root/modules/cudawarping/src/warp.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. warpAffine
  2. buildWarpAffineMaps
  3. warpPerspective
  4. buildWarpPerspectiveMaps
  5. rotate
  6. buildWarpAffineMaps
  7. buildWarpPerspectiveMaps
  8. call
  9. warpAffine
  10. warpPerspective
  11. call
  12. rotate

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined HAVE_CUDA || defined(CUDA_DISABLER)

void cv::cuda::warpAffine(InputArray, OutputArray, InputArray, Size, int, int, Scalar, Stream&) { throw_no_cuda(); }
void cv::cuda::buildWarpAffineMaps(InputArray, bool, Size, OutputArray, OutputArray, Stream&) { throw_no_cuda(); }

void cv::cuda::warpPerspective(InputArray, OutputArray, InputArray, Size, int, int, Scalar, Stream&) { throw_no_cuda(); }
void cv::cuda::buildWarpPerspectiveMaps(InputArray, bool, Size, OutputArray, OutputArray, Stream&) { throw_no_cuda(); }

void cv::cuda::rotate(InputArray, OutputArray, Size, double, double, double, int, Stream&) { throw_no_cuda(); }

#else // HAVE_CUDA

namespace cv { namespace cuda { namespace device
{
    namespace imgproc
    {
        void buildWarpAffineMaps_gpu(float coeffs[2 * 3], PtrStepSzf xmap, PtrStepSzf ymap, cudaStream_t stream);

        template <typename T>
        void warpAffine_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
                            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);

        void buildWarpPerspectiveMaps_gpu(float coeffs[3 * 3], PtrStepSzf xmap, PtrStepSzf ymap, cudaStream_t stream);

        template <typename T>
        void warpPerspective_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[3 * 3], PtrStepSzb dst, int interpolation,
                            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);
    }
}}}

void cv::cuda::buildWarpAffineMaps(InputArray _M, bool inverse, Size dsize, OutputArray _xmap, OutputArray _ymap, Stream& stream)
{
    using namespace cv::cuda::device::imgproc;

    Mat M = _M.getMat();

    CV_Assert( M.rows == 2 && M.cols == 3 );

    _xmap.create(dsize, CV_32FC1);
    _ymap.create(dsize, CV_32FC1);

    GpuMat xmap = _xmap.getGpuMat();
    GpuMat ymap = _ymap.getGpuMat();

    float coeffs[2 * 3];
    Mat coeffsMat(2, 3, CV_32F, (void*)coeffs);

    if (inverse)
        M.convertTo(coeffsMat, coeffsMat.type());
    else
    {
        cv::Mat iM;
        invertAffineTransform(M, iM);
        iM.convertTo(coeffsMat, coeffsMat.type());
    }

    buildWarpAffineMaps_gpu(coeffs, xmap, ymap, StreamAccessor::getStream(stream));
}

void cv::cuda::buildWarpPerspectiveMaps(InputArray _M, bool inverse, Size dsize, OutputArray _xmap, OutputArray _ymap, Stream& stream)
{
    using namespace cv::cuda::device::imgproc;

    Mat M = _M.getMat();

    CV_Assert( M.rows == 3 && M.cols == 3 );

    _xmap.create(dsize, CV_32FC1);
    _ymap.create(dsize, CV_32FC1);

    GpuMat xmap = _xmap.getGpuMat();
    GpuMat ymap = _ymap.getGpuMat();

    float coeffs[3 * 3];
    Mat coeffsMat(3, 3, CV_32F, (void*)coeffs);

    if (inverse)
        M.convertTo(coeffsMat, coeffsMat.type());
    else
    {
        cv::Mat iM;
        invert(M, iM);
        iM.convertTo(coeffsMat, coeffsMat.type());
    }

    buildWarpPerspectiveMaps_gpu(coeffs, xmap, ymap, StreamAccessor::getStream(stream));
}

namespace
{
    template <int DEPTH> struct NppWarpFunc
    {
        typedef typename NPPTypeTraits<DEPTH>::npp_type npp_type;

