This source file includes following definitions.
- gemm
- mulSpectrums
- mulAndScaleSpectrums
- dft
- createConvolution
- getErrorString
- ___cublasSafeCall
- ___cufftSafeCall
- gemm
- dft
- create
- estimateBlockSize
- convolve
- createConvolution
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::cuda::gemm(InputArray, InputArray, double, InputArray, double, OutputArray, int, Stream&) { throw_no_cuda(); }
void cv::cuda::mulSpectrums(InputArray, InputArray, OutputArray, int, bool, Stream&) { throw_no_cuda(); }
void cv::cuda::mulAndScaleSpectrums(InputArray, InputArray, OutputArray, int, float, bool, Stream&) { throw_no_cuda(); }
void cv::cuda::dft(InputArray, OutputArray, Size, int, Stream&) { throw_no_cuda(); }
Ptr<Convolution> cv::cuda::createConvolution(Size) { throw_no_cuda(); return Ptr<Convolution>(); }
#else
namespace
{
#define error_entry(entry) { entry, #entry }
struct ErrorEntry
{
int code;
const char* str;
};
struct ErrorEntryComparer
{
int code;
ErrorEntryComparer(int code_) : code(code_) {}
bool operator()(const ErrorEntry& e) const { return e.code == code; }
};
String getErrorString(int code, const ErrorEntry* errors, size_t n)
{
size_t idx = std::find_if(errors, errors + n, ErrorEntryComparer(code)) - errors;
const char* msg = (idx != n) ? errors[idx].str : "Unknown error code";
String str = cv::format("%s [Code = %d]", msg, code);
return str;
}
}
#ifdef HAVE_CUBLAS
namespace
{
const ErrorEntry cublas_errors[] =
{
error_entry( CUBLAS_STATUS_SUCCESS ),
error_entry( CUBLAS_STATUS_NOT_INITIALIZED ),
error_entry( CUBLAS_STATUS_ALLOC_FAILED ),
error_entry( CUBLAS_STATUS_INVALID_VALUE ),
error_entry( CUBLAS_STATUS_ARCH_MISMATCH ),
error_entry( CUBLAS_STATUS_MAPPING_ERROR ),
error_entry( CUBLAS_STATUS_EXECUTION_FAILED ),
error_entry( CUBLAS_STATUS_INTERNAL_ERROR )
};
const size_t cublas_error_num = sizeof(cublas_errors) / sizeof(cublas_errors[0]);
static inline void ___cublasSafeCall(cublasStatus_t err, const char* file, const int line, const char* func)
{
if (CUBLAS_STATUS_SUCCESS != err)
{
String msg = getErrorString(err, cublas_errors, cublas_error_num);
cv::error(cv::Error::GpuApiCallError, msg, func, file, line);
}
}
}
#define cublasSafeCall(expr) ___cublasSafeCall(expr, __FILE__, __LINE__, CV_Func)
#endif
#ifdef HAVE_CUFFT
namespace
{
const ErrorEntry cufft_errors[] =
{
error_entry( CUFFT_INVALID_PLAN ),
error_entry( CUFFT_ALLOC_FAILED ),
error_entry( CUFFT_INVALID_TYPE ),
error_entry( CUFFT_INVALID_VALUE ),
error_entry( CUFFT_INTERNAL_ERROR ),
error_entry( CUFFT_EXEC_FAILED ),
error_entry( CUFFT_SETUP_FAILED ),
error_entry( CUFFT_INVALID_SIZE ),
error_entry( CUFFT_UNALIGNED_DATA )
};
const int cufft_error_num = sizeof(cufft_errors) / sizeof(cufft_errors[0]);
void ___cufftSafeCall(int err, const char* file, const int line, const char* func)
{
if (CUFFT_SUCCESS != err)
{
String msg = getErrorString(err, cufft_errors, cufft_error_num);
cv::error(cv::Error::GpuApiCallError, msg, func, file, line);
}
}
}
#define cufftSafeCall(expr) ___cufftSafeCall(expr, __FILE__, __LINE__, CV_Func)
#endif
void cv::cuda::gemm(InputArray _src1, InputArray _src2, double alpha, InputArray _src3, double beta, OutputArray _dst, int flags, Stream& stream)
{
#ifndef HAVE_CUBLAS
(void) _src1;
(void) _src2;
(void) alpha;
(void) _src3;
(void) beta;
(void) _dst;
(void) flags;
(void) stream;
CV_Error(Error::StsNotImplemented, "The library was build without CUBLAS");
#else
