root/net/quic/reliable_quic_stream.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. MakeIovec
  2. num_retransmitted_bytes_
  3. OnAckNotification
  4. WroteData
  5. ProxyAckNotifierDelegate
  6. delegate
  7. is_server_
  8. WillAcceptStreamFrame
  9. OnStreamFrame
  10. MaybeSendWindowUpdate
  11. OnStreamReset
  12. OnConnectionClosed
  13. OnFinRead
  14. Reset
  15. CloseConnection
  16. CloseConnectionWithDetails
  17. version
  18. WriteOrBufferData
  19. OnCanWrite
  20. WritevData
  21. CloseReadSide
  22. CloseWriteSide
  23. HasBufferedData
  24. OnClose
  25. OnWindowUpdateFrame
  26. UpdateFlowControlSendLimit
  27. IsFlowControlBlocked
  28. SendWindowSize
  29. TotalReceivedBytes

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/reliable_quic_stream.h"

#include "base/logging.h"
#include "net/quic/iovector.h"
#include "net/quic/quic_session.h"
#include "net/quic/quic_write_blocked_list.h"

using base::StringPiece;
using std::min;

namespace net {

#define ENDPOINT (is_server_ ? "Server: " : " Client: ")

namespace {

struct iovec MakeIovec(StringPiece data) {
  struct iovec iov = {const_cast<char*>(data.data()),
                      static_cast<size_t>(data.size())};
  return iov;
}

}  // namespace

// Wrapper that aggregates OnAckNotifications for packets sent using
// WriteOrBufferData and delivers them to the original
// QuicAckNotifier::DelegateInterface after all bytes written using
// WriteOrBufferData are acked.  This level of indirection is
// necessary because the delegate interface provides no mechanism that
// WriteOrBufferData can use to inform it that the write required
// multiple WritevData calls or that only part of the data has been
// sent out by the time ACKs start arriving.
class ReliableQuicStream::ProxyAckNotifierDelegate
    : public QuicAckNotifier::DelegateInterface {
 public:
  explicit ProxyAckNotifierDelegate(DelegateInterface* delegate)
      : delegate_(delegate),
        pending_acks_(0),
        wrote_last_data_(false),
        num_original_packets_(0),
        num_original_bytes_(0),
        num_retransmitted_packets_(0),
        num_retransmitted_bytes_(0) {
  }

  virtual void OnAckNotification(int num_original_packets,
                                 int num_original_bytes,
                                 int num_retransmitted_packets,
                                 int num_retransmitted_bytes) OVERRIDE {
    DCHECK_LT(0, pending_acks_);
    --pending_acks_;
    num_original_packets_ += num_original_packets;
    num_original_bytes_ += num_original_bytes;
    num_retransmitted_packets_ += num_retransmitted_packets;
    num_retransmitted_bytes_ += num_retransmitted_bytes;

    if (wrote_last_data_ && pending_acks_ == 0) {
      delegate_->OnAckNotification(num_original_packets_,
                                   num_original_bytes_,
                                   num_retransmitted_packets_,
                                   num_retransmitted_bytes_);
    }
  }

  void WroteData(bool last_data) {
    DCHECK(!wrote_last_data_);
    ++pending_acks_;
    wrote_last_data_ = last_data;
  }

 protected:
  // Delegates are ref counted.
  virtual ~ProxyAckNotifierDelegate() {
  }

 private:
  // Original delegate.  delegate_->OnAckNotification will be called when:
  //   wrote_last_data_ == true and pending_acks_ == 0
  scoped_refptr<DelegateInterface> delegate_;

  // Number of outstanding acks.
  int pending_acks_;

  // True if no pending writes remain.
  bool wrote_last_data_;

  // Accumulators.
  int num_original_packets_;
  int num_original_bytes_;
  int num_retransmitted_packets_;
  int num_retransmitted_bytes_;

  DISALLOW_COPY_AND_ASSIGN(ProxyAckNotifierDelegate);
};

ReliableQuicStream::PendingData::PendingData(
    string data_in, scoped_refptr<ProxyAckNotifierDelegate> delegate_in)
    : data(data_in), delegate(delegate_in) {
}