        typedef NppStatus (*func_t)(const npp_type* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, npp_type* pDst,
                                    int dstStep, NppiRect dstRoi, const double coeffs[][3],
                                    int interpolation);
    };

    template <int DEPTH, typename NppWarpFunc<DEPTH>::func_t func> struct NppWarp
    {
        typedef typename NppWarpFunc<DEPTH>::npp_type npp_type;

        static void call(const cv::cuda::GpuMat& src, cv::cuda::GpuMat& dst, double coeffs[][3], int interpolation, cudaStream_t stream)
        {
            static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};

            NppiSize srcsz;
            srcsz.height = src.rows;
            srcsz.width = src.cols;

            NppiRect srcroi;
            srcroi.x = 0;
            srcroi.y = 0;
            srcroi.height = src.rows;
            srcroi.width = src.cols;

            NppiRect dstroi;
            dstroi.x = 0;
            dstroi.y = 0;
            dstroi.height = dst.rows;
            dstroi.width = dst.cols;

            cv::cuda::NppStreamHandler h(stream);

            nppSafeCall( func(src.ptr<npp_type>(), srcsz, static_cast<int>(src.step), srcroi,
                              dst.ptr<npp_type>(), static_cast<int>(dst.step), dstroi,
                              coeffs, npp_inter[interpolation]) );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
}

void cv::cuda::warpAffine(InputArray _src, OutputArray _dst, InputArray _M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& stream)
{
    GpuMat src = _src.getGpuMat();
    Mat M = _M.getMat();

    CV_Assert( M.rows == 2 && M.cols == 3 );

    const int interpolation = flags & INTER_MAX;

    CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 );
    CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC );
    CV_Assert( borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP );

    _dst.create(dsize, src.type());
    GpuMat dst = _dst.getGpuMat();

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    static const bool useNppTab[6][4][3] =
    {
        {
            {false, false, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        }
    };

    bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation];
    // NPP bug on float data
    useNpp = useNpp && src.depth() != CV_32F;

    if (useNpp)
    {
        typedef void (*func_t)(const cv::cuda::GpuMat& src, cv::cuda::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream);

        static const func_t funcs[2][6][4] =
        {
            {
                {NppWarp<CV_8U, nppiWarpAffine_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpAffine_8u_C3R>::call, NppWarp<CV_8U, nppiWarpAffine_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpAffine_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpAffine_16u_C3R>::call, NppWarp<CV_16U, nppiWarpAffine_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpAffine_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpAffine_32s_C3R>::call, NppWarp<CV_32S, nppiWarpAffine_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpAffine_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpAffine_32f_C3R>::call, NppWarp<CV_32F, nppiWarpAffine_32f_C4R>::call}
            },
            {
                {NppWarp<CV_8U, nppiWarpAffineBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpAffineBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpAffineBack_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpAffineBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpAffineBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpAffineBack_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpAffineBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpAffineBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpAffineBack_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpAffineBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpAffineBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpAffineBack_32f_C4R>::call}
            }
        };

        dst.setTo(borderValue, stream);

        double coeffs[2][3];
        Mat coeffsMat(2, 3, CV_64F, (void*)coeffs);
        M.convertTo(coeffsMat, coeffsMat.type());

        const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, dst, coeffs, interpolation, StreamAccessor::getStream(stream));
    }
    else
    {
        using namespace cv::cuda::device::imgproc;

        typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);

