root/third_party/libwebp/enc/histogram.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. HistogramClear
  2. VP8LHistogramStoreRefs
  3. VP8LHistogramCreate
  4. VP8LHistogramInit
  5. VP8LAllocateHistogramSet
  6. VP8LHistogramAddSinglePixOrCopy
  7. BitsEntropy
  8. HuffmanCost
  9. PopulationCost
  10. ExtraCost
  11. VP8LHistogramEstimateBits
  12. VP8LHistogramEstimateBitsBulk
  13. HistogramAdd
  14. HistogramAddEval
  15. HistogramAddThresh
  16. HistogramBuildImage
  17. MyRand
  18. HistogramCombine
  19. HistogramDistance
  20. HistogramRemap
  21. VP8LGetHistoImageSymbols

// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <math.h>
#include <stdio.h>

#include "./backward_references.h"
#include "./histogram.h"
#include "../dsp/lossless.h"
#include "../utils/utils.h"

static void HistogramClear(VP8LHistogram* const p) {
  memset(p->literal_, 0, sizeof(p->literal_));
  memset(p->red_, 0, sizeof(p->red_));
  memset(p->blue_, 0, sizeof(p->blue_));
  memset(p->alpha_, 0, sizeof(p->alpha_));
  memset(p->distance_, 0, sizeof(p->distance_));
  p->bit_cost_ = 0;
}

void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
                            VP8LHistogram* const histo) {
  int i;
  for (i = 0; i < refs->size; ++i) {
    VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]);
  }
}

void VP8LHistogramCreate(VP8LHistogram* const p,
                         const VP8LBackwardRefs* const refs,
                         int palette_code_bits) {
  if (palette_code_bits >= 0) {
    p->palette_code_bits_ = palette_code_bits;
  }
  HistogramClear(p);
  VP8LHistogramStoreRefs(refs, p);
}

void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
  p->palette_code_bits_ = palette_code_bits;
  HistogramClear(p);
}

VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
  int i;
  VP8LHistogramSet* set;
  VP8LHistogram* bulk;
  const uint64_t total_size = sizeof(*set)
                            + (uint64_t)size * sizeof(*set->histograms)
                            + (uint64_t)size * sizeof(**set->histograms);
  uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
  if (memory == NULL) return NULL;

  set = (VP8LHistogramSet*)memory;
  memory += sizeof(*set);
  set->histograms = (VP8LHistogram**)memory;
  memory += size * sizeof(*set->histograms);
  bulk = (VP8LHistogram*)memory;
  set->max_size = size;
  set->size = size;
  for (i = 0; i < size; ++i) {
    set->histograms[i] = bulk + i;
    VP8LHistogramInit(set->histograms[i], cache_bits);
  }
  return set;
}

// -----------------------------------------------------------------------------

void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
                                     const PixOrCopy* const v) {
  if (PixOrCopyIsLiteral(v)) {
    ++histo->alpha_[PixOrCopyLiteral(v, 3)];
    ++histo->red_[PixOrCopyLiteral(v, 2)];
    ++histo->literal_[PixOrCopyLiteral(v, 1)];
    ++histo->blue_[PixOrCopyLiteral(v, 0)];
  } else if (PixOrCopyIsCacheIdx(v)) {
    int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
    ++histo->literal_[literal_ix];
  } else {
    int code, extra_bits;
    VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
    ++histo->literal_[256 + code];
    VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
    ++histo->distance_[code];
  }
}

static double BitsEntropy(const int* const array, int n) {
  double retval = 0.;
  int sum = 0;
  int nonzeros = 0;
  int max_val = 0;
  int i;
  double mix;
  for (i = 0; i < n; ++i) {
    if (array[i] != 0) {
      sum += array[i];
      ++nonzeros;
      retval -= VP8LFastSLog2(array[i]);
      if (max_val < array[i]) {
        max_val = array[i];
      }
    }
  }
  retval += VP8LFastSLog2(sum);

  if (nonzeros < 5) {
    if (nonzeros <= 1) {
      return 0;
    }
    // Two symbols, they will be 0 and 1 in a Huffman code.
    // Let's mix in a bit of entropy to favor good clustering when
    // distributions of these are combined.
    if (nonzeros == 2) {
      return 0.99 * sum + 0.01 * retval;
    }
    // No matter what the entropy says, we cannot be better than min_limit
    // with Huffman coding. I am mixing a bit of entropy into the
    // min_limit since it produces much better (~0.5 %) compression results
    // perhaps because of better entropy clustering.
    if (nonzeros == 3) {
      mix = 0.95;
    } else {
      mix = 0.7;  // nonzeros == 4.
    }
  } else {
    mix = 0.627;
  }