ReliableQuicStream::PendingData::~PendingData() {
}

ReliableQuicStream::ReliableQuicStream(QuicStreamId id, QuicSession* session)
    : sequencer_(this),
      id_(id),
      session_(session),
      stream_bytes_read_(0),
      stream_bytes_written_(0),
      stream_error_(QUIC_STREAM_NO_ERROR),
      connection_error_(QUIC_NO_ERROR),
      flow_control_send_limit_(
          session_->config()->peer_initial_flow_control_window_bytes()),
      max_flow_control_receive_window_bytes_(
          session_->connection()->max_flow_control_receive_window_bytes()),
      flow_control_receive_window_offset_bytes_(
          session_->connection()->max_flow_control_receive_window_bytes()),
      read_side_closed_(false),
      write_side_closed_(false),
      fin_buffered_(false),
      fin_sent_(false),
      rst_sent_(false),
      is_server_(session_->is_server()) {
  DVLOG(1) << ENDPOINT << "Created stream " << id_
           << ", setting initial receive window to: "
           << flow_control_receive_window_offset_bytes_
           << ", setting send window to: " << flow_control_send_limit_;
}

ReliableQuicStream::~ReliableQuicStream() {
}

bool ReliableQuicStream::WillAcceptStreamFrame(
    const QuicStreamFrame& frame) const {
  if (read_side_closed_) {
    return true;
  }
  if (frame.stream_id != id_) {
    LOG(ERROR) << "Error!";
    return false;
  }
  return sequencer_.WillAcceptStreamFrame(frame);
}

bool ReliableQuicStream::OnStreamFrame(const QuicStreamFrame& frame) {
  DCHECK_EQ(frame.stream_id, id_);
  if (read_side_closed_) {
    DVLOG(1) << ENDPOINT << "Ignoring frame " << frame.stream_id;
    // We don't want to be reading: blackhole the data.
    return true;
  }

  // This count include duplicate data received.
  stream_bytes_read_ += frame.data.TotalBufferSize();

  bool accepted = sequencer_.OnStreamFrame(frame);

  if (IsFlowControlEnabled()) {
    if (flow_control_receive_window_offset_bytes_ < TotalReceivedBytes()) {
      // TODO(rjshade): Lower severity from DFATAL once we have established that
      //                flow control is working correctly.
      LOG(DFATAL)
          << ENDPOINT << "Flow control violation on stream: " << id()
          << ", our receive offset is: "
          << flow_control_receive_window_offset_bytes_
          << ", we have consumed: " << sequencer_.num_bytes_consumed()
          << ", we have buffered: " << sequencer_.num_bytes_buffered()
          << ", total: " << TotalReceivedBytes();
      session_->connection()->SendConnectionClose(QUIC_FLOW_CONTROL_ERROR);
      return false;
    }
    MaybeSendWindowUpdate();
  }

  return accepted;
}

void ReliableQuicStream::MaybeSendWindowUpdate() {
  if (!IsFlowControlEnabled()) {
    return;
  }

  // Send WindowUpdate to increase receive window if
  // (receive window offset - consumed bytes) < (max window / 2).
  // This is behaviour copied from SPDY.
  size_t consumed_window = flow_control_receive_window_offset_bytes_ -
                           sequencer_.num_bytes_consumed();
  size_t threshold = (max_flow_control_receive_window_bytes_ / 2);
  if (consumed_window < threshold) {
    // Update our receive window.
    flow_control_receive_window_offset_bytes_ +=
        (max_flow_control_receive_window_bytes_ - consumed_window);
    DVLOG(1) << ENDPOINT << "Stream: " << id()
             << ", sending WindowUpdate frame. "
             << "Consumed bytes: " << sequencer_.num_bytes_consumed()
             << ", Receive window offset: "
             << flow_control_receive_window_offset_bytes_
             << ", Consumed window: " << consumed_window
             << ", and threshold: " << threshold
             << ". New receive window offset is: "
             << flow_control_receive_window_offset_bytes_;

    // Inform the peer of our new receive window.
    session()->connection()->SendWindowUpdate(
        id(), flow_control_receive_window_offset_bytes_);
  }
}

void ReliableQuicStream::OnStreamReset(const QuicRstStreamFrame& frame) {
  stream_error_ = frame.error_code;
  CloseWriteSide();
  CloseReadSide();
}

void ReliableQuicStream::OnConnectionClosed(QuicErrorCode error,
                                            bool from_peer) {
  if (read_side_closed_ && write_side_closed_) {
    return;
  }
  if (error != QUIC_NO_ERROR) {
    stream_error_ = QUIC_STREAM_CONNECTION_ERROR;
    connection_error_ = error;
  }

