root/sandbox/linux/seccomp-bpf/sandbox_bpf.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. popcount
  2. WriteFailedStderrSetupMessage
  3. ProbeEvaluator
  4. ProbeProcess
  5. AllowAllEvaluator
  6. TryVsyscallProcess
  7. IsSingleThreaded
  8. IsDenied
  9. CheckForUnsafeErrorCodes
  10. ReturnErrno
  11. RedirectToUserspace
  12. EvaluateSyscall
  13. BPFFailure
  14. aux_
  15. EvaluateSyscall
  16. sandbox_has_started_
  17. IsValidSyscallNumber
  18. RunFunctionInPolicy
  19. KernelSupportSeccompBPF
  20. SupportsSeccompSandbox
  21. set_proc_fd
  22. StartSandbox
  23. PolicySanityChecks
  24. SetSandboxPolicyDeprecated
  25. SetSandboxPolicy
  26. InstallFilter
  27. AssembleFilter
  28. VerifyProgram
  29. FindRanges
  30. AssembleJumpTable
  31. RetExpression
  32. CondExpression
  33. Unexpected64bitArgument
  34. Trap
  35. UnsafeTrap
  36. ForwardSyscall
  37. Cond
  38. Kill

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "sandbox/linux/seccomp-bpf/sandbox_bpf.h"

// Some headers on Android are missing cdefs: crbug.com/172337.
// (We can't use OS_ANDROID here since build_config.h is not included).
#if defined(ANDROID)
#include <sys/cdefs.h>
#endif

#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <sys/prctl.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>

#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/posix/eintr_wrapper.h"
#include "sandbox/linux/seccomp-bpf/codegen.h"
#include "sandbox/linux/seccomp-bpf/sandbox_bpf_policy.h"
#include "sandbox/linux/seccomp-bpf/syscall.h"
#include "sandbox/linux/seccomp-bpf/syscall_iterator.h"
#include "sandbox/linux/seccomp-bpf/verifier.h"

namespace sandbox {

namespace {

const int kExpectedExitCode = 100;

int popcount(uint32_t x) {
  return __builtin_popcount(x);
}

#if !defined(NDEBUG)
void WriteFailedStderrSetupMessage(int out_fd) {
  const char* error_string = strerror(errno);
  static const char msg[] =
      "You have reproduced a puzzling issue.\n"
      "Please, report to crbug.com/152530!\n"
      "Failed to set up stderr: ";
  if (HANDLE_EINTR(write(out_fd, msg, sizeof(msg) - 1)) > 0 && error_string &&
      HANDLE_EINTR(write(out_fd, error_string, strlen(error_string))) > 0 &&
      HANDLE_EINTR(write(out_fd, "\n", 1))) {
  }
}
#endif  // !defined(NDEBUG)

// We define a really simple sandbox policy. It is just good enough for us
// to tell that the sandbox has actually been activated.
ErrorCode ProbeEvaluator(SandboxBPF*, int sysnum, void*) __attribute__((const));
ErrorCode ProbeEvaluator(SandboxBPF*, int sysnum, void*) {
  switch (sysnum) {
    case __NR_getpid:
      // Return EPERM so that we can check that the filter actually ran.
      return ErrorCode(EPERM);
    case __NR_exit_group:
      // Allow exit() with a non-default return code.
      return ErrorCode(ErrorCode::ERR_ALLOWED);
    default:
      // Make everything else fail in an easily recognizable way.
      return ErrorCode(EINVAL);
  }
}

void ProbeProcess(void) {
  if (syscall(__NR_getpid) < 0 && errno == EPERM) {
    syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode));
  }
}

ErrorCode AllowAllEvaluator(SandboxBPF*, int sysnum, void*) {
  if (!SandboxBPF::IsValidSyscallNumber(sysnum)) {
    return ErrorCode(ENOSYS);
  }
  return ErrorCode(ErrorCode::ERR_ALLOWED);
}

void TryVsyscallProcess(void) {
  time_t current_time;
  // time() is implemented as a vsyscall. With an older glibc, with
  // vsyscall=emulate and some versions of the seccomp BPF patch
  // we may get SIGKILL-ed. Detect this!
  if (time(&current_time) != static_cast<time_t>(-1)) {
    syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode));
  }
}

bool IsSingleThreaded(int proc_fd) {
  if (proc_fd < 0) {
    // Cannot determine whether program is single-threaded. Hope for
    // the best...
    return true;
  }

  struct stat sb;
  int task = -1;
  if ((task = openat(proc_fd, "self/task", O_RDONLY | O_DIRECTORY)) < 0 ||
      fstat(task, &sb) != 0 || sb.st_nlink != 3 || IGNORE_EINTR(close(task))) {
    if (task >= 0) {
      if (IGNORE_EINTR(close(task))) {
      }
    }
    return false;
  }
  return true;
}

bool IsDenied(const ErrorCode& code) {
  return (code.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP ||
         (code.err() >= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MIN_ERRNO) &&
          code.err() <= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MAX_ERRNO));
}

