root/sandbox/linux/seccomp-bpf/codegen.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. TraverseRecursively
  2. PrintProgram
  3. MakeInstruction
  4. MakeInstruction
  5. MakeInstruction
  6. JoinInstructions
  7. Traverse
  8. FindBranchTargets
  9. MakeBasicBlock
  10. AddBasicBlock
  11. CutGraphIntoBasicBlocks
  12. PointerCompare
  13. MergeTails
  14. ComputeIncomingBranches
  15. TopoSortBasicBlocks
  16. ComputeRelativeJumps
  17. ConcatenateBasicBlocks
  18. Compile

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <stdio.h>

#include "base/logging.h"
#include "sandbox/linux/seccomp-bpf/codegen.h"

namespace {

// Helper function for Traverse().
void TraverseRecursively(std::set<sandbox::Instruction*>* visited,
                         sandbox::Instruction* instruction) {
  if (visited->find(instruction) == visited->end()) {
    visited->insert(instruction);
    switch (BPF_CLASS(instruction->code)) {
      case BPF_JMP:
        if (BPF_OP(instruction->code) != BPF_JA) {
          TraverseRecursively(visited, instruction->jf_ptr);
        }
        TraverseRecursively(visited, instruction->jt_ptr);
        break;
      case BPF_RET:
        break;
      default:
        TraverseRecursively(visited, instruction->next);
        break;
    }
  }
}

}  // namespace

namespace sandbox {

CodeGen::CodeGen() : compiled_(false) {}

CodeGen::~CodeGen() {
  for (Instructions::iterator iter = instructions_.begin();
       iter != instructions_.end();
       ++iter) {
    delete *iter;
  }
  for (BasicBlocks::iterator iter = basic_blocks_.begin();
       iter != basic_blocks_.end();
       ++iter) {
    delete *iter;
  }
}

void CodeGen::PrintProgram(const SandboxBPF::Program& program) {
  for (SandboxBPF::Program::const_iterator iter = program.begin();
       iter != program.end();
       ++iter) {
    int ip = (int)(iter - program.begin());
    fprintf(stderr, "%3d) ", ip);
    switch (BPF_CLASS(iter->code)) {
      case BPF_LD:
        if (iter->code == BPF_LD + BPF_W + BPF_ABS) {
          fprintf(stderr, "LOAD %d  // ", (int)iter->k);
          if (iter->k == offsetof(struct arch_seccomp_data, nr)) {
            fprintf(stderr, "System call number\n");
          } else if (iter->k == offsetof(struct arch_seccomp_data, arch)) {
            fprintf(stderr, "Architecture\n");
          } else if (iter->k ==
                     offsetof(struct arch_seccomp_data, instruction_pointer)) {
            fprintf(stderr, "Instruction pointer (LSB)\n");
          } else if (iter->k ==
                     offsetof(struct arch_seccomp_data, instruction_pointer) +
                         4) {
            fprintf(stderr, "Instruction pointer (MSB)\n");
          } else if (iter->k >= offsetof(struct arch_seccomp_data, args) &&
                     iter->k < offsetof(struct arch_seccomp_data, args) + 48 &&
                     (iter->k - offsetof(struct arch_seccomp_data, args)) % 4 ==
                         0) {
            fprintf(
                stderr,
                "Argument %d (%cSB)\n",
                (int)(iter->k - offsetof(struct arch_seccomp_data, args)) / 8,
                (iter->k - offsetof(struct arch_seccomp_data, args)) % 8 ? 'M'
                                                                         : 'L');
          } else {
            fprintf(stderr, "???\n");
          }
        } else {
          fprintf(stderr, "LOAD ???\n");
        }
        break;
      case BPF_JMP:
        if (BPF_OP(iter->code) == BPF_JA) {
          fprintf(stderr, "JMP %d\n", ip + iter->k + 1);
        } else {
          fprintf(stderr, "if A %s 0x%x; then JMP %d else JMP %d\n",
              BPF_OP(iter->code) == BPF_JSET ? "&" :
              BPF_OP(iter->code) == BPF_JEQ ? "==" :
              BPF_OP(iter->code) == BPF_JGE ? ">=" :
              BPF_OP(iter->code) == BPF_JGT ? ">"  : "???",
              (int)iter->k,
              ip + iter->jt + 1, ip + iter->jf + 1);
        }
        break;
      case BPF_RET:
        fprintf(stderr, "RET 0x%x  // ", iter->k);
        if ((iter->k & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP) {
          fprintf(stderr, "Trap #%d\n", iter->k & SECCOMP_RET_DATA);
        } else if ((iter->k & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) {
          fprintf(stderr, "errno = %d\n", iter->k & SECCOMP_RET_DATA);
        } else if (iter->k == SECCOMP_RET_ALLOW) {
          fprintf(stderr, "Allowed\n");
        } else {
          fprintf(stderr, "???\n");
        }
        break;
      case BPF_ALU:
        fprintf(stderr, BPF_OP(iter->code) == BPF_NEG
            ? "A := -A\n" : "A := A %s 0x%x\n",
            BPF_OP(iter->code) == BPF_ADD ? "+"  :
            BPF_OP(iter->code) == BPF_SUB ? "-"  :
            BPF_OP(iter->code) == BPF_MUL ? "*"  :
            BPF_OP(iter->code) == BPF_DIV ? "/"  :
            BPF_OP(iter->code) == BPF_MOD ? "%"  :
            BPF_OP(iter->code) == BPF_OR  ? "|"  :
            BPF_OP(iter->code) == BPF_XOR ? "^"  :
            BPF_OP(iter->code) == BPF_AND ? "&"  :
            BPF_OP(iter->code) == BPF_LSH ? "<<" :
            BPF_OP(iter->code) == BPF_RSH ? ">>" : "???",
            (int)iter->k);
        break;
      default:
        fprintf(stderr, "???\n");
        break;
    }
  }
  return;
}