  CloseWriteSide();
  CloseReadSide();
}

void ReliableQuicStream::OnFinRead() {
  DCHECK(sequencer_.IsClosed());
  CloseReadSide();
}

void ReliableQuicStream::Reset(QuicRstStreamErrorCode error) {
  DCHECK_NE(QUIC_STREAM_NO_ERROR, error);
  stream_error_ = error;
  // Sending a RstStream results in calling CloseStream.
  session()->SendRstStream(id(), error, stream_bytes_written_);
  rst_sent_ = true;
}

void ReliableQuicStream::CloseConnection(QuicErrorCode error) {
  session()->connection()->SendConnectionClose(error);
}

void ReliableQuicStream::CloseConnectionWithDetails(QuicErrorCode error,
                                                    const string& details) {
  session()->connection()->SendConnectionCloseWithDetails(error, details);
}

QuicVersion ReliableQuicStream::version() const {
  return session()->connection()->version();
}

void ReliableQuicStream::WriteOrBufferData(
    StringPiece data,
    bool fin,
    QuicAckNotifier::DelegateInterface* ack_notifier_delegate) {
  if (data.empty() && !fin) {
    LOG(DFATAL) << "data.empty() && !fin";
    return;
  }

  if (fin_buffered_) {
    LOG(DFATAL) << "Fin already buffered";
    return;
  }

  scoped_refptr<ProxyAckNotifierDelegate> proxy_delegate;
  if (ack_notifier_delegate != NULL) {
    proxy_delegate = new ProxyAckNotifierDelegate(ack_notifier_delegate);
  }

  QuicConsumedData consumed_data(0, false);
  fin_buffered_ = fin;

  if (queued_data_.empty()) {
    struct iovec iov(MakeIovec(data));
    consumed_data = WritevData(&iov, 1, fin, proxy_delegate.get());
    DCHECK_LE(consumed_data.bytes_consumed, data.length());
  }

  bool write_completed;
  // If there's unconsumed data or an unconsumed fin, queue it.
  if (consumed_data.bytes_consumed < data.length() ||
      (fin && !consumed_data.fin_consumed)) {
    StringPiece remainder(data.substr(consumed_data.bytes_consumed));
    queued_data_.push_back(PendingData(remainder.as_string(), proxy_delegate));
    write_completed = false;
  } else {
    write_completed = true;
  }

  if ((proxy_delegate.get() != NULL) &&
      (consumed_data.bytes_consumed > 0 || consumed_data.fin_consumed)) {
    proxy_delegate->WroteData(write_completed);
  }
}

void ReliableQuicStream::OnCanWrite() {
  bool fin = false;
  while (!queued_data_.empty()) {
    PendingData* pending_data = &queued_data_.front();
    ProxyAckNotifierDelegate* delegate = pending_data->delegate.get();
    if (queued_data_.size() == 1 && fin_buffered_) {
      fin = true;
    }
    struct iovec iov(MakeIovec(pending_data->data));
    QuicConsumedData consumed_data = WritevData(&iov, 1, fin, delegate);
    if (consumed_data.bytes_consumed == pending_data->data.size() &&
        fin == consumed_data.fin_consumed) {
      queued_data_.pop_front();
      if (delegate != NULL) {
        delegate->WroteData(true);
      }
    } else {
      if (consumed_data.bytes_consumed > 0) {
        pending_data->data.erase(0, consumed_data.bytes_consumed);
        if (delegate != NULL) {
          delegate->WroteData(false);
        }
      }
      break;
    }
  }
}

QuicConsumedData ReliableQuicStream::WritevData(
    const struct iovec* iov,
    int iov_count,
    bool fin,
    QuicAckNotifier::DelegateInterface* ack_notifier_delegate) {
  if (write_side_closed_) {
    DLOG(ERROR) << ENDPOINT << "Attempt to write when the write side is closed";
    return QuicConsumedData(0, false);
  }

  // How much data we want to write.
  size_t write_length = TotalIovecLength(iov, iov_count);

  // How much data we are allowed to write from flow control.
  size_t send_window = SendWindowSize();

  // A FIN with zero data payload should not be flow control blocked.
  bool fin_with_zero_data = (fin && write_length == 0);

  if (IsFlowControlEnabled()) {
    if (send_window == 0 && !fin_with_zero_data) {
      // Quick return if we can't send anything.
      session()->connection()->SendBlocked(id());
      return QuicConsumedData(0, false);
    }

    if (write_length > send_window) {
      // Don't send the FIN if we aren't going to send all the data.
      fin = false;

      // Writing more data would be a violation of flow control.
      write_length = send_window;
    }
  }

