root/tools/android/memdump/memdump.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. resize
  2. set
  3. AsB64String
  4. PageIsUnevictable
  5. ParseMemoryMapLine
  6. ReadFromFileAtOffset
  7. GetProcessMaps
  8. GetPagesForMemoryMap
  9. SetPagesInfo
  10. FillPFNMaps
  11. ClassifyPages
  12. AppendAppSharedField
  13. DumpProcessesMemoryMapsInShortFormat
  14. DumpProcessesMemoryMapsInExtendedFormat
  15. CollectProcessMemoryInformation
  16. KillAll
  17. ExitWithUsage
  18. main

// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>

#include <algorithm>
#include <cstring>
#include <fstream>
#include <iostream>
#include <limits>
#include <string>
#include <utility>
#include <vector>

#include "base/base64.h"
#include "base/basictypes.h"
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/containers/hash_tables.h"
#include "base/file_util.h"
#include "base/files/scoped_file.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/stringprintf.h"

const unsigned int kPageSize = getpagesize();

namespace {

class BitSet {
 public:
  void resize(size_t nbits) {
    data_.resize((nbits + 7) / 8);
  }

  void set(uint32 bit) {
    const uint32 byte_idx = bit / 8;
    CHECK(byte_idx < data_.size());
    data_[byte_idx] |= (1 << (bit & 7));
  }

  std::string AsB64String() const {
    std::string bits(&data_[0], data_.size());
    std::string b64_string;
    base::Base64Encode(bits, &b64_string);
    return b64_string;
  }

 private:
  std::vector<char> data_;
};

// An entry in /proc/<pid>/pagemap.
struct PageMapEntry {
  uint64 page_frame_number : 55;
  uint unused : 8;
  uint present : 1;
};

// Describes a memory page.
struct PageInfo {
  int64 page_frame_number; // Physical page id, also known as PFN.
  int64 flags;
  int32 times_mapped;
};

struct PageCount {
  PageCount() : total_count(0), unevictable_count(0) {}

  int total_count;
  int unevictable_count;
};

struct MemoryMap {
  std::string name;
  std::string flags;
  uint start_address;
  uint end_address;
  uint offset;
  PageCount private_pages;
  // app_shared_pages[i] contains the number of pages mapped in i+2 processes
  // (only among the processes that are being analyzed).
  std::vector<PageCount> app_shared_pages;
  PageCount other_shared_pages;
  std::vector<PageInfo> committed_pages;
  // committed_pages_bits is a bitset reflecting the present bit for all the
  // virtual pages of the mapping.
  BitSet committed_pages_bits;
};

struct ProcessMemory {
  pid_t pid;
  std::vector<MemoryMap> memory_maps;
};

bool PageIsUnevictable(const PageInfo& page_info) {
  // These constants are taken from kernel-page-flags.h.
  const int KPF_DIRTY = 4; // Note that only file-mapped pages can be DIRTY.
  const int KPF_ANON = 12; // Anonymous pages are dirty per definition.
  const int KPF_UNEVICTABLE = 18;
  const int KPF_MLOCKED = 33;

  return (page_info.flags & ((1ll << KPF_DIRTY) |
                             (1ll << KPF_ANON) |
                             (1ll << KPF_UNEVICTABLE) |
                             (1ll << KPF_MLOCKED))) ?
                             true : false;
}

// Number of times a physical page is mapped in a process.
typedef base::hash_map<uint64, int> PFNMap;