Instruction* CodeGen::MakeInstruction(uint16_t code,
                                      uint32_t k,
                                      Instruction* next) {
  // We can handle non-jumping instructions and "always" jumps. Both of
  // them are followed by exactly one "next" instruction.
  // We allow callers to defer specifying "next", but then they must call
  // "joinInstructions" later.
  if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_JA) {
    SANDBOX_DIE(
        "Must provide both \"true\" and \"false\" branch "
        "for a BPF_JMP");
  }
  if (next && BPF_CLASS(code) == BPF_RET) {
    SANDBOX_DIE("Cannot append instructions after a return statement");
  }
  if (BPF_CLASS(code) == BPF_JMP) {
    // "Always" jumps use the "true" branch target, only.
    Instruction* insn = new Instruction(code, 0, next, NULL);
    instructions_.push_back(insn);
    return insn;
  } else {
    // Non-jumping instructions do not use any of the branch targets.
    Instruction* insn = new Instruction(code, k, next);
    instructions_.push_back(insn);
    return insn;
  }
}

Instruction* CodeGen::MakeInstruction(uint16_t code, const ErrorCode& err) {
  if (BPF_CLASS(code) != BPF_RET) {
    SANDBOX_DIE("ErrorCodes can only be used in return expressions");
  }
  if (err.error_type_ != ErrorCode::ET_SIMPLE &&
      err.error_type_ != ErrorCode::ET_TRAP) {
    SANDBOX_DIE("ErrorCode is not suitable for returning from a BPF program");
  }
  return MakeInstruction(code, err.err_);
}