  // Fill an IOVector with bytes from the iovec.
  IOVector data;
  data.AppendIovecAtMostBytes(iov, iov_count, write_length);

  QuicConsumedData consumed_data = session()->WritevData(
      id(), data, stream_bytes_written_, fin, ack_notifier_delegate);
  stream_bytes_written_ += consumed_data.bytes_consumed;

  if (consumed_data.bytes_consumed == write_length) {
    if (IsFlowControlEnabled() && write_length == send_window &&
        !fin_with_zero_data) {
      DVLOG(1) << ENDPOINT << "Stream " << id()
               << " is flow control blocked. "
               << "Send window: " << send_window
               << ", stream_bytes_written: " << stream_bytes_written_
               << ", flow_control_send_limit: "
               << flow_control_send_limit_;
      // The entire send_window has been consumed, we are now flow control
      // blocked.
      session()->connection()->SendBlocked(id());
    }
    if (fin && consumed_data.fin_consumed) {
      fin_sent_ = true;
      CloseWriteSide();
    } else if (fin && !consumed_data.fin_consumed) {
      session_->MarkWriteBlocked(id(), EffectivePriority());
    }
  } else {
    session_->MarkWriteBlocked(id(), EffectivePriority());
  }
  return consumed_data;
}

void ReliableQuicStream::CloseReadSide() {
  if (read_side_closed_) {
    return;
  }
  DVLOG(1) << ENDPOINT << "Done reading from stream " << id();

  read_side_closed_ = true;
  if (write_side_closed_) {
    DVLOG(1) << ENDPOINT << "Closing stream: " << id();
    session_->CloseStream(id());
  }
}

void ReliableQuicStream::CloseWriteSide() {
  if (write_side_closed_) {
    return;
  }
  DVLOG(1) << ENDPOINT << "Done writing to stream " << id();

  write_side_closed_ = true;
  if (read_side_closed_) {
    DVLOG(1) << ENDPOINT << "Closing stream: " << id();
    session_->CloseStream(id());
  }
}

bool ReliableQuicStream::HasBufferedData() {
  return !queued_data_.empty();
}

void ReliableQuicStream::OnClose() {
  CloseReadSide();
  CloseWriteSide();

  if (version() > QUIC_VERSION_13 &&
      !fin_sent_ && !rst_sent_) {
    // For flow control accounting, we must tell the peer how many bytes we have
    // written on this stream before termination. Done here if needed, using a
    // RST frame.
    DVLOG(1) << ENDPOINT << "Sending RST in OnClose: " << id();
    session_->SendRstStream(id(), QUIC_STREAM_NO_ERROR, stream_bytes_written_);
    rst_sent_ = true;
  }
}

void ReliableQuicStream::OnWindowUpdateFrame(
    const QuicWindowUpdateFrame& frame) {
  if (!IsFlowControlEnabled()) {
    DLOG(DFATAL) << "Flow control not enabled! " << version();
    return;
  }

  DVLOG(1) << ENDPOINT
           << "OnWindowUpdateFrame for stream " << id()
           << " with byte offset " << frame.byte_offset
           << " , current offset: " << flow_control_send_limit_ << ").";

  UpdateFlowControlSendLimit(frame.byte_offset);
}

void ReliableQuicStream::UpdateFlowControlSendLimit(QuicStreamOffset offset) {
  if (offset <= flow_control_send_limit_) {
    DVLOG(1) << ENDPOINT << "Stream " << id()
             << ", not changing window, current: " << flow_control_send_limit_
             << " new: " << offset;
    // No change to our send window.
    return;
  }

  DVLOG(1) << ENDPOINT << "Stream " << id()
           << ", changing window, current: " << flow_control_send_limit_
           << " new: " << offset;
  // Send window has increased.
  flow_control_send_limit_ = offset;

  // We can write again!
  // TODO(rjshade): This does not respect priorities (e.g. multiple outstanding
  //                POSTs are unblocked on arrival of SHLO with initial window).
  OnCanWrite();
}

bool ReliableQuicStream::IsFlowControlBlocked() const {
  return IsFlowControlEnabled() && SendWindowSize() == 0;
}

uint64 ReliableQuicStream::SendWindowSize() const {
  return flow_control_send_limit_ - stream_bytes_written();
}

uint64 ReliableQuicStream::TotalReceivedBytes() const {
  return sequencer_.num_bytes_consumed() + sequencer_.num_bytes_buffered();
}

}  // namespace net

/* [<][>][^][v][top][bottom][index][help] */