GpuMat src1 = getInputMat(_src1, stream);
GpuMat src2 = getInputMat(_src2, stream);
GpuMat src3 = getInputMat(_src3, stream);
CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_32FC2 || src1.type() == CV_64FC1 || src1.type() == CV_64FC2 );
CV_Assert( src2.type() == src1.type() && (src3.empty() || src3.type() == src1.type()) );
if (src1.depth() == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double");
}
bool tr1 = (flags & GEMM_1_T) != 0;
bool tr2 = (flags & GEMM_2_T) != 0;
bool tr3 = (flags & GEMM_3_T) != 0;
if (src1.type() == CV_64FC2)
{
if (tr1 || tr2 || tr3)
CV_Error(cv::Error::StsNotImplemented, "transpose operation doesn't implemented for CV_64FC2 type");
}
Size src1Size = tr1 ? Size(src1.rows, src1.cols) : src1.size();
Size src2Size = tr2 ? Size(src2.rows, src2.cols) : src2.size();
Size src3Size = tr3 ? Size(src3.rows, src3.cols) : src3.size();
Size dstSize(src2Size.width, src1Size.height);
CV_Assert( src1Size.width == src2Size.height );
CV_Assert( src3.empty() || src3Size == dstSize );
GpuMat dst = getOutputMat(_dst, dstSize, src1.type(), stream);
if (beta != 0)
{
if (src3.empty())
{
dst.setTo(Scalar::all(0), stream);
}
else
{
if (tr3)
{
cuda::transpose(src3, dst, stream);
}
else
{
src3.copyTo(dst, stream);
}
}
}
cublasHandle_t handle;
cublasSafeCall( cublasCreate_v2(&handle) );
cublasSafeCall( cublasSetStream_v2(handle, StreamAccessor::getStream(stream)) );
cublasSafeCall( cublasSetPointerMode_v2(handle, CUBLAS_POINTER_MODE_HOST) );
const float alphaf = static_cast<float>(alpha);
const float betaf = static_cast<float>(beta);
const cuComplex alphacf = make_cuComplex(alphaf, 0);
const cuComplex betacf = make_cuComplex(betaf, 0);
const cuDoubleComplex alphac = make_cuDoubleComplex(alpha, 0);
const cuDoubleComplex betac = make_cuDoubleComplex(beta, 0);
cublasOperation_t transa = tr2 ? CUBLAS_OP_T : CUBLAS_OP_N;
cublasOperation_t transb = tr1 ? CUBLAS_OP_T : CUBLAS_OP_N;
switch (src1.type())
{
case CV_32FC1:
cublasSafeCall( cublasSgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
&alphaf,
src2.ptr<float>(), static_cast<int>(src2.step / sizeof(float)),
src1.ptr<float>(), static_cast<int>(src1.step / sizeof(float)),
&betaf,
dst.ptr<float>(), static_cast<int>(dst.step / sizeof(float))) );
break;
case CV_64FC1:
cublasSafeCall( cublasDgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
&alpha,
src2.ptr<double>(), static_cast<int>(src2.step / sizeof(double)),
src1.ptr<double>(), static_cast<int>(src1.step / sizeof(double)),
&beta,
dst.ptr<double>(), static_cast<int>(dst.step / sizeof(double))) );
break;
case CV_32FC2:
cublasSafeCall( cublasCgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
&alphacf,
src2.ptr<cuComplex>(), static_cast<int>(src2.step / sizeof(cuComplex)),
src1.ptr<cuComplex>(), static_cast<int>(src1.step / sizeof(cuComplex)),
&betacf,
dst.ptr<cuComplex>(), static_cast<int>(dst.step / sizeof(cuComplex))) );
break;
case CV_64FC2:
cublasSafeCall( cublasZgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
&alphac,
src2.ptr<cuDoubleComplex>(), static_cast<int>(src2.step / sizeof(cuDoubleComplex)),
src1.ptr<cuDoubleComplex>(), static_cast<int>(src1.step / sizeof(cuDoubleComplex)),
&betac,
dst.ptr<cuDoubleComplex>(), static_cast<int>(dst.step / sizeof(cuDoubleComplex))) );
break;
}
cublasSafeCall( cublasDestroy_v2(handle) );
syncOutput(dst, _dst, stream);
#endif
}
void cv::cuda::dft(InputArray _src, OutputArray _dst, Size dft_size, int flags, Stream& stream)