Instruction* CodeGen::MakeInstruction(uint16_t code,
                                      uint32_t k,
                                      Instruction* jt,
                                      Instruction* jf) {
  // We can handle all conditional jumps. They are followed by both a
  // "true" and a "false" branch.
  if (BPF_CLASS(code) != BPF_JMP || BPF_OP(code) == BPF_JA) {
    SANDBOX_DIE("Expected a BPF_JMP instruction");
  }
  if (!jt && !jf) {
    // We allow callers to defer specifying exactly one of the branch
    // targets. It must then be set later by calling "JoinInstructions".
    SANDBOX_DIE("Branches must jump to a valid instruction");
  }
  Instruction* insn = new Instruction(code, k, jt, jf);
  instructions_.push_back(insn);
  return insn;
}

void CodeGen::JoinInstructions(Instruction* head, Instruction* tail) {
  // Merge two instructions, or set the branch target for an "always" jump.
  // This function should be called, if the caller didn't initially provide
  // a value for "next" when creating the instruction.
  if (BPF_CLASS(head->code) == BPF_JMP) {
    if (BPF_OP(head->code) == BPF_JA) {
      if (head->jt_ptr) {
        SANDBOX_DIE("Cannot append instructions in the middle of a sequence");
      }
      head->jt_ptr = tail;
    } else {
      if (!head->jt_ptr && head->jf_ptr) {
        head->jt_ptr = tail;
      } else if (!head->jf_ptr && head->jt_ptr) {
        head->jf_ptr = tail;
      } else {
        SANDBOX_DIE("Cannot append instructions after a jump");
      }
    }
  } else if (BPF_CLASS(head->code) == BPF_RET) {
    SANDBOX_DIE("Cannot append instructions after a return statement");
  } else if (head->next) {
    SANDBOX_DIE("Cannot append instructions in the middle of a sequence");
  } else {
    head->next = tail;
  }
  return;
}

void CodeGen::Traverse(Instruction* instruction,
                       void (*fnc)(Instruction*, void*),
                       void* aux) {
  std::set<Instruction*> visited;
  TraverseRecursively(&visited, instruction);
  for (std::set<Instruction*>::const_iterator iter = visited.begin();
       iter != visited.end();
       ++iter) {
    fnc(*iter, aux);
  }
}

void CodeGen::FindBranchTargets(const Instruction& instructions,
                                BranchTargets* branch_targets) {
  // Follow all possible paths through the "instructions" graph and compute
  // a list of branch targets. This will later be needed to compute the
  // boundaries of basic blocks.
  // We maintain a set of all instructions that we have previously seen. This
  // set ultimately converges on all instructions in the program.
  std::set<const Instruction*> seen_instructions;
  Instructions stack;
  for (const Instruction* insn = &instructions; insn;) {
    seen_instructions.insert(insn);
    if (BPF_CLASS(insn->code) == BPF_JMP) {
      // Found a jump. Increase count of incoming edges for each of the jump
      // targets.
      ++(*branch_targets)[insn->jt_ptr];
      if (BPF_OP(insn->code) != BPF_JA) {
        ++(*branch_targets)[insn->jf_ptr];
        stack.push_back(const_cast<Instruction*>(insn));
      }
      // Start a recursive decent for depth-first traversal.
      if (seen_instructions.find(insn->jt_ptr) == seen_instructions.end()) {
        // We haven't seen the "true" branch yet. Traverse it now. We have
        // already remembered the "false" branch on the stack and will
        // traverse it later.
        insn = insn->jt_ptr;
        continue;
      } else {
        // Now try traversing the "false" branch.
        insn = NULL;
      }
    } else {
      // This is a non-jump instruction, just continue to the next instruction
      // (if any). It's OK if "insn" becomes NULL when reaching a return
      // instruction.
      if (!insn->next != (BPF_CLASS(insn->code) == BPF_RET)) {
        SANDBOX_DIE(
            "Internal compiler error; return instruction must be at "
            "the end of the BPF program");
      }
      if (seen_instructions.find(insn->next) == seen_instructions.end()) {
        insn = insn->next;
      } else {
        // We have seen this instruction before. That could happen if it is
        // a branch target. No need to continue processing.
        insn = NULL;
      }
    }
    while (!insn && !stack.empty()) {
      // We are done processing all the way to a leaf node, backtrack up the
      // stack to any branches that we haven't processed yet. By definition,
      // this has to be a "false" branch, as we always process the "true"
      // branches right away.
      insn = stack.back();
      stack.pop_back();
      if (seen_instructions.find(insn->jf_ptr) == seen_instructions.end()) {
        // We haven't seen the "false" branch yet. So, that's where we'll
        // go now.
        insn = insn->jf_ptr;
      } else {
        // We have seen both the "true" and the "false" branch, continue
        // up the stack.
        if (seen_instructions.find(insn->jt_ptr) == seen_instructions.end()) {
          SANDBOX_DIE(
              "Internal compiler error; cannot find all "
              "branch targets");
        }
        insn = NULL;
      }
    }
  }
  return;
}