  {
    double min_limit = 2 * sum - max_val;
    min_limit = mix * min_limit + (1.0 - mix) * retval;
    return (retval < min_limit) ? min_limit : retval;
  }
}

// Returns the cost encode the rle-encoded entropy code.
// The constants in this function are experimental.
static double HuffmanCost(const int* const population, int length) {
  // Small bias because Huffman code length is typically not stored in
  // full length.
  static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
  static const double kSmallBias = 9.1;
  double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
  int streak = 0;
  int i = 0;
  for (; i < length - 1; ++i) {
    ++streak;
    if (population[i] == population[i + 1]) {
      continue;
    }
 last_streak_hack:
    // population[i] points now to the symbol in the streak of same values.
    if (streak > 3) {
      if (population[i] == 0) {
        retval += 1.5625 + 0.234375 * streak;
      } else {
        retval += 2.578125 + 0.703125 * streak;
      }
    } else {
      if (population[i] == 0) {
        retval += 1.796875 * streak;
      } else {
        retval += 3.28125 * streak;
      }
    }
    streak = 0;
  }
  if (i == length - 1) {
    ++streak;
    goto last_streak_hack;
  }
  return retval;
}

static double PopulationCost(const int* const population, int length) {
  return BitsEntropy(population, length) + HuffmanCost(population, length);
}

static double ExtraCost(const int* const population, int length) {
  int i;
  double cost = 0.;
  for (i = 2; i < length - 2; ++i) cost += (i >> 1) * population[i + 2];
  return cost;
}

// Estimates the Entropy + Huffman + other block overhead size cost.
double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
  return PopulationCost(p->literal_, VP8LHistogramNumCodes(p))
       + PopulationCost(p->red_, 256)
       + PopulationCost(p->blue_, 256)
       + PopulationCost(p->alpha_, 256)
       + PopulationCost(p->distance_, NUM_DISTANCE_CODES)
       + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
       + ExtraCost(p->distance_, NUM_DISTANCE_CODES);
}

double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
  return BitsEntropy(p->literal_, VP8LHistogramNumCodes(p))
       + BitsEntropy(p->red_, 256)
       + BitsEntropy(p->blue_, 256)
       + BitsEntropy(p->alpha_, 256)
       + BitsEntropy(p->distance_, NUM_DISTANCE_CODES)
       + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
       + ExtraCost(p->distance_, NUM_DISTANCE_CODES);
}

// -----------------------------------------------------------------------------
// Various histogram combine/cost-eval functions

// Adds 'in' histogram to 'out'
static void HistogramAdd(const VP8LHistogram* const in,
                         VP8LHistogram* const out) {
  int i;
  for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
    out->literal_[i] += in->literal_[i];
  }
  for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
    out->distance_[i] += in->distance_[i];
  }
  for (i = 0; i < 256; ++i) {
    out->red_[i] += in->red_[i];
    out->blue_[i] += in->blue_[i];
    out->alpha_[i] += in->alpha_[i];
  }
}

// Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
// to the threshold value 'cost_threshold'. The score returned is
//  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
// Since the previous score passed is 'cost_threshold', we only need to compare
// the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
// early.
static double HistogramAddEval(const VP8LHistogram* const a,
                               const VP8LHistogram* const b,
                               VP8LHistogram* const out,
                               double cost_threshold) {
  double cost = 0;
  const double sum_cost = a->bit_cost_ + b->bit_cost_;
  int i;

  cost_threshold += sum_cost;

