root/modules/cudaoptflow/src/pyrlk.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. create
  2. create
  3. useInitialFlow_
  4. calcPatchSize
  5. sparse
  6. dense
  7. getWinSize
  8. setWinSize
  9. getMaxLevel
  10. setMaxLevel
  11. getNumIters
  12. setNumIters
  13. getUseInitialFlow
  14. setUseInitialFlow
  15. calc
  16. getWinSize
  17. setWinSize
  18. getMaxLevel
  19. setMaxLevel
  20. getNumIters
  21. setNumIters
  22. getUseInitialFlow
  23. setUseInitialFlow
  24. calc
  25. create
  26. create

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

Ptr<SparsePyrLKOpticalFlow> cv::cuda::SparsePyrLKOpticalFlow::create(Size, int, int, bool) { throw_no_cuda(); return Ptr<SparsePyrLKOpticalFlow>(); }

Ptr<DensePyrLKOpticalFlow> cv::cuda::DensePyrLKOpticalFlow::create(Size, int, int, bool) { throw_no_cuda(); return Ptr<SparsePyrLKOpticalFlow>(); }

#else /* !defined (HAVE_CUDA) */

namespace pyrlk
{
    void loadConstants(int2 winSize, int iters, cudaStream_t stream);

    void sparse1(PtrStepSzf I, PtrStepSzf J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
                 int level, dim3 block, dim3 patch, cudaStream_t stream);
    void sparse4(PtrStepSz<float4> I, PtrStepSz<float4> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount,
                 int level, dim3 block, dim3 patch, cudaStream_t stream);

    void dense(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV,
               PtrStepSzf err, int2 winSize, cudaStream_t stream);
}

namespace
{
    class PyrLKOpticalFlowBase
    {
    public:
        PyrLKOpticalFlowBase(Size winSize, int maxLevel, int iters, bool useInitialFlow);

        void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
            GpuMat& status, GpuMat* err, Stream& stream);

        void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, Stream& stream);

    protected:
        Size winSize_;
        int maxLevel_;
        int iters_;
        bool useInitialFlow_;

    private:
        std::vector<GpuMat> prevPyr_;
        std::vector<GpuMat> nextPyr_;
    };

    PyrLKOpticalFlowBase::PyrLKOpticalFlowBase(Size winSize, int maxLevel, int iters, bool useInitialFlow) :
        winSize_(winSize), maxLevel_(maxLevel), iters_(iters), useInitialFlow_(useInitialFlow)
    {
    }

    void calcPatchSize(Size winSize, dim3& block, dim3& patch)
    {
        if (winSize.width > 32 && winSize.width > 2 * winSize.height)
        {
            block.x = deviceSupports(FEATURE_SET_COMPUTE_12) ? 32 : 16;
            block.y = 8;
        }
        else
        {
            block.x = 16;
            block.y = deviceSupports(FEATURE_SET_COMPUTE_12) ? 16 : 8;
        }

        patch.x = (winSize.width  + block.x - 1) / block.x;
        patch.y = (winSize.height + block.y - 1) / block.y;

        block.z = patch.z = 1;
    }

    void PyrLKOpticalFlowBase::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err, Stream& stream)
    {
        if (prevPts.empty())
        {
            nextPts.release();
            status.release();
            if (err) err->release();
            return;
        }

        dim3 block, patch;
        calcPatchSize(winSize_, block, patch);

        CV_Assert( prevImg.channels() == 1 || prevImg.channels() == 3 || prevImg.channels() == 4 );
        CV_Assert( prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type() );
        CV_Assert( maxLevel_ >= 0 );
        CV_Assert( winSize_.width > 2 && winSize_.height > 2 );
        CV_Assert( patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6 );
        CV_Assert( prevPts.rows == 1 && prevPts.type() == CV_32FC2 );

        if (useInitialFlow_)
            CV_Assert( nextPts.size() == prevPts.size() && nextPts.type() == prevPts.type() );
        else
            ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts);

        GpuMat temp1 = (useInitialFlow_ ? nextPts : prevPts).reshape(1);
        GpuMat temp2 = nextPts.reshape(1);
        cuda::multiply(temp1, Scalar::all(1.0 / (1 << maxLevel_) / 2.0), temp2, 1, -1, stream);

        ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status);
        status.setTo(Scalar::all(1), stream);

        if (err)
            ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);

        // build the image pyramids.