// Function that can be passed as a callback function to CodeGen::Traverse().
// Checks whether the "insn" returns an UnsafeTrap() ErrorCode. If so, it
// sets the "bool" variable pointed to by "aux".
void CheckForUnsafeErrorCodes(Instruction* insn, void* aux) {
  bool* is_unsafe = static_cast<bool*>(aux);
  if (!*is_unsafe) {
    if (BPF_CLASS(insn->code) == BPF_RET && insn->k > SECCOMP_RET_TRAP &&
        insn->k - SECCOMP_RET_TRAP <= SECCOMP_RET_DATA) {
      const ErrorCode& err =
          Trap::ErrorCodeFromTrapId(insn->k & SECCOMP_RET_DATA);
      if (err.error_type() != ErrorCode::ET_INVALID && !err.safe()) {
        *is_unsafe = true;
      }
    }
  }
}

// A Trap() handler that returns an "errno" value. The value is encoded
// in the "aux" parameter.
intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) {
  // TrapFnc functions report error by following the native kernel convention
  // of returning an exit code in the range of -1..-4096. They do not try to
  // set errno themselves. The glibc wrapper that triggered the SIGSYS will
  // ultimately do so for us.
  int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA;
  return -err;
}

// Function that can be passed as a callback function to CodeGen::Traverse().
// Checks whether the "insn" returns an errno value from a BPF filter. If so,
// it rewrites the instruction to instead call a Trap() handler that does
// the same thing. "aux" is ignored.
void RedirectToUserspace(Instruction* insn, void* aux) {
  // When inside an UnsafeTrap() callback, we want to allow all system calls.
  // This means, we must conditionally disable the sandbox -- and that's not
  // something that kernel-side BPF filters can do, as they cannot inspect
  // any state other than the syscall arguments.
  // But if we redirect all error handlers to user-space, then we can easily
  // make this decision.
  // The performance penalty for this extra round-trip to user-space is not
  // actually that bad, as we only ever pay it for denied system calls; and a
  // typical program has very few of these.
  SandboxBPF* sandbox = static_cast<SandboxBPF*>(aux);
  if (BPF_CLASS(insn->code) == BPF_RET &&
      (insn->k & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) {
    insn->k = sandbox->Trap(ReturnErrno,
        reinterpret_cast<void*>(insn->k & SECCOMP_RET_DATA)).err();
  }
}

// This wraps an existing policy and changes its behavior to match the changes
// made by RedirectToUserspace(). This is part of the framework that allows BPF
// evaluation in userland.
// TODO(markus): document the code inside better.
class RedirectToUserSpacePolicyWrapper : public SandboxBPFPolicy {
 public:
  explicit RedirectToUserSpacePolicyWrapper(
      const SandboxBPFPolicy* wrapped_policy)
      : wrapped_policy_(wrapped_policy) {
    DCHECK(wrapped_policy_);
  }

  virtual ErrorCode EvaluateSyscall(SandboxBPF* sandbox_compiler,
                                    int system_call_number) const OVERRIDE {
    ErrorCode err =
        wrapped_policy_->EvaluateSyscall(sandbox_compiler, system_call_number);
    if ((err.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) {
      return sandbox_compiler->Trap(
          ReturnErrno, reinterpret_cast<void*>(err.err() & SECCOMP_RET_DATA));
    }
    return err;
  }

 private:
  const SandboxBPFPolicy* wrapped_policy_;
  DISALLOW_COPY_AND_ASSIGN(RedirectToUserSpacePolicyWrapper);
};

intptr_t BPFFailure(const struct arch_seccomp_data&, void* aux) {
  SANDBOX_DIE(static_cast<char*>(aux));
}

// This class allows compatibility with the old, deprecated SetSandboxPolicy.
class CompatibilityPolicy : public SandboxBPFPolicy {
 public:
  CompatibilityPolicy(SandboxBPF::EvaluateSyscall syscall_evaluator, void* aux)
      : syscall_evaluator_(syscall_evaluator), aux_(aux) {
    DCHECK(syscall_evaluator_);
  }

  virtual ErrorCode EvaluateSyscall(SandboxBPF* sandbox_compiler,
                                    int system_call_number) const OVERRIDE {
    return syscall_evaluator_(sandbox_compiler, system_call_number, aux_);
  }

 private:
  SandboxBPF::EvaluateSyscall syscall_evaluator_;
  void* aux_;
  DISALLOW_COPY_AND_ASSIGN(CompatibilityPolicy);
};

}  // namespace

SandboxBPF::SandboxBPF()
    : quiet_(false),
      proc_fd_(-1),
      conds_(new Conds),
      sandbox_has_started_(false) {}

