This source file includes following definitions.
- SetUp
- CUDA_TEST_P
- SetUp
- CUDA_TEST_P
- SetUp
- CUDA_TEST_P
#include "test_precomp.hpp"
#if defined HAVE_CUDA && defined HAVE_OPENCV_CALIB3D
#include "opencv2/calib3d.hpp"
using namespace cvtest;
struct TransformPoints : testing::TestWithParam<cv::cuda::DeviceInfo>
{
cv::cuda::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(TransformPoints, Accuracy)
{
cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10);
cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
cv::Mat tvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
cv::cuda::GpuMat dst;
cv::cuda::transformPoints(loadMat(src), rvec, tvec, dst);
ASSERT_EQ(src.size(), dst.size());
ASSERT_EQ(src.type(), dst.type());
cv::Mat h_dst(dst);
cv::Mat rot;
cv::Rodrigues(rvec, rot);
for (int i = 0; i < h_dst.cols; ++i)
{
cv::Point3f res = h_dst.at<cv::Point3f>(0, i);
cv::Point3f p = src.at<cv::Point3f>(0, i);
cv::Point3f res_gold(
rot.at<float>(0, 0) * p.x + rot.at<float>(0, 1) * p.y + rot.at<float>(0, 2) * p.z + tvec.at<float>(0, 0),
rot.at<float>(1, 0) * p.x + rot.at<float>(1, 1) * p.y + rot.at<float>(1, 2) * p.z + tvec.at<float>(0, 1),
rot.at<float>(2, 0) * p.x + rot.at<float>(2, 1) * p.y + rot.at<float>(2, 2) * p.z + tvec.at<float>(0, 2));
ASSERT_POINT3_NEAR(res_gold, res, 1e-5);
}
}
INSTANTIATE_TEST_CASE_P(CUDA_Calib3D, TransformPoints, ALL_DEVICES);
struct ProjectPoints : testing::TestWithParam<cv::cuda::DeviceInfo>
{
cv::cuda::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(ProjectPoints, Accuracy)
{
cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10);
cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
cv::Mat tvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
cv::Mat camera_mat = randomMat(cv::Size(3, 3), CV_32F, 0.5, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
cv::cuda::GpuMat dst;
cv::cuda::projectPoints(loadMat(src), rvec, tvec, camera_mat, cv::Mat(), dst);
ASSERT_EQ(1, dst.rows);
ASSERT_EQ(MatType(CV_32FC2), MatType(dst.type()));
std::vector<cv::Point2f> dst_gold;
cv::projectPoints(src, rvec, tvec, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), dst_gold);
ASSERT_EQ(dst_gold.size(), static_cast<size_t>(dst.cols));
cv::Mat h_dst(dst);
for (size_t i = 0; i < dst_gold.size(); ++i)
{
cv::Point2f res = h_dst.at<cv::Point2f>(0, (int)i);
cv::Point2f res_gold = dst_gold[i];
ASSERT_LE(cv::norm(res_gold - res) / cv::norm(res_gold), 1e-3f);
}
}
INSTANTIATE_TEST_CASE_P(CUDA_Calib3D, ProjectPoints, ALL_DEVICES);
struct SolvePnPRansac : testing::TestWithParam<cv::cuda::DeviceInfo>
{
cv::cuda::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GetParam();
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(SolvePnPRansac, Accuracy)
{
cv::Mat object = randomMat(cv::Size(5000, 1), CV_32FC3, 0, 100);
cv::Mat camera_mat = randomMat(cv::Size(3, 3), CV_32F, 0.5, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
std::vector<cv::Point2f> image_vec;
cv::Mat rvec_gold;
cv::Mat tvec_gold;
rvec_gold = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
tvec_gold = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), image_vec);
cv::Mat rvec, tvec;
std::vector<int> inliers;
cv::cuda::solvePnPRansac(object, cv::Mat(1, (int)image_vec.size(), CV_32FC2, &image_vec[0]),
camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)),
rvec, tvec, false, 200, 2.f, 100, &inliers);
ASSERT_LE(cv::norm(rvec - rvec_gold), 1e-3);
ASSERT_LE(cv::norm(tvec - tvec_gold), 1e-3);
}
INSTANTIATE_TEST_CASE_P(CUDA_Calib3D, SolvePnPRansac, ALL_DEVICES);
#endif