  // palette_code_bits_ is part of the cost evaluation for literal_.
  // TODO(skal): remove/simplify this palette_code_bits_?
  out->palette_code_bits_ =
      (a->palette_code_bits_ > b->palette_code_bits_) ? a->palette_code_bits_ :
                                                        b->palette_code_bits_;
  for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
    out->literal_[i] = a->literal_[i] + b->literal_[i];
  }
  cost += PopulationCost(out->literal_, VP8LHistogramNumCodes(out));
  cost += ExtraCost(out->literal_ + 256, NUM_LENGTH_CODES);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < 256; ++i) out->red_[i] = a->red_[i] + b->red_[i];
  cost += PopulationCost(out->red_, 256);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < 256; ++i) out->blue_[i] = a->blue_[i] + b->blue_[i];
  cost += PopulationCost(out->blue_, 256);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
    out->distance_[i] = a->distance_[i] + b->distance_[i];
  }
  cost += PopulationCost(out->distance_, NUM_DISTANCE_CODES);
  cost += ExtraCost(out->distance_, NUM_DISTANCE_CODES);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < 256; ++i) out->alpha_[i] = a->alpha_[i] + b->alpha_[i];
  cost += PopulationCost(out->alpha_, 256);

  out->bit_cost_ = cost;
  return cost - sum_cost;
}

// Same as HistogramAddEval(), except that the resulting histogram
// is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
// the term C(b) which is constant over all the evaluations.
static double HistogramAddThresh(const VP8LHistogram* const a,
                                 const VP8LHistogram* const b,
                                 double cost_threshold) {
  int tmp[PIX_OR_COPY_CODES_MAX];  // <= max storage we'll need
  int i;
  double cost = -a->bit_cost_;

  for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
    tmp[i] = a->literal_[i] + b->literal_[i];
  }
  // note that the tests are ordered so that the usually largest
  // cost shares come first.
  cost += PopulationCost(tmp, VP8LHistogramNumCodes(a));
  cost += ExtraCost(tmp + 256, NUM_LENGTH_CODES);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < 256; ++i) tmp[i] = a->red_[i] + b->red_[i];
  cost += PopulationCost(tmp, 256);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < 256; ++i) tmp[i] = a->blue_[i] + b->blue_[i];
  cost += PopulationCost(tmp, 256);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
    tmp[i] = a->distance_[i] + b->distance_[i];
  }
  cost += PopulationCost(tmp, NUM_DISTANCE_CODES);
  cost += ExtraCost(tmp, NUM_DISTANCE_CODES);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < 256; ++i) tmp[i] = a->alpha_[i] + b->alpha_[i];
  cost += PopulationCost(tmp, 256);

  return cost;
}

// -----------------------------------------------------------------------------

static void HistogramBuildImage(int xsize, int histo_bits,
                                const VP8LBackwardRefs* const backward_refs,
                                VP8LHistogramSet* const image) {
  int i;
  int x = 0, y = 0;
  const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
  VP8LHistogram** const histograms = image->histograms;
  assert(histo_bits > 0);
  for (i = 0; i < backward_refs->size; ++i) {
    const PixOrCopy* const v = &backward_refs->refs[i];
    const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
    VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
    x += PixOrCopyLength(v);
    while (x >= xsize) {
      x -= xsize;
      ++y;
    }
  }
}

static uint32_t MyRand(uint32_t *seed) {
  *seed *= 16807U;
  if (*seed == 0) {
    *seed = 1;
  }
  return *seed;
}

static int HistogramCombine(const VP8LHistogramSet* const in,
                            VP8LHistogramSet* const out, int iter_mult,
                            int num_pairs, int num_tries_no_success) {
  int ok = 0;
  int i, iter;
  uint32_t seed = 0;
  int tries_with_no_success = 0;
  int out_size = in->size;
  const int outer_iters = in->size * iter_mult;
  const int min_cluster_size = 2;
  VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
  VP8LHistogram* cur_combo = histos + 0;    // trial merged histogram
  VP8LHistogram* best_combo = histos + 1;   // best merged histogram so far
  if (histos == NULL) goto End;

  // Copy histograms from in[] to out[].
  assert(in->size <= out->size);
  for (i = 0; i < in->size; ++i) {
    in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]);
    *out->histograms[i] = *in->histograms[i];
  }