SandboxBPF::~SandboxBPF() {
  // It is generally unsafe to call any memory allocator operations or to even
  // call arbitrary destructors after having installed a new policy. We just
  // have no way to tell whether this policy would allow the system calls that
  // the constructors can trigger.
  // So, we normally destroy all of our complex state prior to starting the
  // sandbox. But this won't happen, if the Sandbox object was created and
  // never actually used to set up a sandbox. So, just in case, we are
  // destroying any remaining state.
  // The "if ()" statements are technically superfluous. But let's be explicit
  // that we really don't want to run any code, when we already destroyed
  // objects before setting up the sandbox.
  if (conds_) {
    delete conds_;
  }
}

bool SandboxBPF::IsValidSyscallNumber(int sysnum) {
  return SyscallIterator::IsValid(sysnum);
}

bool SandboxBPF::RunFunctionInPolicy(void (*code_in_sandbox)(),
                                     EvaluateSyscall syscall_evaluator,
                                     void* aux) {
  // Block all signals before forking a child process. This prevents an
  // attacker from manipulating our test by sending us an unexpected signal.
  sigset_t old_mask, new_mask;
  if (sigfillset(&new_mask) || sigprocmask(SIG_BLOCK, &new_mask, &old_mask)) {
    SANDBOX_DIE("sigprocmask() failed");
  }
  int fds[2];
  if (pipe2(fds, O_NONBLOCK | O_CLOEXEC)) {
    SANDBOX_DIE("pipe() failed");
  }

  if (fds[0] <= 2 || fds[1] <= 2) {
    SANDBOX_DIE("Process started without standard file descriptors");
  }

  // This code is using fork() and should only ever run single-threaded.
  // Most of the code below is "async-signal-safe" and only minor changes
  // would be needed to support threads.
  DCHECK(IsSingleThreaded(proc_fd_));
  pid_t pid = fork();
  if (pid < 0) {
    // Die if we cannot fork(). We would probably fail a little later
    // anyway, as the machine is likely very close to running out of
    // memory.
    // But what we don't want to do is return "false", as a crafty
    // attacker might cause fork() to fail at will and could trick us
    // into running without a sandbox.
    sigprocmask(SIG_SETMASK, &old_mask, NULL);  // OK, if it fails
    SANDBOX_DIE("fork() failed unexpectedly");
  }

  // In the child process
  if (!pid) {
    // Test a very simple sandbox policy to verify that we can
    // successfully turn on sandboxing.
    Die::EnableSimpleExit();

    errno = 0;
    if (IGNORE_EINTR(close(fds[0]))) {
      // This call to close() has been failing in strange ways. See
      // crbug.com/152530. So we only fail in debug mode now.
#if !defined(NDEBUG)
      WriteFailedStderrSetupMessage(fds[1]);
      SANDBOX_DIE(NULL);
#endif
    }
    if (HANDLE_EINTR(dup2(fds[1], 2)) != 2) {
      // Stderr could very well be a file descriptor to .xsession-errors, or
      // another file, which could be backed by a file system that could cause
      // dup2 to fail while trying to close stderr. It's important that we do
      // not fail on trying to close stderr.
      // If dup2 fails here, we will continue normally, this means that our
      // parent won't cause a fatal failure if something writes to stderr in
      // this child.
#if !defined(NDEBUG)
      // In DEBUG builds, we still want to get a report.
      WriteFailedStderrSetupMessage(fds[1]);
      SANDBOX_DIE(NULL);
#endif
    }
    if (IGNORE_EINTR(close(fds[1]))) {
      // This call to close() has been failing in strange ways. See
      // crbug.com/152530. So we only fail in debug mode now.
#if !defined(NDEBUG)
      WriteFailedStderrSetupMessage(fds[1]);
      SANDBOX_DIE(NULL);
#endif
    }

    SetSandboxPolicyDeprecated(syscall_evaluator, aux);
    StartSandbox();

    // Run our code in the sandbox.
    code_in_sandbox();

    // code_in_sandbox() is not supposed to return here.
    SANDBOX_DIE(NULL);
  }

  // In the parent process.
  if (IGNORE_EINTR(close(fds[1]))) {
    SANDBOX_DIE("close() failed");
  }
  if (sigprocmask(SIG_SETMASK, &old_mask, NULL)) {
    SANDBOX_DIE("sigprocmask() failed");
  }
  int status;
  if (HANDLE_EINTR(waitpid(pid, &status, 0)) != pid) {
    SANDBOX_DIE("waitpid() failed unexpectedly");
  }
  bool rc = WIFEXITED(status) && WEXITSTATUS(status) == kExpectedExitCode;

  // If we fail to support sandboxing, there might be an additional
  // error message. If so, this was an entirely unexpected and fatal
  // failure. We should report the failure and somebody must fix
  // things. This is probably a security-critical bug in the sandboxing
  // code.
  if (!rc) {
    char buf[4096];
    ssize_t len = HANDLE_EINTR(read(fds[0], buf, sizeof(buf) - 1));
    if (len > 0) {
      while (len > 1 && buf[len - 1] == '\n') {
        --len;
      }
      buf[len] = '\000';
      SANDBOX_DIE(buf);
    }
  }
  if (IGNORE_EINTR(close(fds[0]))) {
    SANDBOX_DIE("close() failed");
  }

  return rc;
}

bool SandboxBPF::KernelSupportSeccompBPF() {
  return RunFunctionInPolicy(ProbeProcess, ProbeEvaluator, 0) &&
         RunFunctionInPolicy(TryVsyscallProcess, AllowAllEvaluator, 0);
}

SandboxBPF::SandboxStatus SandboxBPF::SupportsSeccompSandbox(int proc_fd) {
  // It the sandbox is currently active, we clearly must have support for
  // sandboxing.
  if (status_ == STATUS_ENABLED) {
    return status_;
  }