BasicBlock* CodeGen::MakeBasicBlock(Instruction* head, Instruction* tail) {
  // Iterate over all the instructions between "head" and "tail" and
  // insert them into a new basic block.
  BasicBlock* bb = new BasicBlock;
  for (;; head = head->next) {
    bb->instructions.push_back(head);
    if (head == tail) {
      break;
    }
    if (BPF_CLASS(head->code) == BPF_JMP) {
      SANDBOX_DIE("Found a jump inside of a basic block");
    }
  }
  basic_blocks_.push_back(bb);
  return bb;
}

void CodeGen::AddBasicBlock(Instruction* head,
                            Instruction* tail,
                            const BranchTargets& branch_targets,
                            TargetsToBlocks* basic_blocks,
                            BasicBlock** firstBlock) {
  // Add a new basic block to "basic_blocks". Also set "firstBlock", if it
  // has not been set before.
  BranchTargets::const_iterator iter = branch_targets.find(head);
  if ((iter == branch_targets.end()) != !*firstBlock ||
      !*firstBlock != basic_blocks->empty()) {
    SANDBOX_DIE(
        "Only the very first basic block should have no "
        "incoming jumps");
  }
  BasicBlock* bb = MakeBasicBlock(head, tail);
  if (!*firstBlock) {
    *firstBlock = bb;
  }
  (*basic_blocks)[head] = bb;
  return;
}

BasicBlock* CodeGen::CutGraphIntoBasicBlocks(
    Instruction* instructions,
    const BranchTargets& branch_targets,
    TargetsToBlocks* basic_blocks) {
  // Textbook implementation of a basic block generator. All basic blocks
  // start with a branch target and end with either a return statement or
  // a jump (or are followed by an instruction that forms the beginning of a
  // new block). Both conditional and "always" jumps are supported.
  BasicBlock* first_block = NULL;
  std::set<const Instruction*> seen_instructions;
  Instructions stack;
  Instruction* tail = NULL;
  Instruction* head = instructions;
  for (Instruction* insn = head; insn;) {
    if (seen_instructions.find(insn) != seen_instructions.end()) {
      // We somehow went in a circle. This should never be possible. Not even
      // cyclic graphs are supposed to confuse us this much.
      SANDBOX_DIE("Internal compiler error; cannot compute basic blocks");
    }
    seen_instructions.insert(insn);
    if (tail && branch_targets.find(insn) != branch_targets.end()) {
      // We reached a branch target. Start a new basic block (this means,
      // flushing the previous basic block first).
      AddBasicBlock(head, tail, branch_targets, basic_blocks, &first_block);
      head = insn;
    }
    if (BPF_CLASS(insn->code) == BPF_JMP) {
      // We reached a jump instruction, this completes our current basic
      // block. Flush it and continue by traversing both the true and the
      // false branch of the jump. We need to maintain a stack to do so.
      AddBasicBlock(head, insn, branch_targets, basic_blocks, &first_block);
      if (BPF_OP(insn->code) != BPF_JA) {
        stack.push_back(insn->jf_ptr);
      }
      insn = insn->jt_ptr;