// Parses lines from /proc/<PID>/maps, e.g.:
// 401e7000-401f5000 r-xp 00000000 103:02 158       /system/bin/linker
bool ParseMemoryMapLine(const std::string& line,
                        std::vector<std::string>* tokens,
                        MemoryMap* memory_map) {
  tokens->clear();
  base::SplitString(line, ' ', tokens);
  if (tokens->size() < 2)
    return false;
  const std::string& addr_range = tokens->at(0);
  std::vector<std::string> range_tokens;
  base::SplitString(addr_range, '-', &range_tokens);
  uint64 tmp = 0;
  const std::string& start_address_token = range_tokens.at(0);
  if (!base::HexStringToUInt64(start_address_token, &tmp)) {
    return false;
  }
  memory_map->start_address = static_cast<uint>(tmp);
  const std::string& end_address_token = range_tokens.at(1);
  if (!base::HexStringToUInt64(end_address_token, &tmp)) {
    return false;
  }
  memory_map->end_address = static_cast<uint>(tmp);
  if (tokens->at(1).size() != strlen("rwxp"))
    return false;
  memory_map->flags.swap(tokens->at(1));
  if (!base::HexStringToUInt64(tokens->at(2), &tmp))
    return false;
  memory_map->offset = static_cast<uint>(tmp);
  memory_map->committed_pages_bits.resize(
      (memory_map->end_address - memory_map->start_address) / kPageSize);
  const int map_name_index = 5;
  if (tokens->size() >= map_name_index + 1) {
    for (std::vector<std::string>::const_iterator it =
             tokens->begin() + map_name_index; it != tokens->end(); ++it) {
      if (!it->empty()) {
        if (!memory_map->name.empty())
          memory_map->name.append(" ");
        memory_map->name.append(*it);
      }
    }
  }
  return true;
}

// Reads sizeof(T) bytes from file |fd| at |offset|.
template <typename T>
bool ReadFromFileAtOffset(int fd, off_t offset, T* value) {
  if (lseek64(fd, offset * sizeof(*value), SEEK_SET) < 0) {
    PLOG(ERROR) << "lseek";
    return false;
  }
  ssize_t bytes = read(fd, value, sizeof(*value));
  if (bytes != sizeof(*value) && bytes != 0) {
    PLOG(ERROR) << "read";
    return false;
  }
  return true;
}

// Fills |process_maps| in with the process memory maps identified by |pid|.
bool GetProcessMaps(pid_t pid, std::vector<MemoryMap>* process_maps) {
  std::ifstream maps_file(base::StringPrintf("/proc/%d/maps", pid).c_str());
  if (!maps_file.good()) {
    PLOG(ERROR) << "open";
    return false;
  }
  std::string line;
  std::vector<std::string> tokens;
  while (std::getline(maps_file, line) && !line.empty()) {
    MemoryMap memory_map = {};
    if (!ParseMemoryMapLine(line, &tokens, &memory_map)) {
      LOG(ERROR) << "Could not parse line: " << line;
      return false;
    }
    process_maps->push_back(memory_map);
  }
  return true;
}

// Fills |committed_pages| in with the set of committed pages contained in the
// provided memory map.
bool GetPagesForMemoryMap(int pagemap_fd,
                          const MemoryMap& memory_map,
                          std::vector<PageInfo>* committed_pages,
                          BitSet* committed_pages_bits) {
  const off64_t offset = memory_map.start_address / kPageSize;
  if (lseek64(pagemap_fd, offset * sizeof(PageMapEntry), SEEK_SET) < 0) {
    PLOG(ERROR) << "lseek";
    return false;
  }
  for (uint addr = memory_map.start_address, page_index = 0;
       addr < memory_map.end_address;
       addr += kPageSize, ++page_index) {
    DCHECK_EQ(0, addr % kPageSize);
    PageMapEntry page_map_entry = {};
    COMPILE_ASSERT(sizeof(PageMapEntry) == sizeof(uint64), unexpected_size);
    ssize_t bytes = read(pagemap_fd, &page_map_entry, sizeof(page_map_entry));
    if (bytes != sizeof(PageMapEntry) && bytes != 0) {
      PLOG(ERROR) << "read";
      return false;
    }
    if (page_map_entry.present) {  // Ignore non-committed pages.
      if (page_map_entry.page_frame_number == 0)
        continue;
      PageInfo page_info = {};
      page_info.page_frame_number = page_map_entry.page_frame_number;
      committed_pages->push_back(page_info);
      committed_pages_bits->set(page_index);
    }
  }
  return true;
}