  // Even if the sandbox was previously available, something might have
  // changed in our run-time environment. Check one more time.
  if (status_ == STATUS_AVAILABLE) {
    if (!IsSingleThreaded(proc_fd)) {
      status_ = STATUS_UNAVAILABLE;
    }
    return status_;
  }

  if (status_ == STATUS_UNAVAILABLE && IsSingleThreaded(proc_fd)) {
    // All state transitions resulting in STATUS_UNAVAILABLE are immediately
    // preceded by STATUS_AVAILABLE. Furthermore, these transitions all
    // happen, if and only if they are triggered by the process being multi-
    // threaded.
    // In other words, if a single-threaded process is currently in the
    // STATUS_UNAVAILABLE state, it is safe to assume that sandboxing is
    // actually available.
    status_ = STATUS_AVAILABLE;
    return status_;
  }

  // If we have not previously checked for availability of the sandbox or if
  // we otherwise don't believe to have a good cached value, we have to
  // perform a thorough check now.
  if (status_ == STATUS_UNKNOWN) {
    // We create our own private copy of a "Sandbox" object. This ensures that
    // the object does not have any policies configured, that might interfere
    // with the tests done by "KernelSupportSeccompBPF()".
    SandboxBPF sandbox;

    // By setting "quiet_ = true" we suppress messages for expected and benign
    // failures (e.g. if the current kernel lacks support for BPF filters).
    sandbox.quiet_ = true;
    sandbox.set_proc_fd(proc_fd);
    status_ = sandbox.KernelSupportSeccompBPF() ? STATUS_AVAILABLE
                                                : STATUS_UNSUPPORTED;

    // As we are performing our tests from a child process, the run-time
    // environment that is visible to the sandbox is always guaranteed to be
    // single-threaded. Let's check here whether the caller is single-
    // threaded. Otherwise, we mark the sandbox as temporarily unavailable.
    if (status_ == STATUS_AVAILABLE && !IsSingleThreaded(proc_fd)) {
      status_ = STATUS_UNAVAILABLE;
    }
  }
  return status_;
}

void SandboxBPF::set_proc_fd(int proc_fd) { proc_fd_ = proc_fd; }

void SandboxBPF::StartSandbox() {
  if (status_ == STATUS_UNSUPPORTED || status_ == STATUS_UNAVAILABLE) {
    SANDBOX_DIE(
        "Trying to start sandbox, even though it is known to be "
        "unavailable");
  } else if (sandbox_has_started_ || !conds_) {
    SANDBOX_DIE(
        "Cannot repeatedly start sandbox. Create a separate Sandbox "
        "object instead.");
  }
  if (proc_fd_ < 0) {
    proc_fd_ = open("/proc", O_RDONLY | O_DIRECTORY);
  }
  if (proc_fd_ < 0) {
    // For now, continue in degraded mode, if we can't access /proc.
    // In the future, we might want to tighten this requirement.
  }
  if (!IsSingleThreaded(proc_fd_)) {
    SANDBOX_DIE("Cannot start sandbox, if process is already multi-threaded");
  }

  // We no longer need access to any files in /proc. We want to do this
  // before installing the filters, just in case that our policy denies
  // close().
  if (proc_fd_ >= 0) {
    if (IGNORE_EINTR(close(proc_fd_))) {
      SANDBOX_DIE("Failed to close file descriptor for /proc");
    }
    proc_fd_ = -1;
  }

  // Install the filters.
  InstallFilter();

  // We are now inside the sandbox.
  status_ = STATUS_ENABLED;
}

void SandboxBPF::PolicySanityChecks(SandboxBPFPolicy* policy) {
  for (SyscallIterator iter(true); !iter.Done();) {
    uint32_t sysnum = iter.Next();
    if (!IsDenied(policy->EvaluateSyscall(this, sysnum))) {
      SANDBOX_DIE(
          "Policies should deny system calls that are outside the "
          "expected range (typically MIN_SYSCALL..MAX_SYSCALL)");
    }
  }
  return;
}

// Deprecated API, supported with a wrapper to the new API.
void SandboxBPF::SetSandboxPolicyDeprecated(EvaluateSyscall syscall_evaluator,
                                            void* aux) {
  if (sandbox_has_started_ || !conds_) {
    SANDBOX_DIE("Cannot change policy after sandbox has started");
  }
  SetSandboxPolicy(new CompatibilityPolicy(syscall_evaluator, aux));
}

// Don't take a scoped_ptr here, polymorphism make their use awkward.
void SandboxBPF::SetSandboxPolicy(SandboxBPFPolicy* policy) {
  DCHECK(!policy_);
  if (sandbox_has_started_ || !conds_) {
    SANDBOX_DIE("Cannot change policy after sandbox has started");
  }
  PolicySanityChecks(policy);
  policy_.reset(policy);
}

void SandboxBPF::InstallFilter() {
  // We want to be very careful in not imposing any requirements on the
  // policies that are set with SetSandboxPolicy(). This means, as soon as
  // the sandbox is active, we shouldn't be relying on libraries that could
  // be making system calls. This, for example, means we should avoid
  // using the heap and we should avoid using STL functions.
  // Temporarily copy the contents of the "program" vector into a
  // stack-allocated array; and then explicitly destroy that object.
  // This makes sure we don't ex- or implicitly call new/delete after we
  // installed the BPF filter program in the kernel. Depending on the
  // system memory allocator that is in effect, these operators can result
  // in system calls to things like munmap() or brk().
  Program* program = AssembleFilter(false /* force_verification */);

  struct sock_filter bpf[program->size()];
  const struct sock_fprog prog = {static_cast<unsigned short>(program->size()),
                                  bpf};
  memcpy(bpf, &(*program)[0], sizeof(bpf));
  delete program;