        BufferPool pool(stream);

        prevPyr_.resize(maxLevel_ + 1);
        nextPyr_.resize(maxLevel_ + 1);

        int cn = prevImg.channels();

        if (cn == 1 || cn == 4)
        {
            prevImg.convertTo(prevPyr_[0], CV_32F, stream);
            nextImg.convertTo(nextPyr_[0], CV_32F, stream);
        }
        else
        {
            GpuMat buf = pool.getBuffer(prevImg.size(), CV_MAKE_TYPE(prevImg.depth(), 4));

            cuda::cvtColor(prevImg, buf, COLOR_BGR2BGRA, 0, stream);
            buf.convertTo(prevPyr_[0], CV_32F, stream);

            cuda::cvtColor(nextImg, buf, COLOR_BGR2BGRA, 0, stream);
            buf.convertTo(nextPyr_[0], CV_32F, stream);
        }

        for (int level = 1; level <= maxLevel_; ++level)
        {
            cuda::pyrDown(prevPyr_[level - 1], prevPyr_[level], stream);
            cuda::pyrDown(nextPyr_[level - 1], nextPyr_[level], stream);
        }

        pyrlk::loadConstants(make_int2(winSize_.width, winSize_.height), iters_, StreamAccessor::getStream(stream));

        for (int level = maxLevel_; level >= 0; level--)
        {
            if (cn == 1)
            {
                pyrlk::sparse1(prevPyr_[level], nextPyr_[level],
                               prevPts.ptr<float2>(), nextPts.ptr<float2>(),
                               status.ptr(),
                               level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
                               level, block, patch,
                               StreamAccessor::getStream(stream));
            }
            else
            {
                pyrlk::sparse4(prevPyr_[level], nextPyr_[level],
                               prevPts.ptr<float2>(), nextPts.ptr<float2>(),
                               status.ptr(),
                               level == 0 && err ? err->ptr<float>() : 0, prevPts.cols,
                               level, block, patch,
                               StreamAccessor::getStream(stream));
            }
        }
    }

    void PyrLKOpticalFlowBase::dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, Stream& stream)
    {
        CV_Assert( prevImg.type() == CV_8UC1 );
        CV_Assert( prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type() );
        CV_Assert( maxLevel_ >= 0 );
        CV_Assert( winSize_.width > 2 && winSize_.height > 2 );

        // build the image pyramids.

        prevPyr_.resize(maxLevel_ + 1);
        nextPyr_.resize(maxLevel_ + 1);

        prevPyr_[0] = prevImg;
        nextImg.convertTo(nextPyr_[0], CV_32F, stream);

        for (int level = 1; level <= maxLevel_; ++level)
        {
            cuda::pyrDown(prevPyr_[level - 1], prevPyr_[level], stream);
            cuda::pyrDown(nextPyr_[level - 1], nextPyr_[level], stream);
        }

        BufferPool pool(stream);

        GpuMat uPyr[] = {
            pool.getBuffer(prevImg.size(), CV_32FC1),
            pool.getBuffer(prevImg.size(), CV_32FC1),
        };
        GpuMat vPyr[] = {
            pool.getBuffer(prevImg.size(), CV_32FC1),
            pool.getBuffer(prevImg.size(), CV_32FC1),
        };

        uPyr[0].setTo(Scalar::all(0), stream);
        vPyr[0].setTo(Scalar::all(0), stream);
        uPyr[1].setTo(Scalar::all(0), stream);
        vPyr[1].setTo(Scalar::all(0), stream);

        int2 winSize2i = make_int2(winSize_.width, winSize_.height);
        pyrlk::loadConstants(winSize2i, iters_, StreamAccessor::getStream(stream));

        int idx = 0;

        for (int level = maxLevel_; level >= 0; level--)
        {
            int idx2 = (idx + 1) & 1;

            pyrlk::dense(prevPyr_[level], nextPyr_[level],
                         uPyr[idx], vPyr[idx], uPyr[idx2], vPyr[idx2],
                         PtrStepSzf(), winSize2i,
                         StreamAccessor::getStream(stream));