// Fills |committed_pages| with mapping count and flags information gathered
// looking-up /proc/kpagecount and /proc/kpageflags.
bool SetPagesInfo(int pagecount_fd,
                  int pageflags_fd,
                  std::vector<PageInfo>* pages) {
  for (std::vector<PageInfo>::iterator it = pages->begin();
       it != pages->end(); ++it) {
    PageInfo* const page_info = &*it;
    int64 times_mapped;
    if (!ReadFromFileAtOffset(
            pagecount_fd, page_info->page_frame_number, &times_mapped)) {
      return false;
    }
    DCHECK(times_mapped <= std::numeric_limits<int32_t>::max());
    page_info->times_mapped = static_cast<int32>(times_mapped);

    int64 page_flags;
    if (!ReadFromFileAtOffset(
            pageflags_fd, page_info->page_frame_number, &page_flags)) {
      return false;
    }
    page_info->flags = page_flags;
  }
  return true;
}

// Fills in the provided vector of Page Frame Number maps. This lets
// ClassifyPages() know how many times each page is mapped in the processes.
void FillPFNMaps(const std::vector<ProcessMemory>& processes_memory,
                 std::vector<PFNMap>* pfn_maps) {
  int current_process_index = 0;
  for (std::vector<ProcessMemory>::const_iterator it = processes_memory.begin();
       it != processes_memory.end(); ++it, ++current_process_index) {
    const std::vector<MemoryMap>& memory_maps = it->memory_maps;
    for (std::vector<MemoryMap>::const_iterator it = memory_maps.begin();
         it != memory_maps.end(); ++it) {
      const std::vector<PageInfo>& pages = it->committed_pages;
      for (std::vector<PageInfo>::const_iterator it = pages.begin();
           it != pages.end(); ++it) {
        const PageInfo& page_info = *it;
        PFNMap* const pfn_map = &(*pfn_maps)[current_process_index];
        const std::pair<PFNMap::iterator, bool> result = pfn_map->insert(
            std::make_pair(page_info.page_frame_number, 0));
        ++result.first->second;
      }
    }
  }
}

// Sets the private_count/app_shared_pages/other_shared_count fields of the
// provided memory maps for each process.
void ClassifyPages(std::vector<ProcessMemory>* processes_memory) {
  std::vector<PFNMap> pfn_maps(processes_memory->size());
  FillPFNMaps(*processes_memory, &pfn_maps);
  // Hash set keeping track of the physical pages mapped in a single process so
  // that they can be counted only once.
  base::hash_set<uint64> physical_pages_mapped_in_process;

  for (std::vector<ProcessMemory>::iterator it = processes_memory->begin();
       it != processes_memory->end(); ++it) {
    std::vector<MemoryMap>* const memory_maps = &it->memory_maps;
    physical_pages_mapped_in_process.clear();
    for (std::vector<MemoryMap>::iterator it = memory_maps->begin();
         it != memory_maps->end(); ++it) {
      MemoryMap* const memory_map = &*it;
      const size_t processes_count = processes_memory->size();
      memory_map->app_shared_pages.resize(processes_count - 1);
      const std::vector<PageInfo>& pages = memory_map->committed_pages;
      for (std::vector<PageInfo>::const_iterator it = pages.begin();
           it != pages.end(); ++it) {
        const PageInfo& page_info = *it;
        if (page_info.times_mapped == 1) {
          ++memory_map->private_pages.total_count;
          if (PageIsUnevictable(page_info))
            ++memory_map->private_pages.unevictable_count;
          continue;
        }
        const uint64 page_frame_number = page_info.page_frame_number;
        const std::pair<base::hash_set<uint64>::iterator, bool> result =
            physical_pages_mapped_in_process.insert(page_frame_number);
        const bool did_insert = result.second;
        if (!did_insert) {
          // This physical page (mapped multiple times in the same process) was
          // already counted.
          continue;
        }
        // See if the current physical page is also mapped in the other
        // processes that are being analyzed.
        int times_mapped = 0;
        int mapped_in_processes_count = 0;
        for (std::vector<PFNMap>::const_iterator it = pfn_maps.begin();
             it != pfn_maps.end(); ++it) {
          const PFNMap& pfn_map = *it;
          const PFNMap::const_iterator found_it = pfn_map.find(
              page_frame_number);
          if (found_it == pfn_map.end())
            continue;
          ++mapped_in_processes_count;
          times_mapped += found_it->second;
        }
        PageCount* page_count_to_update = NULL;
        if (times_mapped == page_info.times_mapped) {
          // The physical page is only mapped in the processes that are being
          // analyzed.
          if (mapped_in_processes_count > 1) {
            // The physical page is mapped in multiple processes.
            page_count_to_update =
                &memory_map->app_shared_pages[mapped_in_processes_count - 2];
          } else {
            // The physical page is mapped multiple times in the same process.
            page_count_to_update = &memory_map->private_pages;
          }
        } else {
          page_count_to_update = &memory_map->other_shared_pages;
        }
        ++page_count_to_update->total_count;
        if (PageIsUnevictable(page_info))
          ++page_count_to_update->unevictable_count;
      }
    }
  }
}