  // Make an attempt to release memory that is no longer needed here, rather
  // than in the destructor. Try to avoid as much as possible to presume of
  // what will be possible to do in the new (sandboxed) execution environment.
  delete conds_;
  conds_ = NULL;
  policy_.reset();

  // Install BPF filter program
  if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
    SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to enable no-new-privs");
  } else {
    if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog)) {
      SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to turn on BPF filters");
    }
  }

  sandbox_has_started_ = true;

  return;
}

SandboxBPF::Program* SandboxBPF::AssembleFilter(bool force_verification) {
#if !defined(NDEBUG)
  force_verification = true;
#endif

  // Verify that the user pushed a policy.
  DCHECK(policy_);

  // Assemble the BPF filter program.
  CodeGen* gen = new CodeGen();
  if (!gen) {
    SANDBOX_DIE("Out of memory");
  }

  // If the architecture doesn't match SECCOMP_ARCH, disallow the
  // system call.
  Instruction* tail;
  Instruction* head = gen->MakeInstruction(
      BPF_LD + BPF_W + BPF_ABS,
      SECCOMP_ARCH_IDX,
      tail = gen->MakeInstruction(
          BPF_JMP + BPF_JEQ + BPF_K,
          SECCOMP_ARCH,
          NULL,
          gen->MakeInstruction(
              BPF_RET + BPF_K,
              Kill("Invalid audit architecture in BPF filter"))));

  bool has_unsafe_traps = false;
  {
    // Evaluate all possible system calls and group their ErrorCodes into
    // ranges of identical codes.
    Ranges ranges;
    FindRanges(&ranges);

    // Compile the system call ranges to an optimized BPF jumptable
    Instruction* jumptable =
        AssembleJumpTable(gen, ranges.begin(), ranges.end());

    // If there is at least one UnsafeTrap() in our program, the entire sandbox
    // is unsafe. We need to modify the program so that all non-
    // SECCOMP_RET_ALLOW ErrorCodes are handled in user-space. This will then
    // allow us to temporarily disable sandboxing rules inside of callbacks to
    // UnsafeTrap().
    gen->Traverse(jumptable, CheckForUnsafeErrorCodes, &has_unsafe_traps);

    // Grab the system call number, so that we can implement jump tables.
    Instruction* load_nr =
        gen->MakeInstruction(BPF_LD + BPF_W + BPF_ABS, SECCOMP_NR_IDX);

    // If our BPF program has unsafe jumps, enable support for them. This
    // test happens very early in the BPF filter program. Even before we
    // consider looking at system call numbers.
    // As support for unsafe jumps essentially defeats all the security
    // measures that the sandbox provides, we print a big warning message --
    // and of course, we make sure to only ever enable this feature if it
    // is actually requested by the sandbox policy.
    if (has_unsafe_traps) {
      if (SandboxSyscall(-1) == -1 && errno == ENOSYS) {
        SANDBOX_DIE(
            "Support for UnsafeTrap() has not yet been ported to this "
            "architecture");
      }

      if (!policy_->EvaluateSyscall(this, __NR_rt_sigprocmask)
               .Equals(ErrorCode(ErrorCode::ERR_ALLOWED)) ||
          !policy_->EvaluateSyscall(this, __NR_rt_sigreturn)
               .Equals(ErrorCode(ErrorCode::ERR_ALLOWED))
#if defined(__NR_sigprocmask)
          ||
          !policy_->EvaluateSyscall(this, __NR_sigprocmask)
               .Equals(ErrorCode(ErrorCode::ERR_ALLOWED))
#endif
#if defined(__NR_sigreturn)
          ||
          !policy_->EvaluateSyscall(this, __NR_sigreturn)
               .Equals(ErrorCode(ErrorCode::ERR_ALLOWED))
#endif
          ) {
        SANDBOX_DIE(
            "Invalid seccomp policy; if using UnsafeTrap(), you must "
            "unconditionally allow sigreturn() and sigprocmask()");
      }

      if (!Trap::EnableUnsafeTrapsInSigSysHandler()) {
        // We should never be able to get here, as UnsafeTrap() should never
        // actually return a valid ErrorCode object unless the user set the
        // CHROME_SANDBOX_DEBUGGING environment variable; and therefore,
        // "has_unsafe_traps" would always be false. But better double-check
        // than enabling dangerous code.
        SANDBOX_DIE("We'd rather die than enable unsafe traps");
      }
      gen->Traverse(jumptable, RedirectToUserspace, this);

      // Allow system calls, if they originate from our magic return address
      // (which we can query by calling SandboxSyscall(-1)).
      uintptr_t syscall_entry_point =
          static_cast<uintptr_t>(SandboxSyscall(-1));
      uint32_t low = static_cast<uint32_t>(syscall_entry_point);
#if __SIZEOF_POINTER__ > 4
      uint32_t hi = static_cast<uint32_t>(syscall_entry_point >> 32);
#endif