      // If we are jumping to an instruction that we have previously
      // processed, we are done with this branch. Continue by backtracking
      // up the stack.
      while (seen_instructions.find(insn) != seen_instructions.end()) {
      backtracking:
        if (stack.empty()) {
          // We successfully traversed all reachable instructions.
          return first_block;
        } else {
          // Going up the stack.
          insn = stack.back();
          stack.pop_back();
        }
      }
      // Starting a new basic block.
      tail = NULL;
      head = insn;
    } else {
      // We found a non-jumping instruction, append it to current basic
      // block.
      tail = insn;
      insn = insn->next;
      if (!insn) {
        // We reached a return statement, flush the current basic block and
        // backtrack up the stack.
        AddBasicBlock(head, tail, branch_targets, basic_blocks, &first_block);
        goto backtracking;
      }
    }
  }
  return first_block;
}

// We define a comparator that inspects the sequence of instructions in our
// basic block and any blocks referenced by this block. This function can be
// used in a "less" comparator for the purpose of storing pointers to basic
// blocks in STL containers; this gives an easy option to use STL to find
// shared tail  sequences of basic blocks.
static int PointerCompare(const BasicBlock* block1,
                          const BasicBlock* block2,
                          const TargetsToBlocks& blocks) {
  // Return <0, 0, or >0 depending on the ordering of "block1" and "block2".
  // If we are looking at the exact same block, this is trivial and we don't
  // need to do a full comparison.
  if (block1 == block2) {
    return 0;
  }

  // We compare the sequence of instructions in both basic blocks.
  const Instructions& insns1 = block1->instructions;
  const Instructions& insns2 = block2->instructions;
  // Basic blocks should never be empty.
  CHECK(!insns1.empty());
  CHECK(!insns2.empty());

  Instructions::const_iterator iter1 = insns1.begin();
  Instructions::const_iterator iter2 = insns2.begin();
  for (;; ++iter1, ++iter2) {
    // If we have reached the end of the sequence of instructions in one or
    // both basic blocks, we know the relative ordering between the two blocks
    // and can return.
    if (iter1 == insns1.end()) {
      if (iter2 == insns2.end()) {
        // If the two blocks are the same length (and have elementwise-equal
        // code and k fields, which is the only way we can reach this point),
        // and the last instruction isn't a JMP or a RET, then we must compare
        // their successors.
        Instruction* const insns1_last = insns1.back();
        Instruction* const insns2_last = insns2.back();
        if (BPF_CLASS(insns1_last->code) != BPF_JMP &&
            BPF_CLASS(insns1_last->code) != BPF_RET) {
          // Non jumping instructions will always have a valid next instruction.
          CHECK(insns1_last->next);
          CHECK(insns2_last->next);
          return PointerCompare(blocks.find(insns1_last->next)->second,
                                blocks.find(insns2_last->next)->second,
                                blocks);
        } else {
          return 0;
        }
      }
      return -1;
    } else if (iter2 == insns2.end()) {
      return 1;
    }

    // Compare the individual fields for both instructions.
    const Instruction& insn1 = **iter1;
    const Instruction& insn2 = **iter2;
    if (insn1.code == insn2.code) {
      if (insn1.k == insn2.k) {
        // Only conditional jump instructions use the jt_ptr and jf_ptr
        // fields.
        if (BPF_CLASS(insn1.code) == BPF_JMP) {
          if (BPF_OP(insn1.code) != BPF_JA) {
            // Recursively compare the "true" and "false" branches.
            // A well-formed BPF program can't have any cycles, so we know
            // that our recursive algorithm will ultimately terminate.
            // In the unlikely event that the programmer made a mistake and
            // went out of the way to give us a cyclic program, we will crash
            // with a stack overflow. We are OK with that.
            int c = PointerCompare(blocks.find(insn1.jt_ptr)->second,
                                   blocks.find(insn2.jt_ptr)->second,
                                   blocks);
            if (c == 0) {
              c = PointerCompare(blocks.find(insn1.jf_ptr)->second,
                                 blocks.find(insn2.jf_ptr)->second,
                                 blocks);
              if (c == 0) {
                continue;
              } else {
                return c;
              }
            } else {
              return c;
            }
          } else {
            int c = PointerCompare(blocks.find(insn1.jt_ptr)->second,
                                   blocks.find(insn2.jt_ptr)->second,
                                   blocks);
            if (c == 0) {
              continue;
            } else {
              return c;
            }
          }
        } else {
          continue;
        }
      } else {
        return insn1.k - insn2.k;
      }
    } else {
      return insn1.code - insn2.code;
    }
  }
}