void AppendAppSharedField(const std::vector<PageCount>& app_shared_pages,
                          std::string* out) {
  out->append("[");
  for (std::vector<PageCount>::const_iterator it = app_shared_pages.begin();
       it != app_shared_pages.end(); ++it) {
    out->append(base::IntToString(it->total_count * kPageSize));
    out->append(":");
    out->append(base::IntToString(it->unevictable_count * kPageSize));
    if (it + 1 != app_shared_pages.end())
      out->append(",");
  }
  out->append("]");
}

void DumpProcessesMemoryMapsInShortFormat(
    const std::vector<ProcessMemory>& processes_memory) {
  const int KB_PER_PAGE = kPageSize >> 10;
  std::vector<int> totals_app_shared(processes_memory.size());
  std::string buf;
  std::cout << "pid\tprivate\t\tshared_app\tshared_other (KB)\n";
  for (std::vector<ProcessMemory>::const_iterator it = processes_memory.begin();
       it != processes_memory.end(); ++it) {
    const ProcessMemory& process_memory = *it;
    std::fill(totals_app_shared.begin(), totals_app_shared.end(), 0);
    int total_private = 0, total_other_shared = 0;
    const std::vector<MemoryMap>& memory_maps = process_memory.memory_maps;
    for (std::vector<MemoryMap>::const_iterator it = memory_maps.begin();
         it != memory_maps.end(); ++it) {
      const MemoryMap& memory_map = *it;
      total_private += memory_map.private_pages.total_count;
      for (size_t i = 0; i < memory_map.app_shared_pages.size(); ++i)
        totals_app_shared[i] += memory_map.app_shared_pages[i].total_count;
      total_other_shared += memory_map.other_shared_pages.total_count;
    }
    double total_app_shared = 0;
    for (size_t i = 0; i < totals_app_shared.size(); ++i)
      total_app_shared += static_cast<double>(totals_app_shared[i]) / (i + 2);
    base::SStringPrintf(
        &buf, "%d\t%d\t\t%d\t\t%d\n",
        process_memory.pid,
        total_private * KB_PER_PAGE,
        static_cast<int>(total_app_shared) * KB_PER_PAGE,
        total_other_shared * KB_PER_PAGE);
    std::cout << buf;
  }
}

void DumpProcessesMemoryMapsInExtendedFormat(
    const std::vector<ProcessMemory>& processes_memory) {
  std::string buf;
  std::string app_shared_buf;
  for (std::vector<ProcessMemory>::const_iterator it = processes_memory.begin();
       it != processes_memory.end(); ++it) {
    const ProcessMemory& process_memory = *it;
    std::cout << "[ PID=" << process_memory.pid << "]" << '\n';
    const std::vector<MemoryMap>& memory_maps = process_memory.memory_maps;
    for (std::vector<MemoryMap>::const_iterator it = memory_maps.begin();
         it != memory_maps.end(); ++it) {
      const MemoryMap& memory_map = *it;
      app_shared_buf.clear();
      AppendAppSharedField(memory_map.app_shared_pages, &app_shared_buf);
      base::SStringPrintf(
          &buf,
          "%x-%x %s %x private_unevictable=%d private=%d shared_app=%s "
          "shared_other_unevictable=%d shared_other=%d \"%s\" [%s]\n",
          memory_map.start_address,
          memory_map.end_address,
          memory_map.flags.c_str(),
          memory_map.offset,
          memory_map.private_pages.unevictable_count * kPageSize,
          memory_map.private_pages.total_count * kPageSize,
          app_shared_buf.c_str(),
          memory_map.other_shared_pages.unevictable_count * kPageSize,
          memory_map.other_shared_pages.total_count * kPageSize,
          memory_map.name.c_str(),
          memory_map.committed_pages_bits.AsB64String().c_str());
      std::cout << buf;
    }
  }
}

