root/modules/cudalegacy/src/gmg.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. createBackgroundSubtractorGMG
  2. getMaxFeatures
  3. setMaxFeatures
  4. getDefaultLearningRate
  5. setDefaultLearningRate
  6. getNumFrames
  7. setNumFrames
  8. getQuantizationLevels
  9. setQuantizationLevels
  10. getBackgroundPrior
  11. setBackgroundPrior
  12. getSmoothingRadius
  13. setSmoothingRadius
  14. getDecisionThreshold
  15. setDecisionThreshold
  16. getUpdateBackgroundModel
  17. setUpdateBackgroundModel
  18. getMinVal
  19. setMinVal
  20. getMaxVal
  21. setMaxVal
  22. apply
  23. apply
  24. getBackgroundImage
  25. initialize
  26. createBackgroundSubtractorGMG

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined HAVE_CUDA || defined(CUDA_DISABLER)

Ptr<cuda::BackgroundSubtractorGMG> cv::cuda::createBackgroundSubtractorGMG(int, double) { throw_no_cuda(); return Ptr<cuda::BackgroundSubtractorGMG>(); }

#else

namespace cv { namespace cuda { namespace device {
    namespace gmg
    {
        void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior,
                           float decisionThreshold, int maxFeatures, int numInitializationFrames);

        template <typename SrcT>
        void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures,
                        int frameNum,  float learningRate, bool updateBackgroundModel, cudaStream_t stream);
    }
}}}

namespace
{
    class GMGImpl : public cuda::BackgroundSubtractorGMG
    {
    public:
        GMGImpl(int initializationFrames, double decisionThreshold);

        void apply(InputArray image, OutputArray fgmask, double learningRate=-1);
        void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream);

        void getBackgroundImage(OutputArray backgroundImage) const;

        int getMaxFeatures() const { return maxFeatures_; }
        void setMaxFeatures(int maxFeatures) { maxFeatures_ = maxFeatures; }

        double getDefaultLearningRate() const { return learningRate_; }
        void setDefaultLearningRate(double lr) { learningRate_ = (float) lr; }

        int getNumFrames() const { return numInitializationFrames_; }
        void setNumFrames(int nframes) { numInitializationFrames_ = nframes; }

        int getQuantizationLevels() const { return quantizationLevels_; }
        void setQuantizationLevels(int nlevels) { quantizationLevels_ = nlevels; }

        double getBackgroundPrior() const { return backgroundPrior_; }
        void setBackgroundPrior(double bgprior) { backgroundPrior_ = (float) bgprior; }

        int getSmoothingRadius() const { return smoothingRadius_; }
        void setSmoothingRadius(int radius) { smoothingRadius_ = radius; }

        double getDecisionThreshold() const { return decisionThreshold_; }
        void setDecisionThreshold(double thresh) { decisionThreshold_ = (float) thresh; }

        bool getUpdateBackgroundModel() const { return updateBackgroundModel_; }
        void setUpdateBackgroundModel(bool update) { updateBackgroundModel_ = update; }

        double getMinVal() const { return minVal_; }
        void setMinVal(double val) { minVal_ = (float) val; }

        double getMaxVal() const { return maxVal_; }
        void setMaxVal(double val) { maxVal_ = (float) val; }

    private:
        void initialize(Size frameSize, float min, float max);

        //! Total number of distinct colors to maintain in histogram.
        int maxFeatures_;

        //! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
        float learningRate_;

        //! Number of frames of video to use to initialize histograms.
        int numInitializationFrames_;

        //! Number of discrete levels in each channel to be used in histograms.
        int quantizationLevels_;

        //! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
        float backgroundPrior_;

        //! Smoothing radius, in pixels, for cleaning up FG image.
        int smoothingRadius_;

        //! Value above which pixel is determined to be FG.
        float decisionThreshold_;

        //! Perform background model update.
        bool updateBackgroundModel_;

        float minVal_, maxVal_;

        Size frameSize_;
        int frameNum_;

        GpuMat nfeatures_;
        GpuMat colors_;
        GpuMat weights_;

#if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM)
        Ptr<cuda::Filter> boxFilter_;
        GpuMat buf_;
#endif
    };