void CodeGen::MergeTails(TargetsToBlocks* blocks) {
  // We enter all of our basic blocks into a set using the BasicBlock::Less()
  // comparator. This naturally results in blocks with identical tails of
  // instructions to map to the same entry in the set. Whenever we discover
  // that a particular chain of instructions is already in the set, we merge
  // the basic blocks and update the pointer in the "blocks" map.
  // Returns the number of unique basic blocks.
  // N.B. We don't merge instructions on a granularity that is finer than
  //      a basic block. In practice, this is sufficiently rare that we don't
  //      incur a big cost.
  //      Similarly, we currently don't merge anything other than tails. In
  //      the future, we might decide to revisit this decision and attempt to
  //      merge arbitrary sub-sequences of instructions.
  BasicBlock::Less<TargetsToBlocks> less(*blocks, PointerCompare);
  typedef std::set<BasicBlock*, BasicBlock::Less<TargetsToBlocks> > Set;
  Set seen_basic_blocks(less);
  for (TargetsToBlocks::iterator iter = blocks->begin(); iter != blocks->end();
       ++iter) {
    BasicBlock* bb = iter->second;
    Set::const_iterator entry = seen_basic_blocks.find(bb);
    if (entry == seen_basic_blocks.end()) {
      // This is the first time we see this particular sequence of
      // instructions. Enter the basic block into the set of known
      // basic blocks.
      seen_basic_blocks.insert(bb);
    } else {
      // We have previously seen another basic block that defines the same
      // sequence of instructions. Merge the two blocks and update the
      // pointer in the "blocks" map.
      iter->second = *entry;
    }
  }
}

void CodeGen::ComputeIncomingBranches(BasicBlock* block,
                                      const TargetsToBlocks& targets_to_blocks,
                                      IncomingBranches* incoming_branches) {
  // We increment the number of incoming branches each time we encounter a
  // basic block. But we only traverse recursively the very first time we
  // encounter a new block. This is necessary to make topological sorting
  // work correctly.
  if (++(*incoming_branches)[block] == 1) {
    Instruction* last_insn = block->instructions.back();
    if (BPF_CLASS(last_insn->code) == BPF_JMP) {
      ComputeIncomingBranches(targets_to_blocks.find(last_insn->jt_ptr)->second,
                              targets_to_blocks,
                              incoming_branches);
      if (BPF_OP(last_insn->code) != BPF_JA) {
        ComputeIncomingBranches(
            targets_to_blocks.find(last_insn->jf_ptr)->second,
            targets_to_blocks,
            incoming_branches);
      }
    } else if (BPF_CLASS(last_insn->code) != BPF_RET) {
      ComputeIncomingBranches(targets_to_blocks.find(last_insn->next)->second,
                              targets_to_blocks,
                              incoming_branches);
    }
  }
}