            if (level > 0)
                idx = idx2;
        }

        uPyr[idx].copyTo(u, stream);
        vPyr[idx].copyTo(v, stream);
    }

    class SparsePyrLKOpticalFlowImpl : public SparsePyrLKOpticalFlow, private PyrLKOpticalFlowBase
    {
    public:
        SparsePyrLKOpticalFlowImpl(Size winSize, int maxLevel, int iters, bool useInitialFlow) :
            PyrLKOpticalFlowBase(winSize, maxLevel, iters, useInitialFlow)
        {
        }

        virtual Size getWinSize() const { return winSize_; }
        virtual void setWinSize(Size winSize) { winSize_ = winSize; }

        virtual int getMaxLevel() const { return maxLevel_; }
        virtual void setMaxLevel(int maxLevel) { maxLevel_ = maxLevel; }

        virtual int getNumIters() const { return iters_; }
        virtual void setNumIters(int iters) { iters_ = iters; }

        virtual bool getUseInitialFlow() const { return useInitialFlow_; }
        virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; }

        virtual void calc(InputArray _prevImg, InputArray _nextImg,
                          InputArray _prevPts, InputOutputArray _nextPts,
                          OutputArray _status,
                          OutputArray _err,
                          Stream& stream)
        {
            const GpuMat prevImg = _prevImg.getGpuMat();
            const GpuMat nextImg = _nextImg.getGpuMat();
            const GpuMat prevPts = _prevPts.getGpuMat();
            GpuMat& nextPts = _nextPts.getGpuMatRef();
            GpuMat& status = _status.getGpuMatRef();
            GpuMat* err = _err.needed() ? &(_err.getGpuMatRef()) : NULL;

            sparse(prevImg, nextImg, prevPts, nextPts, status, err, stream);
        }
    };

    class DensePyrLKOpticalFlowImpl : public DensePyrLKOpticalFlow, private PyrLKOpticalFlowBase
    {
    public:
        DensePyrLKOpticalFlowImpl(Size winSize, int maxLevel, int iters, bool useInitialFlow) :
            PyrLKOpticalFlowBase(winSize, maxLevel, iters, useInitialFlow)
        {
        }

        virtual Size getWinSize() const { return winSize_; }
        virtual void setWinSize(Size winSize) { winSize_ = winSize; }

        virtual int getMaxLevel() const { return maxLevel_; }
        virtual void setMaxLevel(int maxLevel) { maxLevel_ = maxLevel; }

        virtual int getNumIters() const { return iters_; }
        virtual void setNumIters(int iters) { iters_ = iters; }

        virtual bool getUseInitialFlow() const { return useInitialFlow_; }
        virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; }

        virtual void calc(InputArray _prevImg, InputArray _nextImg, InputOutputArray _flow, Stream& stream)
        {
            const GpuMat prevImg = _prevImg.getGpuMat();
            const GpuMat nextImg = _nextImg.getGpuMat();

            BufferPool pool(stream);
            GpuMat u = pool.getBuffer(prevImg.size(), CV_32FC1);
            GpuMat v = pool.getBuffer(prevImg.size(), CV_32FC1);

            dense(prevImg, nextImg, u, v, stream);

            GpuMat flows[] = {u, v};
            cuda::merge(flows, 2, _flow, stream);
        }
    };
}

Ptr<SparsePyrLKOpticalFlow> cv::cuda::SparsePyrLKOpticalFlow::create(Size winSize, int maxLevel, int iters, bool useInitialFlow)
{
    return makePtr<SparsePyrLKOpticalFlowImpl>(winSize, maxLevel, iters, useInitialFlow);
}

Ptr<DensePyrLKOpticalFlow> cv::cuda::DensePyrLKOpticalFlow::create(Size winSize, int maxLevel, int iters, bool useInitialFlow)
{
    return makePtr<DensePyrLKOpticalFlowImpl>(winSize, maxLevel, iters, useInitialFlow);
}

#endif /* !defined (HAVE_CUDA) */

/* [<][>][^][v][top][bottom][index][help] */