root/modules/cudaarithm/src/reductions.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. norm
  2. calcNorm
  3. norm
  4. calcNormDiff
  5. sum
  6. calcSum
  7. absSum
  8. calcAbsSum
  9. sqrSum
  10. calcSqrSum
  11. minMax
  12. findMinMax
  13. minMaxLoc
  14. findMinMaxLoc
  15. countNonZero
  16. countNonZero
  17. reduce
  18. meanStdDev
  19. meanStdDev
  20. rectStdDev
  21. normalize
  22. integral
  23. sqrIntegral
  24. calcNorm
  25. norm
  26. meanStdDev
  27. meanStdDev
  28. rectStdDev

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

double cv::cuda::norm(InputArray, int, InputArray) { throw_no_cuda(); return 0.0; }
void cv::cuda::calcNorm(InputArray, OutputArray, int, InputArray, Stream&) { throw_no_cuda(); }
double cv::cuda::norm(InputArray, InputArray, int) { throw_no_cuda(); return 0.0; }
void cv::cuda::calcNormDiff(InputArray, InputArray, OutputArray, int, Stream&) { throw_no_cuda(); }

Scalar cv::cuda::sum(InputArray, InputArray) { throw_no_cuda(); return Scalar(); }
void cv::cuda::calcSum(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
Scalar cv::cuda::absSum(InputArray, InputArray) { throw_no_cuda(); return Scalar(); }
void cv::cuda::calcAbsSum(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
Scalar cv::cuda::sqrSum(InputArray, InputArray) { throw_no_cuda(); return Scalar(); }
void cv::cuda::calcSqrSum(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }

void cv::cuda::minMax(InputArray, double*, double*, InputArray) { throw_no_cuda(); }
void cv::cuda::findMinMax(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::minMaxLoc(InputArray, double*, double*, Point*, Point*, InputArray) { throw_no_cuda(); }
void cv::cuda::findMinMaxLoc(InputArray, OutputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }

int cv::cuda::countNonZero(InputArray) { throw_no_cuda(); return 0; }
void cv::cuda::countNonZero(InputArray, OutputArray, Stream&) { throw_no_cuda(); }

void cv::cuda::reduce(InputArray, OutputArray, int, int, int, Stream&) { throw_no_cuda(); }

void cv::cuda::meanStdDev(InputArray, Scalar&, Scalar&) { throw_no_cuda(); }
void cv::cuda::meanStdDev(InputArray, OutputArray, Stream&) { throw_no_cuda(); }

void cv::cuda::rectStdDev(InputArray, InputArray, OutputArray, Rect, Stream&) { throw_no_cuda(); }

void cv::cuda::normalize(InputArray, OutputArray, double, double, int, int, InputArray, Stream&) { throw_no_cuda(); }

void cv::cuda::integral(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::sqrIntegral(InputArray, OutputArray, Stream&) { throw_no_cuda(); }

#else

////////////////////////////////////////////////////////////////////////
// norm

namespace cv { namespace cuda { namespace device {

void normL2(cv::InputArray _src, cv::OutputArray _dst, cv::InputArray _mask, Stream& stream);

void findMaxAbs(cv::InputArray _src, cv::OutputArray _dst, cv::InputArray _mask, Stream& stream);

}}}

void cv::cuda::calcNorm(InputArray _src, OutputArray dst, int normType, InputArray mask, Stream& stream)
{
    CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );

    GpuMat src = getInputMat(_src, stream);

    GpuMat src_single_channel = src.reshape(1);

    if (normType == NORM_L1)
    {
        calcAbsSum(src_single_channel, dst, mask, stream);
    }
    else if (normType == NORM_L2)
    {
        cv::cuda::device::normL2(src_single_channel, dst, mask, stream);
    }
    else // NORM_INF
    {
        cv::cuda::device::findMaxAbs(src_single_channel, dst, mask, stream);
    }
}

double cv::cuda::norm(InputArray _src, int normType, InputArray _mask)
{
    Stream& stream = Stream::Null();

    HostMem dst;
    calcNorm(_src, dst, normType, _mask, stream);

    stream.waitForCompletion();

    double val;
    dst.createMatHeader().convertTo(Mat(1, 1, CV_64FC1, &val), CV_64F);

    return val;
}

////////////////////////////////////////////////////////////////////////
// meanStdDev

void cv::cuda::meanStdDev(InputArray _src, OutputArray _dst, Stream& stream)
{
    if (!deviceSupports(FEATURE_SET_COMPUTE_13))
        CV_Error(cv::Error::StsNotImplemented, "Not sufficient compute capebility");

    const GpuMat src = getInputMat(_src, stream);

    CV_Assert( src.type() == CV_8UC1 );

    GpuMat dst = getOutputMat(_dst, 1, 2, CV_64FC1, stream);

    NppiSize sz;
    sz.width  = src.cols;
    sz.height = src.rows;

    int bufSize;
#if (CUDA_VERSION <= 4020)
    nppSafeCall( nppiMeanStdDev8uC1RGetBufferHostSize(sz, &bufSize) );
#else
    nppSafeCall( nppiMeanStdDevGetBufferHostSize_8u_C1R(sz, &bufSize) );
#endif

    BufferPool pool(stream);
    GpuMat buf = pool.getBuffer(1, bufSize, CV_8UC1);

    NppStreamHandler h(StreamAccessor::getStream(stream));

    nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), sz, buf.ptr<Npp8u>(), dst.ptr<Npp64f>(), dst.ptr<Npp64f>() + 1) );

    syncOutput(dst, _dst, stream);
}

void cv::cuda::meanStdDev(InputArray _src, Scalar& mean, Scalar& stddev)
{
    Stream& stream = Stream::Null();

    HostMem dst;
    meanStdDev(_src, dst, stream);

    stream.waitForCompletion();

    double vals[2];
    dst.createMatHeader().copyTo(Mat(1, 2, CV_64FC1, &vals[0]));

    mean = Scalar(vals[0]);
    stddev = Scalar(vals[1]);
}

//////////////////////////////////////////////////////////////////////////////
// rectStdDev

void cv::cuda::rectStdDev(InputArray _src, InputArray _sqr, OutputArray _dst, Rect rect, Stream& _stream)
{
    GpuMat src = getInputMat(_src, _stream);
    GpuMat sqr = getInputMat(_sqr, _stream);

    CV_Assert( src.type() == CV_32SC1 && sqr.type() == CV_64FC1 );

    GpuMat dst = getOutputMat(_dst, src.size(), CV_32FC1, _stream);

    NppiSize sz;
    sz.width = src.cols;
    sz.height = src.rows;

    NppiRect nppRect;
    nppRect.height = rect.height;
    nppRect.width = rect.width;
    nppRect.x = rect.x;
    nppRect.y = rect.y;

    cudaStream_t stream = StreamAccessor::getStream(_stream);

    NppStreamHandler h(stream);

    nppSafeCall( nppiRectStdDev_32s32f_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), sqr.ptr<Npp64f>(), static_cast<int>(sqr.step),
                dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz, nppRect) );

    if (stream == 0)
        cudaSafeCall( cudaDeviceSynchronize() );

    syncOutput(dst, _dst, _stream);
}

#endif

/* [<][>][^][v][top][bottom][index][help] */