void CodeGen::TopoSortBasicBlocks(BasicBlock* first_block,
                                  const TargetsToBlocks& blocks,
                                  BasicBlocks* basic_blocks) {
  // Textbook implementation of a toposort. We keep looking for basic blocks
  // that don't have any incoming branches (initially, this is just the
  // "first_block") and add them to the topologically sorted list of
  // "basic_blocks". As we do so, we remove outgoing branches. This potentially
  // ends up making our descendants eligible for the sorted list. The
  // sorting algorithm terminates when there are no more basic blocks that have
  // no incoming branches. If we didn't move all blocks from the set of
  // "unordered_blocks" to the sorted list of "basic_blocks", there must have
  // been a cyclic dependency. This should never happen in a BPF program, as
  // well-formed BPF programs only ever have forward branches.
  IncomingBranches unordered_blocks;
  ComputeIncomingBranches(first_block, blocks, &unordered_blocks);

  std::set<BasicBlock*> heads;
  for (;;) {
    // Move block from "unordered_blocks" to "basic_blocks".
    basic_blocks->push_back(first_block);

    // Inspect last instruction in the basic block. This is typically either a
    // jump or a return statement. But it could also be a "normal" instruction
    // that is followed by a jump target.
    Instruction* last_insn = first_block->instructions.back();
    if (BPF_CLASS(last_insn->code) == BPF_JMP) {
      // Remove outgoing branches. This might end up moving our descendants
      // into set of "head" nodes that no longer have any incoming branches.
      TargetsToBlocks::const_iterator iter;
      if (BPF_OP(last_insn->code) != BPF_JA) {
        iter = blocks.find(last_insn->jf_ptr);
        if (!--unordered_blocks[iter->second]) {
          heads.insert(iter->second);
        }
      }
      iter = blocks.find(last_insn->jt_ptr);
      if (!--unordered_blocks[iter->second]) {
        first_block = iter->second;
        continue;
      }
    } else if (BPF_CLASS(last_insn->code) != BPF_RET) {
      // We encountered an instruction that doesn't change code flow. Try to
      // pick the next "first_block" from "last_insn->next", if possible.
      TargetsToBlocks::const_iterator iter;
      iter = blocks.find(last_insn->next);
      if (!--unordered_blocks[iter->second]) {
        first_block = iter->second;
        continue;
      } else {
        // Our basic block is supposed to be followed by "last_insn->next",
        // but dependencies prevent this from happening. Insert a BPF_JA
        // instruction to correct the code flow.
        Instruction* ja = MakeInstruction(BPF_JMP + BPF_JA, 0, last_insn->next);
        first_block->instructions.push_back(ja);
        last_insn->next = ja;
      }
    }
    if (heads.empty()) {
      if (unordered_blocks.size() != basic_blocks->size()) {
        SANDBOX_DIE("Internal compiler error; cyclic graph detected");
      }
      return;
    }
    // Proceed by picking an arbitrary node from the set of basic blocks that
    // do not have any incoming branches.
    first_block = *heads.begin();
    heads.erase(heads.begin());
  }
}

void CodeGen::ComputeRelativeJumps(BasicBlocks* basic_blocks,
                                   const TargetsToBlocks& targets_to_blocks) {
  // While we previously used pointers in jt_ptr and jf_ptr to link jump
  // instructions to their targets, we now convert these jumps to relative
  // jumps that are suitable for loading the BPF program into the kernel.
  int offset = 0;

  // Since we just completed a toposort, all jump targets are guaranteed to
  // go forward. This means, iterating over the basic blocks in reverse makes
  // it trivial to compute the correct offsets.
  BasicBlock* bb = NULL;
  BasicBlock* last_bb = NULL;
  for (BasicBlocks::reverse_iterator iter = basic_blocks->rbegin();
       iter != basic_blocks->rend();
       ++iter) {
    last_bb = bb;
    bb = *iter;
    Instruction* insn = bb->instructions.back();
    if (BPF_CLASS(insn->code) == BPF_JMP) {
      // Basic block ended in a jump instruction. We can now compute the
      // appropriate offsets.
      if (BPF_OP(insn->code) == BPF_JA) {
        // "Always" jumps use the 32bit "k" field for the offset, instead
        // of the 8bit "jt" and "jf" fields.
        int jmp = offset - targets_to_blocks.find(insn->jt_ptr)->second->offset;
        insn->k = jmp;
        insn->jt = insn->jf = 0;
      } else {
        // The offset computations for conditional jumps are just the same
        // as for "always" jumps.
        int jt = offset - targets_to_blocks.find(insn->jt_ptr)->second->offset;
        int jf = offset - targets_to_blocks.find(insn->jf_ptr)->second->offset;

