        setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
    } else {
        // When frequency = 0, the filter is just a gain, A^2.
        setNormalizedCoefficients(A * A, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setPeakingParams(double frequency, double Q, double dbGain)
{
    // Clip frequencies to between 0 and 1, inclusive.
    frequency = std::max(0.0, std::min(frequency, 1.0));

    // Don't let Q go negative, which causes an unstable filter.
    Q = std::max(0.0, Q);

    double A = pow(10.0, dbGain / 40);

    if (frequency > 0 && frequency < 1) {
        if (Q > 0) {
            double w0 = piDouble * frequency;
            double alpha = sin(w0) / (2 * Q);
            double k = cos(w0);

            double b0 = 1 + alpha * A;
            double b1 = -2 * k;
            double b2 = 1 - alpha * A;
            double a0 = 1 + alpha / A;
            double a1 = -2 * k;
            double a2 = 1 - alpha / A;

            setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
        } else {
            // When Q = 0, the above formulas have problems. If we look at
            // the z-transform, we can see that the limit as Q->0 is A^2, so
            // set the filter that way.
            setNormalizedCoefficients(A * A, 0, 0,
                                      1, 0, 0);
        }
    } else {
        // When frequency is 0 or 1, the z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setAllpassParams(double frequency, double Q)
{
    // Clip frequencies to between 0 and 1, inclusive.
    frequency = std::max(0.0, std::min(frequency, 1.0));

    // Don't let Q go negative, which causes an unstable filter.
    Q = std::max(0.0, Q);

    if (frequency > 0 && frequency < 1) {
        if (Q > 0) {
            double w0 = piDouble * frequency;
            double alpha = sin(w0) / (2 * Q);
            double k = cos(w0);

            double b0 = 1 - alpha;
            double b1 = -2 * k;
            double b2 = 1 + alpha;
            double a0 = 1 + alpha;
            double a1 = -2 * k;
            double a2 = 1 - alpha;

            setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
        } else {
            // When Q = 0, the above formulas have problems. If we look at
            // the z-transform, we can see that the limit as Q->0 is -1, so
            // set the filter that way.
            setNormalizedCoefficients(-1, 0, 0,
                                      1, 0, 0);
        }
    } else {
        // When frequency is 0 or 1, the z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setNotchParams(double frequency, double Q)
{
    // Clip frequencies to between 0 and 1, inclusive.
    frequency = std::max(0.0, std::min(frequency, 1.0));

    // Don't let Q go negative, which causes an unstable filter.
    Q = std::max(0.0, Q);

    if (frequency > 0 && frequency < 1) {
        if (Q > 0) {
            double w0 = piDouble * frequency;
            double alpha = sin(w0) / (2 * Q);
            double k = cos(w0);

            double b0 = 1;
            double b1 = -2 * k;
            double b2 = 1;
            double a0 = 1 + alpha;
            double a1 = -2 * k;
            double a2 = 1 - alpha;

            setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
        } else {
            // When Q = 0, the above formulas have problems. If we look at
            // the z-transform, we can see that the limit as Q->0 is 0, so
            // set the filter that way.
            setNormalizedCoefficients(0, 0, 0,
                                      1, 0, 0);
        }
    } else {
        // When frequency is 0 or 1, the z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setBandpassParams(double frequency, double Q)
{
    // No negative frequencies allowed.
    frequency = std::max(0.0, frequency);

    // Don't let Q go negative, which causes an unstable filter.
    Q = std::max(0.0, Q);

    if (frequency > 0 && frequency < 1) {
        double w0 = piDouble * frequency;
        if (Q > 0) {
            double alpha = sin(w0) / (2 * Q);
            double k = cos(w0);

            double b0 = alpha;
            double b1 = 0;
            double b2 = -alpha;
            double a0 = 1 + alpha;
            double a1 = -2 * k;
            double a2 = 1 - alpha;

            setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
        } else {
            // When Q = 0, the above formulas have problems. If we look at
            // the z-transform, we can see that the limit as Q->0 is 1, so
            // set the filter that way.
            setNormalizedCoefficients(1, 0, 0,
                                      1, 0, 0);
        }
    } else {
        // When the cutoff is zero, the z-transform approaches 0, if Q
        // > 0. When both Q and cutoff are zero, the z-transform is
        // pretty much undefined. What should we do in this case?
        // For now, just make the filter 0. When the cutoff is 1, the
        // z-transform also approaches 0.
        setNormalizedCoefficients(0, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setZeroPolePairs(const Complex &zero, const Complex &pole)
{
    double b0 = 1;
    double b1 = -2 * zero.real();

    double zeroMag = abs(zero);
    double b2 = zeroMag * zeroMag;

    double a1 = -2 * pole.real();

    double poleMag = abs(pole);
    double a2 = poleMag * poleMag;
    setNormalizedCoefficients(b0, b1, b2, 1, a1, a2);
}

void Biquad::setAllpassPole(const Complex &pole)
{
    Complex zero = Complex(1, 0) / pole;
    setZeroPolePairs(zero, pole);
}

void Biquad::getFrequencyResponse(int nFrequencies,
                                  const float* frequency,
                                  float* magResponse,
                                  float* phaseResponse)
{
    // Evaluate the Z-transform of the filter at given normalized
    // frequency from 0 to 1.  (1 corresponds to the Nyquist
    // frequency.)
    //
    // The z-transform of the filter is
    //
    // H(z) = (b0 + b1*z^(-1) + b2*z^(-2))/(1 + a1*z^(-1) + a2*z^(-2))
    //
    // Evaluate as
    //
    // b0 + (b1 + b2*z1)*z1
    // --------------------
    // 1 + (a1 + a2*z1)*z1
    //
    // with z1 = 1/z and z = exp(j*pi*frequency). Hence z1 = exp(-j*pi*frequency)

    // Make local copies of the coefficients as a micro-optimization.
    double b0 = m_b0;
    double b1 = m_b1;
    double b2 = m_b2;
    double a1 = m_a1;
    double a2 = m_a2;

    for (int k = 0; k < nFrequencies; ++k) {
        double omega = -piDouble * frequency[k];
        Complex z = Complex(cos(omega), sin(omega));
        Complex numerator = b0 + (b1 + b2 * z) * z;
        Complex denominator = Complex(1, 0) + (a1 + a2 * z) * z;
        Complex response = numerator / denominator;
        magResponse[k] = static_cast<float>(abs(response));
        phaseResponse[k] = static_cast<float>(atan2(imag(response), real(response)));
    }
}

} // namespace WebCore

#endif // ENABLE(WEB_AUDIO)

/* [<][>][^][v][top][bottom][index][help] */