      // BPF cannot do native 64bit comparisons. On 64bit architectures, we
      // have to compare both 32bit halves of the instruction pointer. If they
      // match what we expect, we return ERR_ALLOWED. If either or both don't
      // match, we continue evalutating the rest of the sandbox policy.
      Instruction* escape_hatch = gen->MakeInstruction(
          BPF_LD + BPF_W + BPF_ABS,
          SECCOMP_IP_LSB_IDX,
          gen->MakeInstruction(
              BPF_JMP + BPF_JEQ + BPF_K,
              low,
#if __SIZEOF_POINTER__ > 4
              gen->MakeInstruction(
                  BPF_LD + BPF_W + BPF_ABS,
                  SECCOMP_IP_MSB_IDX,
                  gen->MakeInstruction(
                      BPF_JMP + BPF_JEQ + BPF_K,
                      hi,
#endif
                      gen->MakeInstruction(BPF_RET + BPF_K,
                                           ErrorCode(ErrorCode::ERR_ALLOWED)),
#if __SIZEOF_POINTER__ > 4
                      load_nr)),
#endif
              load_nr));
      gen->JoinInstructions(tail, escape_hatch);
    } else {
      gen->JoinInstructions(tail, load_nr);
    }
    tail = load_nr;

// On Intel architectures, verify that system call numbers are in the
// expected number range. The older i386 and x86-64 APIs clear bit 30
// on all system calls. The newer x32 API always sets bit 30.
#if defined(__i386__) || defined(__x86_64__)
    Instruction* invalidX32 = gen->MakeInstruction(
        BPF_RET + BPF_K, Kill("Illegal mixing of system call ABIs").err_);
    Instruction* checkX32 =
#if defined(__x86_64__) && defined(__ILP32__)
        gen->MakeInstruction(
            BPF_JMP + BPF_JSET + BPF_K, 0x40000000, 0, invalidX32);
#else
        gen->MakeInstruction(
            BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, 0);
#endif
    gen->JoinInstructions(tail, checkX32);
    tail = checkX32;
#endif

    // Append jump table to our pre-amble
    gen->JoinInstructions(tail, jumptable);
  }

  // Turn the DAG into a vector of instructions.
  Program* program = new Program();
  gen->Compile(head, program);
  delete gen;

  // Make sure compilation resulted in BPF program that executes
  // correctly. Otherwise, there is an internal error in our BPF compiler.
  // There is really nothing the caller can do until the bug is fixed.
  if (force_verification) {
    // Verification is expensive. We only perform this step, if we are
    // compiled in debug mode, or if the caller explicitly requested
    // verification.
    VerifyProgram(*program, has_unsafe_traps);
  }

  return program;
}

void SandboxBPF::VerifyProgram(const Program& program, bool has_unsafe_traps) {
  // If we previously rewrote the BPF program so that it calls user-space
  // whenever we return an "errno" value from the filter, then we have to
  // wrap our system call evaluator to perform the same operation. Otherwise,
  // the verifier would also report a mismatch in return codes.
  scoped_ptr<const RedirectToUserSpacePolicyWrapper> redirected_policy(
      new RedirectToUserSpacePolicyWrapper(policy_.get()));

  const char* err = NULL;
  if (!Verifier::VerifyBPF(this,
                           program,
                           has_unsafe_traps ? *redirected_policy : *policy_,
                           &err)) {
    CodeGen::PrintProgram(program);
    SANDBOX_DIE(err);
  }
}

void SandboxBPF::FindRanges(Ranges* ranges) {
  // Please note that "struct seccomp_data" defines system calls as a signed
  // int32_t, but BPF instructions always operate on unsigned quantities. We
  // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL,
  // and then verifying that the rest of the number range (both positive and
  // negative) all return the same ErrorCode.
  uint32_t old_sysnum = 0;
  ErrorCode old_err = policy_->EvaluateSyscall(this, old_sysnum);
  ErrorCode invalid_err = policy_->EvaluateSyscall(this, MIN_SYSCALL - 1);

  for (SyscallIterator iter(false); !iter.Done();) {
    uint32_t sysnum = iter.Next();
    ErrorCode err = policy_->EvaluateSyscall(this, static_cast<int>(sysnum));
    if (!iter.IsValid(sysnum) && !invalid_err.Equals(err)) {
      // A proper sandbox policy should always treat system calls outside of
      // the range MIN_SYSCALL..MAX_SYSCALL (i.e. anything that returns
      // "false" for SyscallIterator::IsValid()) identically. Typically, all
      // of these system calls would be denied with the same ErrorCode.
      SANDBOX_DIE("Invalid seccomp policy");
    }
    if (!err.Equals(old_err) || iter.Done()) {
      ranges->push_back(Range(old_sysnum, sysnum - 1, old_err));
      old_sysnum = sysnum;
      old_err = err;
    }
  }
}