bool CollectProcessMemoryInformation(int page_count_fd,
                                     int page_flags_fd,
                                     ProcessMemory* process_memory) {
  const pid_t pid = process_memory->pid;
  base::ScopedFD pagemap_fd(HANDLE_EINTR(open(
      base::StringPrintf("/proc/%d/pagemap", pid).c_str(), O_RDONLY)));
  if (!pagemap_fd.is_valid()) {
    PLOG(ERROR) << "open";
    return false;
  }
  std::vector<MemoryMap>* const process_maps = &process_memory->memory_maps;
  if (!GetProcessMaps(pid, process_maps))
    return false;
  for (std::vector<MemoryMap>::iterator it = process_maps->begin();
       it != process_maps->end(); ++it) {
    std::vector<PageInfo>* const committed_pages = &it->committed_pages;
    BitSet* const pages_bits = &it->committed_pages_bits;
    GetPagesForMemoryMap(pagemap_fd.get(), *it, committed_pages, pages_bits);
    SetPagesInfo(page_count_fd, page_flags_fd, committed_pages);
  }
  return true;
}

void KillAll(const std::vector<pid_t>& pids, int signal_number) {
  for (std::vector<pid_t>::const_iterator it = pids.begin(); it != pids.end();
       ++it) {
    kill(*it, signal_number);
  }
}

void ExitWithUsage() {
  LOG(ERROR) << "Usage: memdump [-a] <PID1>... <PIDN>";
  exit(EXIT_FAILURE);
}

}  // namespace

int main(int argc, char** argv) {
  if (argc == 1)
    ExitWithUsage();
  const bool short_output = !strncmp(argv[1], "-a", 2);
  if (short_output) {
    if (argc == 2)
      ExitWithUsage();
    ++argv;
  }
  std::vector<pid_t> pids;
  for (const char* const* ptr = argv + 1; *ptr; ++ptr) {
    pid_t pid;
    if (!base::StringToInt(*ptr, &pid))
      return EXIT_FAILURE;
    pids.push_back(pid);
  }

  std::vector<ProcessMemory> processes_memory(pids.size());
  {
    base::ScopedFD page_count_fd(
        HANDLE_EINTR(open("/proc/kpagecount", O_RDONLY)));
    if (!page_count_fd.is_valid()) {
      PLOG(ERROR) << "open /proc/kpagecount";
      return EXIT_FAILURE;
    }

    base::ScopedFD page_flags_fd(open("/proc/kpageflags", O_RDONLY));
    if (!page_flags_fd.is_valid()) {
      PLOG(ERROR) << "open /proc/kpageflags";
      return EXIT_FAILURE;
    }

    base::ScopedClosureRunner auto_resume_processes(
        base::Bind(&KillAll, pids, SIGCONT));
    KillAll(pids, SIGSTOP);
    for (std::vector<pid_t>::const_iterator it = pids.begin(); it != pids.end();
         ++it) {
      ProcessMemory* const process_memory =
          &processes_memory[it - pids.begin()];
      process_memory->pid = *it;
      if (!CollectProcessMemoryInformation(
              page_count_fd.get(), page_flags_fd.get(), process_memory)) {
        return EXIT_FAILURE;
      }
    }
  }

  ClassifyPages(&processes_memory);
  if (short_output)
    DumpProcessesMemoryMapsInShortFormat(processes_memory);
  else
    DumpProcessesMemoryMapsInExtendedFormat(processes_memory);
  return EXIT_SUCCESS;
}

/* [<][>][^][v][top][bottom][index][help] */