        static const func_t funcs[6][4] =
        {
            {warpAffine_gpu<uchar>      , 0 /*warpAffine_gpu<uchar2>*/ , warpAffine_gpu<uchar3>     , warpAffine_gpu<uchar4>     },
            {0 /*warpAffine_gpu<schar>*/, 0 /*warpAffine_gpu<char2>*/  , 0 /*warpAffine_gpu<char3>*/, 0 /*warpAffine_gpu<char4>*/},
            {warpAffine_gpu<ushort>     , 0 /*warpAffine_gpu<ushort2>*/, warpAffine_gpu<ushort3>    , warpAffine_gpu<ushort4>    },
            {warpAffine_gpu<short>      , 0 /*warpAffine_gpu<short2>*/ , warpAffine_gpu<short3>     , warpAffine_gpu<short4>     },
            {0 /*warpAffine_gpu<int>*/  , 0 /*warpAffine_gpu<int2>*/   , 0 /*warpAffine_gpu<int3>*/ , 0 /*warpAffine_gpu<int4>*/ },
            {warpAffine_gpu<float>      , 0 /*warpAffine_gpu<float2>*/ , warpAffine_gpu<float3>     , warpAffine_gpu<float4>     }
        };

        const func_t func = funcs[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        float coeffs[2 * 3];
        Mat coeffsMat(2, 3, CV_32F, (void*)coeffs);

        if (flags & WARP_INVERSE_MAP)
            M.convertTo(coeffsMat, coeffsMat.type());
        else
        {
            cv::Mat iM;
            invertAffineTransform(M, iM);
            iM.convertTo(coeffsMat, coeffsMat.type());
        }

        Scalar_<float> borderValueFloat;
        borderValueFloat = borderValue;

        func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs,
            dst, interpolation, borderMode, borderValueFloat.val, StreamAccessor::getStream(stream), deviceSupports(FEATURE_SET_COMPUTE_20));
    }
}

void cv::cuda::warpPerspective(InputArray _src, OutputArray _dst, InputArray _M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& stream)
{
    GpuMat src = _src.getGpuMat();
    Mat M = _M.getMat();

    CV_Assert( M.rows == 3 && M.cols == 3 );

    const int interpolation = flags & INTER_MAX;

    CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 );
    CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC );
    CV_Assert( borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP) ;

    _dst.create(dsize, src.type());
    GpuMat dst = _dst.getGpuMat();

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    static const bool useNppTab[6][4][3] =
    {
        {
            {false, false, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        }
    };

    bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation];
    // NPP bug on float data
    useNpp = useNpp && src.depth() != CV_32F;

    if (useNpp)
    {
        typedef void (*func_t)(const cv::cuda::GpuMat& src, cv::cuda::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream);

        static const func_t funcs[2][6][4] =
        {
            {
                {NppWarp<CV_8U, nppiWarpPerspective_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspective_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspective_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspective_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspective_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspective_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspective_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspective_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspective_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspective_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspective_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspective_32f_C4R>::call}
            },
            {
                {NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C4R>::call}
            }
        };

        dst.setTo(borderValue, stream);

        double coeffs[3][3];
        Mat coeffsMat(3, 3, CV_64F, (void*)coeffs);
        M.convertTo(coeffsMat, coeffsMat.type());

        const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, dst, coeffs, interpolation, StreamAccessor::getStream(stream));
    }
    else
    {
        using namespace cv::cuda::device::imgproc;

        typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation,
            int borderMode, const float* borderValue, cudaStream_t stream, bool cc20);

        static const func_t funcs[6][4] =
        {
            {warpPerspective_gpu<uchar>      , 0 /*warpPerspective_gpu<uchar2>*/ , warpPerspective_gpu<uchar3>     , warpPerspective_gpu<uchar4>     },
            {0 /*warpPerspective_gpu<schar>*/, 0 /*warpPerspective_gpu<char2>*/  , 0 /*warpPerspective_gpu<char3>*/, 0 /*warpPerspective_gpu<char4>*/},
            {warpPerspective_gpu<ushort>     , 0 /*warpPerspective_gpu<ushort2>*/, warpPerspective_gpu<ushort3>    , warpPerspective_gpu<ushort4>    },
            {warpPerspective_gpu<short>      , 0 /*warpPerspective_gpu<short2>*/ , warpPerspective_gpu<short3>     , warpPerspective_gpu<short4>     },
            {0 /*warpPerspective_gpu<int>*/  , 0 /*warpPerspective_gpu<int2>*/   , 0 /*warpPerspective_gpu<int3>*/ , 0 /*warpPerspective_gpu<int4>*/ },
            {warpPerspective_gpu<float>      , 0 /*warpPerspective_gpu<float2>*/ , warpPerspective_gpu<float3>     , warpPerspective_gpu<float4>     }
        };