Instruction* SandboxBPF::AssembleJumpTable(CodeGen* gen,
                                           Ranges::const_iterator start,
                                           Ranges::const_iterator stop) {
  // We convert the list of system call ranges into jump table that performs
  // a binary search over the ranges.
  // As a sanity check, we need to have at least one distinct ranges for us
  // to be able to build a jump table.
  if (stop - start <= 0) {
    SANDBOX_DIE("Invalid set of system call ranges");
  } else if (stop - start == 1) {
    // If we have narrowed things down to a single range object, we can
    // return from the BPF filter program.
    return RetExpression(gen, start->err);
  }

  // Pick the range object that is located at the mid point of our list.
  // We compare our system call number against the lowest valid system call
  // number in this range object. If our number is lower, it is outside of
  // this range object. If it is greater or equal, it might be inside.
  Ranges::const_iterator mid = start + (stop - start) / 2;

  // Sub-divide the list of ranges and continue recursively.
  Instruction* jf = AssembleJumpTable(gen, start, mid);
  Instruction* jt = AssembleJumpTable(gen, mid, stop);
  return gen->MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf);
}

Instruction* SandboxBPF::RetExpression(CodeGen* gen, const ErrorCode& err) {
  if (err.error_type_ == ErrorCode::ET_COND) {
    return CondExpression(gen, err);
  } else {
    return gen->MakeInstruction(BPF_RET + BPF_K, err);
  }
}

Instruction* SandboxBPF::CondExpression(CodeGen* gen, const ErrorCode& cond) {
  // We can only inspect the six system call arguments that are passed in
  // CPU registers.
  if (cond.argno_ < 0 || cond.argno_ >= 6) {
    SANDBOX_DIE(
        "Internal compiler error; invalid argument number "
        "encountered");
  }

  // BPF programs operate on 32bit entities. Load both halfs of the 64bit
  // system call argument and then generate suitable conditional statements.
  Instruction* msb_head = gen->MakeInstruction(
      BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARG_MSB_IDX(cond.argno_));
  Instruction* msb_tail = msb_head;
  Instruction* lsb_head = gen->MakeInstruction(
      BPF_LD + BPF_W + BPF_ABS, SECCOMP_ARG_LSB_IDX(cond.argno_));
  Instruction* lsb_tail = lsb_head;

  // Emit a suitable comparison statement.
  switch (cond.op_) {
    case ErrorCode::OP_EQUAL:
      // Compare the least significant bits for equality
      lsb_tail = gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K,
                                      static_cast<uint32_t>(cond.value_),
                                      RetExpression(gen, *cond.passed_),
                                      RetExpression(gen, *cond.failed_));
      gen->JoinInstructions(lsb_head, lsb_tail);

      // If we are looking at a 64bit argument, we need to also compare the
      // most significant bits.
      if (cond.width_ == ErrorCode::TP_64BIT) {
        msb_tail =
            gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K,
                                 static_cast<uint32_t>(cond.value_ >> 32),
                                 lsb_head,
                                 RetExpression(gen, *cond.failed_));
        gen->JoinInstructions(msb_head, msb_tail);
      }
      break;
    case ErrorCode::OP_HAS_ALL_BITS:
      // Check the bits in the LSB half of the system call argument. Our
      // OP_HAS_ALL_BITS operator passes, iff all of the bits are set. This is
      // different from the kernel's BPF_JSET operation which passes, if any of
      // the bits are set.
      // Of course, if there is only a single set bit (or none at all), then
      // things get easier.
      {
        uint32_t lsb_bits = static_cast<uint32_t>(cond.value_);
        int lsb_bit_count = popcount(lsb_bits);
        if (lsb_bit_count == 0) {
          // No bits are set in the LSB half. The test will always pass.
          lsb_head = RetExpression(gen, *cond.passed_);
          lsb_tail = NULL;
        } else if (lsb_bit_count == 1) {
          // Exactly one bit is set in the LSB half. We can use the BPF_JSET
          // operator.
          lsb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
                                          lsb_bits,
                                          RetExpression(gen, *cond.passed_),
                                          RetExpression(gen, *cond.failed_));
          gen->JoinInstructions(lsb_head, lsb_tail);
        } else {
          // More than one bit is set in the LSB half. We need to combine
          // BPF_AND and BPF_JEQ to test whether all of these bits are in fact
          // set in the system call argument.
          gen->JoinInstructions(
              lsb_head,
              gen->MakeInstruction(BPF_ALU + BPF_AND + BPF_K,
                                   lsb_bits,
                                   lsb_tail = gen->MakeInstruction(
                                       BPF_JMP + BPF_JEQ + BPF_K,
                                       lsb_bits,
                                       RetExpression(gen, *cond.passed_),
                                       RetExpression(gen, *cond.failed_))));
        }
      }