        // There is an added complication, because conditional relative jumps
        // can only jump at most 255 instructions forward. If we have to jump
        // further, insert an extra "always" jump.
        Instructions::size_type jmp = bb->instructions.size();
        if (jt > 255 || (jt == 255 && jf > 255)) {
          Instruction* ja = MakeInstruction(BPF_JMP + BPF_JA, 0, insn->jt_ptr);
          bb->instructions.push_back(ja);
          ja->k = jt;
          ja->jt = ja->jf = 0;

          // The newly inserted "always" jump, of course, requires us to adjust
          // the jump targets in the original conditional jump.
          jt = 0;
          ++jf;
        }
        if (jf > 255) {
          Instruction* ja = MakeInstruction(BPF_JMP + BPF_JA, 0, insn->jf_ptr);
          bb->instructions.insert(bb->instructions.begin() + jmp, ja);
          ja->k = jf;
          ja->jt = ja->jf = 0;

          // Again, we have to adjust the jump targets in the original
          // conditional jump.
          ++jt;
          jf = 0;
        }

        // Now we can finally set the relative jump targets in the conditional
        // jump instruction. Afterwards, we must no longer access the jt_ptr
        // and jf_ptr fields.
        insn->jt = jt;
        insn->jf = jf;
      }
    } else if (BPF_CLASS(insn->code) != BPF_RET &&
               targets_to_blocks.find(insn->next)->second != last_bb) {
      SANDBOX_DIE("Internal compiler error; invalid basic block encountered");
    }

    // Proceed to next basic block.
    offset += bb->instructions.size();
    bb->offset = offset;
  }
  return;
}

void CodeGen::ConcatenateBasicBlocks(const BasicBlocks& basic_blocks,
                                     SandboxBPF::Program* program) {
  // Our basic blocks have been sorted and relative jump offsets have been
  // computed. The last remaining step is for all the instructions in our
  // basic blocks to be concatenated into a BPF program.
  program->clear();
  for (BasicBlocks::const_iterator bb_iter = basic_blocks.begin();
       bb_iter != basic_blocks.end();
       ++bb_iter) {
    const BasicBlock& bb = **bb_iter;
    for (Instructions::const_iterator insn_iter = bb.instructions.begin();
         insn_iter != bb.instructions.end();
         ++insn_iter) {
      const Instruction& insn = **insn_iter;
      program->push_back(
          (struct sock_filter) {insn.code, insn.jt, insn.jf, insn.k});
    }
  }
  return;
}

void CodeGen::Compile(Instruction* instructions, SandboxBPF::Program* program) {
  if (compiled_) {
    SANDBOX_DIE(
        "Cannot call Compile() multiple times. Create a new code "
        "generator instead");
  }
  compiled_ = true;

  BranchTargets branch_targets;
  FindBranchTargets(*instructions, &branch_targets);
  TargetsToBlocks all_blocks;
  BasicBlock* first_block =
      CutGraphIntoBasicBlocks(instructions, branch_targets, &all_blocks);
  MergeTails(&all_blocks);
  BasicBlocks basic_blocks;
  TopoSortBasicBlocks(first_block, all_blocks, &basic_blocks);
  ComputeRelativeJumps(&basic_blocks, all_blocks);
  ConcatenateBasicBlocks(basic_blocks, program);
  return;
}

}  // namespace sandbox

/* [<][>][^][v][top][bottom][index][help] */