{
#ifndef HAVE_CUFFT
(void) _src;
(void) _dst;
(void) dft_size;
(void) flags;
(void) stream;
throw_no_cuda();
#else
GpuMat src = getInputMat(_src, stream);
CV_Assert( src.type() == CV_32FC1 || src.type() == CV_32FC2 );
CV_Assert( !(flags & DFT_COMPLEX_OUTPUT) );
const bool is_1d_input = (dft_size.height == 1) || (dft_size.width == 1);
const bool is_row_dft = (flags & DFT_ROWS) != 0;
const bool is_scaled_dft = (flags & DFT_SCALE) != 0;
const bool is_inverse = (flags & DFT_INVERSE) != 0;
const bool is_complex_input = src.channels() == 2;
const bool is_complex_output = !(flags & DFT_REAL_OUTPUT);
CV_Assert( is_complex_input || is_complex_output );
GpuMat src_cont;
if (src.isContinuous())
{
src_cont = src;
}
else
{
BufferPool pool(stream);
src_cont.allocator = pool.getAllocator();
createContinuous(src.rows, src.cols, src.type(), src_cont);
src.copyTo(src_cont, stream);
}
Size dft_size_opt = dft_size;
if (is_1d_input && !is_row_dft)
{
dft_size_opt.width = std::max(dft_size.width, dft_size.height);
dft_size_opt.height = std::min(dft_size.width, dft_size.height);
}
CV_Assert( dft_size_opt.width > 1 );
cufftType dft_type = CUFFT_R2C;
if (is_complex_input)
dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R;
cufftHandle plan;
if (is_1d_input || is_row_dft)
cufftSafeCall( cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height) );
else
cufftSafeCall( cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type) );
cufftSafeCall( cufftSetStream(plan, StreamAccessor::getStream(stream)) );
if (is_complex_input)
{
if (is_complex_output)
{
createContinuous(dft_size, CV_32FC2, _dst);
GpuMat dst = _dst.getGpuMat();
cufftSafeCall(cufftExecC2C(
plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftComplex>(),
is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD));
}
else
{
createContinuous(dft_size, CV_32F, _dst);
GpuMat dst = _dst.getGpuMat();
cufftSafeCall(cufftExecC2R(
plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftReal>()));
}
}
else
{
if (dft_size == dft_size_opt)
createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, _dst);
else
createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, _dst);
GpuMat dst = _dst.getGpuMat();
cufftSafeCall(cufftExecR2C(
plan, src_cont.ptr<cufftReal>(), dst.ptr<cufftComplex>()));
}
cufftSafeCall( cufftDestroy(plan) );
if (is_scaled_dft)
cuda::multiply(_dst, Scalar::all(1. / dft_size.area()), _dst, 1, -1, stream);
#endif
}
#ifdef HAVE_CUFFT
namespace
{
class ConvolutionImpl : public Convolution
{
public:
explicit ConvolutionImpl(Size user_block_size_) : user_block_size(user_block_size_) {}
void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null());
private:
void create(Size image_size, Size templ_size);
static Size estimateBlockSize(Size result_size);
Size result_size;
Size block_size;
Size user_block_size;
Size dft_size;
int spect_len;
GpuMat image_spect, templ_spect, result_spect;
GpuMat image_block, templ_block, result_data;
};
void ConvolutionImpl::create(Size image_size, Size templ_size)
{
result_size = Size(image_size.width - templ_size.width + 1,
image_size.height - templ_size.height + 1);
block_size = user_block_size;
if (user_block_size.width == 0 || user_block_size.height == 0)
block_size = estimateBlockSize(result_size);
dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.)));
dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.)));
if (dft_size.width > 8192)
dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1);
if (dft_size.height > 8192)
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1);
dft_size.width = std::max(dft_size.width, 512);
dft_size.height = std::max(dft_size.height, 512);
createContinuous(dft_size, CV_32F, image_block);
createContinuous(dft_size, CV_32F, templ_block);
createContinuous(dft_size, CV_32F, result_data);
spect_len = dft_size.height * (dft_size.width / 2 + 1);
createContinuous(1, spect_len, CV_32FC2, image_spect);
createContinuous(1, spect_len, CV_32FC2, templ_spect);
createContinuous(1, spect_len, CV_32FC2, result_spect);
block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
}
Size ConvolutionImpl::estimateBlockSize(Size result_size)
{
int width = (result_size.width + 2) / 3;
int height = (result_size.height + 2) / 3;
width = std::min(width, result_size.width);
height = std::min(height, result_size.height);
return Size(width, height);
}
void ConvolutionImpl::convolve(InputArray _image, InputArray _templ, OutputArray _result, bool ccorr, Stream& _stream)
{
GpuMat image = getInputMat(_image, _stream);
GpuMat templ = getInputMat(_templ, _stream);
CV_Assert( image.type() == CV_32FC1 );
CV_Assert( templ.type() == CV_32FC1 );
create(image.size(), templ.size());
GpuMat result = getOutputMat(_result, result_size, CV_32FC1, _stream);
cudaStream_t stream = StreamAccessor::getStream(_stream);
cufftHandle planR2C, planC2R;
cufftSafeCall( cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R) );
cufftSafeCall( cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C) );
cufftSafeCall( cufftSetStream(planR2C, stream) );
cufftSafeCall( cufftSetStream(planC2R, stream) );
GpuMat templ_roi(templ.size(), CV_32FC1, templ.data, templ.step);
cuda::copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
templ_block.cols - templ_roi.cols, 0, Scalar(), _stream);
cufftSafeCall( cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(), templ_spect.ptr<cufftComplex>()) );
for (int y = 0; y < result.rows; y += block_size.height)
{
for (int x = 0; x < result.cols; x += block_size.width)
{
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
std::min(y + dft_size.height, image.rows) - y);
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
image.step);
cuda::copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
0, image_block.cols - image_roi.cols, 0, Scalar(), _stream);
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
image_spect.ptr<cufftComplex>()));
cuda::mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
1.f / dft_size.area(), ccorr, _stream);
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
result_data.ptr<cufftReal>()));
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
std::min(y + block_size.height, result.rows) - y);
GpuMat result_roi(result_roi_size, result.type(),
(void*)(result.ptr<float>(y) + x), result.step);
GpuMat result_block(result_roi_size, result_data.type(),
result_data.ptr(), result_data.step);
result_block.copyTo(result_roi, _stream);
}
}
cufftSafeCall( cufftDestroy(planR2C) );
cufftSafeCall( cufftDestroy(planC2R) );
syncOutput(result, _result, _stream);
}
}
#endif
Ptr<Convolution> cv::cuda::createConvolution(Size user_block_size)
{
#ifndef HAVE_CUFFT
(void) user_block_size;
CV_Error(Error::StsNotImplemented, "The library was build without CUFFT");
return Ptr<Convolution>();
#else
return makePtr<ConvolutionImpl>(user_block_size);
#endif
}
#endif