      // If we are looking at a 64bit argument, we need to also check the bits
      // in the MSB half of the system call argument.
      if (cond.width_ == ErrorCode::TP_64BIT) {
        uint32_t msb_bits = static_cast<uint32_t>(cond.value_ >> 32);
        int msb_bit_count = popcount(msb_bits);
        if (msb_bit_count == 0) {
          // No bits are set in the MSB half. The test will always pass.
          msb_head = lsb_head;
        } else if (msb_bit_count == 1) {
          // Exactly one bit is set in the MSB half. We can use the BPF_JSET
          // operator.
          msb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
                                          msb_bits,
                                          lsb_head,
                                          RetExpression(gen, *cond.failed_));
          gen->JoinInstructions(msb_head, msb_tail);
        } else {
          // More than one bit is set in the MSB half. We need to combine
          // BPF_AND and BPF_JEQ to test whether all of these bits are in fact
          // set in the system call argument.
          gen->JoinInstructions(
              msb_head,
              gen->MakeInstruction(
                  BPF_ALU + BPF_AND + BPF_K,
                  msb_bits,
                  gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K,
                                       msb_bits,
                                       lsb_head,
                                       RetExpression(gen, *cond.failed_))));
        }
      }
      break;
    case ErrorCode::OP_HAS_ANY_BITS:
      // Check the bits in the LSB half of the system call argument. Our
      // OP_HAS_ANY_BITS operator passes, iff any of the bits are set. This maps
      // nicely to the kernel's BPF_JSET operation.
      {
        uint32_t lsb_bits = static_cast<uint32_t>(cond.value_);
        if (!lsb_bits) {
          // No bits are set in the LSB half. The test will always fail.
          lsb_head = RetExpression(gen, *cond.failed_);
          lsb_tail = NULL;
        } else {
          lsb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
                                          lsb_bits,
                                          RetExpression(gen, *cond.passed_),
                                          RetExpression(gen, *cond.failed_));
          gen->JoinInstructions(lsb_head, lsb_tail);
        }
      }

      // If we are looking at a 64bit argument, we need to also check the bits
      // in the MSB half of the system call argument.
      if (cond.width_ == ErrorCode::TP_64BIT) {
        uint32_t msb_bits = static_cast<uint32_t>(cond.value_ >> 32);
        if (!msb_bits) {
          // No bits are set in the MSB half. The test will always fail.
          msb_head = lsb_head;
        } else {
          msb_tail = gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K,
                                          msb_bits,
                                          RetExpression(gen, *cond.passed_),
                                          lsb_head);
          gen->JoinInstructions(msb_head, msb_tail);
        }
      }
      break;
    default:
      // TODO(markus): Need to add support for OP_GREATER
      SANDBOX_DIE("Not implemented");
      break;
  }

  // Ensure that we never pass a 64bit value, when we only expect a 32bit
  // value. This is somewhat complicated by the fact that on 64bit systems,
  // callers could legitimately pass in a non-zero value in the MSB, iff the
  // LSB has been sign-extended into the MSB.
  if (cond.width_ == ErrorCode::TP_32BIT) {
    if (cond.value_ >> 32) {
      SANDBOX_DIE(
          "Invalid comparison of a 32bit system call argument "
          "against a 64bit constant; this test is always false.");
    }

    Instruction* invalid_64bit = RetExpression(gen, Unexpected64bitArgument());
#if __SIZEOF_POINTER__ > 4
    invalid_64bit = gen->MakeInstruction(
        BPF_JMP + BPF_JEQ + BPF_K,
        0xFFFFFFFF,
        gen->MakeInstruction(BPF_LD + BPF_W + BPF_ABS,
                             SECCOMP_ARG_LSB_IDX(cond.argno_),
                             gen->MakeInstruction(BPF_JMP + BPF_JGE + BPF_K,
                                                  0x80000000,
                                                  lsb_head,
                                                  invalid_64bit)),
        invalid_64bit);
#endif
    gen->JoinInstructions(
        msb_tail,
        gen->MakeInstruction(
            BPF_JMP + BPF_JEQ + BPF_K, 0, lsb_head, invalid_64bit));
  }

  return msb_head;
}

ErrorCode SandboxBPF::Unexpected64bitArgument() {
  return Kill("Unexpected 64bit argument detected");
}

ErrorCode SandboxBPF::Trap(Trap::TrapFnc fnc, const void* aux) {
  return Trap::MakeTrap(fnc, aux, true /* Safe Trap */);
}

ErrorCode SandboxBPF::UnsafeTrap(Trap::TrapFnc fnc, const void* aux) {
  return Trap::MakeTrap(fnc, aux, false /* Unsafe Trap */);
}

intptr_t SandboxBPF::ForwardSyscall(const struct arch_seccomp_data& args) {
  return SandboxSyscall(args.nr,
                        static_cast<intptr_t>(args.args[0]),
                        static_cast<intptr_t>(args.args[1]),
                        static_cast<intptr_t>(args.args[2]),
                        static_cast<intptr_t>(args.args[3]),
                        static_cast<intptr_t>(args.args[4]),
                        static_cast<intptr_t>(args.args[5]));
}

ErrorCode SandboxBPF::Cond(int argno,
                           ErrorCode::ArgType width,
                           ErrorCode::Operation op,
                           uint64_t value,
                           const ErrorCode& passed,
                           const ErrorCode& failed) {
  return ErrorCode(argno,
                   width,
                   op,
                   value,
                   &*conds_->insert(passed).first,
                   &*conds_->insert(failed).first);
}

ErrorCode SandboxBPF::Kill(const char* msg) {
  return Trap(BPFFailure, const_cast<char*>(msg));
}

SandboxBPF::SandboxStatus SandboxBPF::status_ = STATUS_UNKNOWN;

}  // namespace sandbox

/* [<][>][^][v][top][bottom][index][help] */