    GMGImpl::GMGImpl(int initializationFrames, double decisionThreshold)
    {
        maxFeatures_ = 64;
        learningRate_ = 0.025f;
        numInitializationFrames_ = initializationFrames;
        quantizationLevels_ = 16;
        backgroundPrior_ = 0.8f;
        decisionThreshold_ = (float) decisionThreshold;
        smoothingRadius_ = 7;
        updateBackgroundModel_ = true;
        minVal_ = maxVal_ = 0;
    }

    void GMGImpl::apply(InputArray image, OutputArray fgmask, double learningRate)
    {
        apply(image, fgmask, learningRate, Stream::Null());
    }

    void GMGImpl::apply(InputArray _frame, OutputArray _fgmask, double newLearningRate, Stream& stream)
    {
        using namespace cv::cuda::device::gmg;

        typedef void (*func_t)(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures,
                               int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
        static const func_t funcs[6][4] =
        {
            {update_gpu<uchar>, 0, update_gpu<uchar3>, update_gpu<uchar4>},
            {0,0,0,0},
            {update_gpu<ushort>, 0, update_gpu<ushort3>, update_gpu<ushort4>},
            {0,0,0,0},
            {0,0,0,0},
            {update_gpu<float>, 0, update_gpu<float3>, update_gpu<float4>}
        };

        GpuMat frame = _frame.getGpuMat();

        CV_Assert( frame.depth() == CV_8U || frame.depth() == CV_16U || frame.depth() == CV_32F );
        CV_Assert( frame.channels() == 1 || frame.channels() == 3 || frame.channels() == 4 );

        if (newLearningRate != -1.0)
        {
            CV_Assert( newLearningRate >= 0.0 && newLearningRate <= 1.0 );
            learningRate_ = (float) newLearningRate;
        }

        if (frame.size() != frameSize_)
        {
            double minVal = minVal_;
            double maxVal = maxVal_;

            if (minVal_ == 0 && maxVal_ == 0)
            {
                minVal = 0;
                maxVal = frame.depth() == CV_8U ? 255.0 : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0;
            }

            initialize(frame.size(), (float) minVal, (float) maxVal);
        }

        _fgmask.create(frameSize_, CV_8UC1);
        GpuMat fgmask = _fgmask.getGpuMat();

        fgmask.setTo(Scalar::all(0), stream);

        funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_,
                                                   learningRate_, updateBackgroundModel_, StreamAccessor::getStream(stream));

#if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM)
        // medianBlur
        if (smoothingRadius_ > 0)
        {
            boxFilter_->apply(fgmask, buf_, stream);
            const int minCount = (smoothingRadius_ * smoothingRadius_ + 1) / 2;
            const double thresh = 255.0 * minCount / (smoothingRadius_ * smoothingRadius_);
            cuda::threshold(buf_, fgmask, thresh, 255.0, THRESH_BINARY, stream);
        }
#endif

        // keep track of how many frames we have processed
        ++frameNum_;
    }

    void GMGImpl::getBackgroundImage(OutputArray backgroundImage) const
    {
        (void) backgroundImage;
        CV_Error(Error::StsNotImplemented, "Not implemented");
    }

    void GMGImpl::initialize(Size frameSize, float min, float max)
    {
        using namespace cv::cuda::device::gmg;

        CV_Assert( maxFeatures_ > 0 );
        CV_Assert( learningRate_ >= 0.0f && learningRate_ <= 1.0f);
        CV_Assert( numInitializationFrames_ >= 1);
        CV_Assert( quantizationLevels_ >= 1 && quantizationLevels_ <= 255);
        CV_Assert( backgroundPrior_ >= 0.0f && backgroundPrior_ <= 1.0f);

        minVal_ = min;
        maxVal_ = max;
        CV_Assert( minVal_ < maxVal_ );

        frameSize_ = frameSize;

        frameNum_ = 0;

        nfeatures_.create(frameSize_, CV_32SC1);
        colors_.create(maxFeatures_ * frameSize_.height, frameSize_.width, CV_32SC1);
        weights_.create(maxFeatures_ * frameSize_.height, frameSize_.width, CV_32FC1);

        nfeatures_.setTo(Scalar::all(0));

#if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM)
        if (smoothingRadius_ > 0)
            boxFilter_ = cuda::createBoxFilter(CV_8UC1, -1, Size(smoothingRadius_, smoothingRadius_));
#endif

        loadConstants(frameSize_.width, frameSize_.height, minVal_, maxVal_,
                      quantizationLevels_, backgroundPrior_, decisionThreshold_, maxFeatures_, numInitializationFrames_);
    }
}

Ptr<cuda::BackgroundSubtractorGMG> cv::cuda::createBackgroundSubtractorGMG(int initializationFrames, double decisionThreshold)
{
    return makePtr<GMGImpl>(initializationFrames, decisionThreshold);
}

#endif

/* [<][>][^][v][top][bottom][index][help] */