        const func_t func = funcs[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        float coeffs[3 * 3];
        Mat coeffsMat(3, 3, CV_32F, (void*)coeffs);

        if (flags & WARP_INVERSE_MAP)
            M.convertTo(coeffsMat, coeffsMat.type());
        else
        {
            cv::Mat iM;
            invert(M, iM);
            iM.convertTo(coeffsMat, coeffsMat.type());
        }

        Scalar_<float> borderValueFloat;
        borderValueFloat = borderValue;

        func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs,
            dst, interpolation, borderMode, borderValueFloat.val, StreamAccessor::getStream(stream), deviceSupports(FEATURE_SET_COMPUTE_20));
    }
}

////////////////////////////////////////////////////////////////////////
// rotate

namespace
{
    template <int DEPTH> struct NppRotateFunc
    {
        typedef typename NPPTypeTraits<DEPTH>::npp_type npp_type;

        typedef NppStatus (*func_t)(const npp_type* pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI,
                                    npp_type* pDst, int nDstStep, NppiRect oDstROI,
                                    double nAngle, double nShiftX, double nShiftY, int eInterpolation);
    };

    template <int DEPTH, typename NppRotateFunc<DEPTH>::func_t func> struct NppRotate
    {
        typedef typename NppRotateFunc<DEPTH>::npp_type npp_type;

        static void call(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream)
        {
            (void)dsize;
            static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};

            NppStreamHandler h(stream);

            NppiSize srcsz;
            srcsz.height = src.rows;
            srcsz.width = src.cols;
            NppiRect srcroi;
            srcroi.x = srcroi.y = 0;
            srcroi.height = src.rows;
            srcroi.width = src.cols;
            NppiRect dstroi;
            dstroi.x = dstroi.y = 0;
            dstroi.height = dst.rows;
            dstroi.width = dst.cols;

            nppSafeCall( func(src.ptr<npp_type>(), srcsz, static_cast<int>(src.step), srcroi,
                dst.ptr<npp_type>(), static_cast<int>(dst.step), dstroi, angle, xShift, yShift, npp_inter[interpolation]) );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
}

void cv::cuda::rotate(InputArray _src, OutputArray _dst, Size dsize, double angle, double xShift, double yShift, int interpolation, Stream& stream)
{
    typedef void (*func_t)(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream);
    static const func_t funcs[6][4] =
    {
        {NppRotate<CV_8U, nppiRotate_8u_C1R>::call, 0, NppRotate<CV_8U, nppiRotate_8u_C3R>::call, NppRotate<CV_8U, nppiRotate_8u_C4R>::call},
        {0,0,0,0},
        {NppRotate<CV_16U, nppiRotate_16u_C1R>::call, 0, NppRotate<CV_16U, nppiRotate_16u_C3R>::call, NppRotate<CV_16U, nppiRotate_16u_C4R>::call},
        {0,0,0,0},
        {0,0,0,0},
        {NppRotate<CV_32F, nppiRotate_32f_C1R>::call, 0, NppRotate<CV_32F, nppiRotate_32f_C3R>::call, NppRotate<CV_32F, nppiRotate_32f_C4R>::call}
    };

    GpuMat src = _src.getGpuMat();

    CV_Assert( src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32F );
    CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );
    CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC );

    _dst.create(dsize, src.type());
    GpuMat dst = _dst.getGpuMat();

    dst.setTo(Scalar::all(0), stream);

    funcs[src.depth()][src.channels() - 1](src, dst, dsize, angle, xShift, yShift, interpolation, StreamAccessor::getStream(stream));
}

#endif // HAVE_CUDA

/* [<][>][^][v][top][bottom][index][help] */