  // Collapse similar histograms in 'out'.
  for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
    double best_cost_diff = 0.;
    int best_idx1 = -1, best_idx2 = 1;
    int j;
    const int num_tries = (num_pairs < out_size) ? num_pairs : out_size;
    seed += iter;
    for (j = 0; j < num_tries; ++j) {
      double curr_cost_diff;
      // Choose two histograms at random and try to combine them.
      const uint32_t idx1 = MyRand(&seed) % out_size;
      const uint32_t tmp = (j & 7) + 1;
      const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1);
      const uint32_t idx2 = (idx1 + diff + 1) % out_size;
      if (idx1 == idx2) {
        continue;
      }
      // Calculate cost reduction on combining.
      curr_cost_diff = HistogramAddEval(out->histograms[idx1],
                                        out->histograms[idx2],
                                        cur_combo, best_cost_diff);
      if (curr_cost_diff < best_cost_diff) {    // found a better pair?
        {     // swap cur/best combo histograms
          VP8LHistogram* const tmp_histo = cur_combo;
          cur_combo = best_combo;
          best_combo = tmp_histo;
        }
        best_cost_diff = curr_cost_diff;
        best_idx1 = idx1;
        best_idx2 = idx2;
      }
    }

    if (best_idx1 >= 0) {
      *out->histograms[best_idx1] = *best_combo;
      // swap best_idx2 slot with last one (which is now unused)
      --out_size;
      if (best_idx2 != out_size) {
        out->histograms[best_idx2] = out->histograms[out_size];
        out->histograms[out_size] = NULL;   // just for sanity check.
      }
      tries_with_no_success = 0;
    }
    if (++tries_with_no_success >= num_tries_no_success) {
      break;
    }
  }
  out->size = out_size;
  ok = 1;

 End:
  free(histos);
  return ok;
}

// -----------------------------------------------------------------------------
// Histogram refinement

// What is the bit cost of moving square_histogram from cur_symbol to candidate.
static double HistogramDistance(const VP8LHistogram* const square_histogram,
                                const VP8LHistogram* const candidate,
                                double cost_threshold) {
  return HistogramAddThresh(candidate, square_histogram, cost_threshold);
}

// Find the best 'out' histogram for each of the 'in' histograms.
// Note: we assume that out[]->bit_cost_ is already up-to-date.
static void HistogramRemap(const VP8LHistogramSet* const in,
                           const VP8LHistogramSet* const out,
                           uint16_t* const symbols) {
  int i;
  for (i = 0; i < in->size; ++i) {
    int best_out = 0;
    double best_bits =
        HistogramDistance(in->histograms[i], out->histograms[0], 1.e38);
    int k;
    for (k = 1; k < out->size; ++k) {
      const double cur_bits =
          HistogramDistance(in->histograms[i], out->histograms[k], best_bits);
      if (cur_bits < best_bits) {
        best_bits = cur_bits;
        best_out = k;
      }
    }
    symbols[i] = best_out;
  }

  // Recompute each out based on raw and symbols.
  for (i = 0; i < out->size; ++i) {
    HistogramClear(out->histograms[i]);
  }
  for (i = 0; i < in->size; ++i) {
    HistogramAdd(in->histograms[i], out->histograms[symbols[i]]);
  }
}

int VP8LGetHistoImageSymbols(int xsize, int ysize,
                             const VP8LBackwardRefs* const refs,
                             int quality, int histo_bits, int cache_bits,
                             VP8LHistogramSet* const image_in,
                             uint16_t* const histogram_symbols) {
  int ok = 0;
  const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
  const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
  const int histo_image_raw_size = histo_xsize * histo_ysize;

  // Heuristic params for HistogramCombine().
  const int num_tries_no_success = 8 + (quality >> 1);
  const int iter_mult = (quality < 27) ? 1 : 1 + ((quality - 27) >> 4);
  const int num_pairs = (quality < 25) ? 10 : (5 * quality) >> 3;

  VP8LHistogramSet* const image_out =
      VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
  if (image_out == NULL) return 0;

  // Build histogram image.
  HistogramBuildImage(xsize, histo_bits, refs, image_out);
  // Collapse similar histograms.
  if (!HistogramCombine(image_out, image_in, iter_mult, num_pairs,
                        num_tries_no_success)) {
    goto Error;
  }
  // Find the optimal map from original histograms to the final ones.
  HistogramRemap(image_out, image_in, histogram_symbols);
  ok = 1;

Error:
  free(image_out);
  return ok;
}

/* [<][>][^][v][top][bottom][index][help] */